arm_arch_timer.c 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/clockchips.h>
18
#include <linux/clocksource.h>
19 20
#include <linux/interrupt.h>
#include <linux/of_irq.h>
21
#include <linux/of_address.h>
22
#include <linux/io.h>
23
#include <linux/slab.h>
24
#include <linux/sched_clock.h>
25
#include <linux/acpi.h>
26 27

#include <asm/arch_timer.h>
28
#include <asm/virt.h>
29 30 31

#include <clocksource/arm_arch_timer.h>

32 33 34
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

35 36 37 38 39 40 41 42
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

64 65 66 67 68 69 70 71 72 73 74 75 76 77
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

78
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79
static bool arch_timer_c3stop;
80
static bool arch_timer_mem_use_virtual;
81 82 83 84 85

/*
 * Architected system timer support.
 */

86 87
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
88
			  struct clock_event_device *clk)
89
{
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
113 114 115 116
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
117
			struct clock_event_device *clk)
118
{
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
146 147
}

148
static __always_inline irqreturn_t timer_handler(const int access,
149 150 151
					struct clock_event_device *evt)
{
	unsigned long ctrl;
152

153
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
154 155
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

192 193
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
194 195
{
	unsigned long ctrl;
196 197 198 199 200 201

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
202 203
}

204
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
205
{
206
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
207 208
}

209
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
210
{
211
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
212 213
}

214
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
215
{
216
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
217 218
}

219
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
220
{
221
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
222 223
}

224
static __always_inline void set_next_event(const int access, unsigned long evt,
225
					   struct clock_event_device *clk)
226 227
{
	unsigned long ctrl;
228
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229 230
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231 232
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 234 235
}

static int arch_timer_set_next_event_virt(unsigned long evt,
236
					  struct clock_event_device *clk)
237
{
238
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239 240 241 242
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
243
					  struct clock_event_device *clk)
244
{
245
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246 247 248
	return 0;
}

249 250
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
251
{
252 253 254 255 256 257 258 259 260 261 262
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

263 264
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
265 266 267 268
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
269 270
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
271 272 273
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
274 275 276
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
277
			clk->set_state_shutdown = arch_timer_shutdown_virt;
278
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
279
			clk->set_next_event = arch_timer_set_next_event_virt;
280 281 282 283
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
284
			clk->set_state_shutdown = arch_timer_shutdown_phys;
285
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
286
			clk->set_next_event = arch_timer_set_next_event_phys;
287 288 289
			break;
		default:
			BUG();
290
		}
291
	} else {
292
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
293 294 295 296
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
297
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
298
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
299 300 301
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
302
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
303
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
304 305 306
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
307 308
	}

309
	clk->set_state_shutdown(clk);
310

311 312
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

329 330 331 332 333 334 335 336 337 338 339 340 341
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

359 360 361 362 363 364
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

365
static int arch_timer_setup(struct clock_event_device *clk)
366 367
{
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
368

369 370 371 372
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);

	if (arch_timer_has_nonsecure_ppi())
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
373 374

	arch_counter_set_user_access();
375 376
	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
		arch_timer_configure_evtstream();
377 378 379 380

	return 0;
}

381 382
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
383
{
384 385 386
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
387

388 389 390 391 392 393
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
394 395 396 397
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
398 399
	}

400 401 402 403 404 405 406 407 408 409 410
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
411 412
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
413
		     type & ARCH_CP15_TIMER ?
414
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
415 416 417 418 419
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
420 421 422 423 424 425 426
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

427
static u64 arch_counter_get_cntvct_mem(void)
428
{
429 430 431 432 433 434 435 436 437
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
438 439
}

440 441 442 443 444 445 446 447
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

448 449
static cycle_t arch_counter_read(struct clocksource *cs)
{
450
	return arch_timer_read_counter();
451 452 453 454
}

static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
455
	return arch_timer_read_counter();
456 457 458 459 460 461 462
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
463
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
464 465 466 467 468 469 470
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

471 472 473 474 475 476
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
477

478 479 480 481 482
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
483
	if (type & ARCH_CP15_TIMER) {
484
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
485 486 487
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
488
	} else {
489 490
		arch_timer_read_counter = arch_counter_get_cntvct_mem;

491 492 493 494 495 496 497 498
		/* If the clocksource name is "arch_sys_counter" the
		 * VDSO will attempt to read the CP15-based counter.
		 * Ensure this does not happen when CP15-based
		 * counter is not available.
		 */
		clocksource_counter.name = "arch_mem_counter";
	}

499 500 501 502
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
503 504
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
505 506 507

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
508 509
}

510
static void arch_timer_stop(struct clock_event_device *clk)
511 512 513 514
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

515 516 517
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
518

519
	clk->set_state_shutdown(clk);
520 521
}

522
static int arch_timer_cpu_notify(struct notifier_block *self,
523 524
					   unsigned long action, void *hcpu)
{
525 526 527 528
	/*
	 * Grab cpu pointer in each case to avoid spurious
	 * preemptible warnings
	 */
529 530
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_STARTING:
531
		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
532 533
		break;
	case CPU_DYING:
534
		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
535 536 537 538 539 540
		break;
	}

	return NOTIFY_OK;
}

541
static struct notifier_block arch_timer_cpu_nb = {
542 543 544
	.notifier_call = arch_timer_cpu_notify,
};

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
#endif

572 573 574 575 576 577 578 579 580 581 582
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

583 584 585
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
586 587
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
588 589 590
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
591 592 593 594 595 596 597 598 599 600
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
601 602 603 604 605 606 607
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
608 609 610 611 612 613 614 615 616 617 618 619
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

	err = register_cpu_notifier(&arch_timer_cpu_nb);
	if (err)
		goto out_free_irq;

620 621 622 623
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

624 625 626 627 628
	/* Immediately configure the timer on the boot CPU */
	arch_timer_setup(this_cpu_ptr(arch_timer_evt));

	return 0;

629 630
out_unreg_notify:
	unregister_cpu_notifier(&arch_timer_cpu_nb);
631
out_free_irq:
632 633 634
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
635 636 637 638 639 640 641 642
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

682
static bool __init
683
arch_timer_needs_probing(int type, const struct of_device_id *matches)
684 685
{
	struct device_node *dn;
686
	bool needs_probing = false;
687 688

	dn = of_find_matching_node(NULL, matches);
689
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
690
		needs_probing = true;
691 692
	of_node_put(dn);

693
	return needs_probing;
694 695
}

696 697 698 699 700 701
static void __init arch_timer_common_init(void)
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
702
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
703
			return;
704
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
705 706 707 708 709 710 711 712
			return;
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
	arch_timer_arch_init();
}

713
static void __init arch_timer_init(void)
714 715
{
	/*
716 717 718 719
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
720 721
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
722 723 724 725 726
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
727
	 */
728
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
729 730 731 732 733 734 735 736 737 738
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
739

740
		if (!has_ppi) {
741
			pr_warn("arch_timer: No interrupt available, giving up\n");
742
			return;
743 744 745
		}
	}

746
	arch_timer_register();
747
	arch_timer_common_init();
748 749

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
750
}
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

static void __init arch_timer_of_init(struct device_node *np)
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
		return;
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
775
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
776 777 778 779 780

	arch_timer_init();
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

static void __init arch_timer_mem_init(struct device_node *np)
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
	unsigned int irq;
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
		return;
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
804
		u32 cntacr;
805 806 807 808

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
809
			goto out;
810 811
		}

812 813 814 815 816 817 818 819
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
820 821 822 823 824
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
825 826 827 828

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

829 830 831 832 833 834 835
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

	base = arch_counter_base = of_iomap(best_frame, 0);
	if (!base) {
		pr_err("arch_timer: Can't map frame's registers\n");
836
		goto out;
837 838 839 840 841 842
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
843

844 845
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
846
		       arch_timer_mem_use_virtual ? "virt" : "phys");
847
		goto out;
848 849 850 851 852
	}

	arch_timer_detect_rate(base, np);
	arch_timer_mem_register(base, irq);
	arch_timer_common_init();
853 854 855
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
856 857 858
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
		       arch_timer_mem_init);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
916
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
917
#endif