arm_arch_timer.c 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

39 40 41 42 43 44 45 46
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

68 69 70 71 72 73 74 75 76 77 78 79 80 81
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

82
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83
static bool arch_timer_c3stop;
84
static bool arch_timer_mem_use_virtual;
85
static bool arch_counter_suspend_stop;
86

87 88 89 90 91 92 93 94
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

95 96 97 98
/*
 * Architected system timer support.
 */

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

161
#ifdef CONFIG_FSL_ERRATUM_A008585
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
181 182 183 184
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

185
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
186 187 188 189
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

190
static u64 notrace fsl_a008585_read_cntvct_el0(void)
191 192 193
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
194 195
#endif

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
#endif

237 238 239 240 241 242 243 244 245 246
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
247
		.match_type = ate_match_dt,
248
		.id = "fsl,erratum-a008585",
249
		.desc = "Freescale erratum a005858",
250 251 252 253 254
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
	},
#endif
255 256
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
257
		.match_type = ate_match_dt,
258
		.id = "hisilicon,erratum-161010101",
259
		.desc = "HiSilicon erratum 161010101",
260 261 262 263 264
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
	},
#endif
265
};
266 267 268 269 270 271 272 273 274 275 276 277 278

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

279 280 281 282 283 284 285
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa)
{
	timer_unstable_counter_workaround = wa;
	static_branch_enable(&arch_timer_read_ool_enabled);
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
316
	bool local = false;
317 318 319 320 321

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
322 323 324 325
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
326 327 328 329 330 331 332 333 334
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

335 336 337 338 339 340 341 342
	if (needs_unstable_timer_counter_workaround()) {
		if (wa != timer_unstable_counter_workaround)
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
				wa->desc,
				timer_unstable_counter_workaround->desc);
		return;
	}

343
	arch_timer_enable_workaround(wa);
344 345
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
346 347 348 349
}

#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
350
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
351

352
static __always_inline irqreturn_t timer_handler(const int access,
353 354 355
					struct clock_event_device *evt)
{
	unsigned long ctrl;
356

357
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
358 359
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
360
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

396 397
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
398 399
{
	unsigned long ctrl;
400 401 402 403 404 405

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
406 407
}

408
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
409
{
410
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
411 412
}

413
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
414
{
415
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
416 417
}

418
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
419
{
420
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
421 422
}

423
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
424
{
425
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
426 427
}

428
static __always_inline void set_next_event(const int access, unsigned long evt,
429
					   struct clock_event_device *clk)
430 431
{
	unsigned long ctrl;
432
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
433 434
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
435 436
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
437 438
}

439 440
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
static __always_inline void erratum_set_next_event_generic(const int access,
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		unsigned long evt, struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else if (access == ARCH_TIMER_VIRT_ACCESS)
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

458
static int erratum_set_next_event_virt(unsigned long evt,
459 460
					   struct clock_event_device *clk)
{
461
	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
462 463 464
	return 0;
}

465
static int erratum_set_next_event_phys(unsigned long evt,
466 467
					   struct clock_event_device *clk)
{
468
	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
469 470
	return 0;
}
471
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
472

473
static int arch_timer_set_next_event_virt(unsigned long evt,
474
					  struct clock_event_device *clk)
475
{
476
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
477 478 479 480
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
481
					  struct clock_event_device *clk)
482
{
483
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
484 485 486
	return 0;
}

487 488
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
489
{
490 491 492 493 494 495 496 497 498 499 500
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

501
static void erratum_workaround_set_sne(struct clock_event_device *clk)
502
{
503
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
504 505 506 507
	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
		return;

	if (arch_timer_uses_ppi == VIRT_PPI)
508
		clk->set_next_event = erratum_set_next_event_virt;
509
	else
510
		clk->set_next_event = erratum_set_next_event_phys;
511 512 513
#endif
}

514 515
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
516 517 518 519
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
520 521
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
522 523 524
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
525 526 527
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
528
			clk->set_state_shutdown = arch_timer_shutdown_virt;
529
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
530
			clk->set_next_event = arch_timer_set_next_event_virt;
531 532 533 534
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
535
			clk->set_state_shutdown = arch_timer_shutdown_phys;
536
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
537
			clk->set_next_event = arch_timer_set_next_event_phys;
538 539 540
			break;
		default:
			BUG();
541
		}
542

543 544
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);

545
		erratum_workaround_set_sne(clk);
546
	} else {
547
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
548 549 550 551
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
552
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
553
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
554 555 556
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
557
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
558
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
559 560 561
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
562 563
	}

564
	clk->set_state_shutdown(clk);
565

566 567
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

584 585 586 587 588 589 590 591 592 593 594 595 596
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

614 615 616 617 618 619
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

620 621 622 623 624 625 626 627 628 629 630 631 632
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

633
static int arch_timer_starting_cpu(unsigned int cpu)
634
{
635
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
636
	u32 flags;
637

638
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
639

640 641
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
642

643 644 645 646
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
647 648

	arch_counter_set_user_access();
649
	if (evtstrm_enable)
650
		arch_timer_configure_evtstream();
651 652 653 654

	return 0;
}

655 656
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
657
{
658 659 660
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
661

662 663 664 665 666 667
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
668 669 670 671
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
672 673
	}

674 675 676 677 678 679 680 681 682 683 684
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
685 686
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
687
		     type & ARCH_CP15_TIMER ?
688
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
689 690 691 692 693
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
694 695 696 697 698 699 700
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

701
static u64 arch_counter_get_cntvct_mem(void)
702
{
703 704 705 706 707 708 709 710 711
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
712 713
}

714 715 716 717 718 719 720 721
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

722
static u64 arch_counter_read(struct clocksource *cs)
723
{
724
	return arch_timer_read_counter();
725 726
}

727
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
728
{
729
	return arch_timer_read_counter();
730 731 732 733 734 735 736
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
737
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
738 739
};

740
static struct cyclecounter cyclecounter __ro_after_init = {
741 742 743 744
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

745 746 747 748 749 750
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
751

752 753 754 755 756
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
757
	if (type & ARCH_CP15_TIMER) {
758
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
759 760 761
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
762

763 764
		clocksource_counter.archdata.vdso_direct = true;

765
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
766 767 768 769 770
		/*
		 * Don't use the vdso fastpath if errata require using
		 * the out-of-line counter accessor.
		 */
		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
771
			clocksource_counter.archdata.vdso_direct = false;
772
#endif
773
	} else {
774
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
775 776
	}

777 778
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
779 780 781 782
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
783 784
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
785 786 787

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
788 789
}

790
static void arch_timer_stop(struct clock_event_device *clk)
791 792 793 794
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

795 796 797
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
798

799
	clk->set_state_shutdown(clk);
800 801
}

802
static int arch_timer_dying_cpu(unsigned int cpu)
803
{
804
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
805

806 807
	arch_timer_stop(clk);
	return 0;
808 809
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
830 831 832 833 834 835

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

836 837 838 839 840
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
841 842 843 844

static void __init arch_timer_cpu_pm_deinit(void)
{
}
845 846
#endif

847 848 849 850 851 852 853 854 855 856 857
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

858 859 860
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
861 862
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
863 864 865
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
866 867 868 869 870 871 872 873 874 875
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
876 877 878 879 880 881 882
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
883 884 885 886 887 888 889 890
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

891 892 893 894
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

895

896 897
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
898
				"clockevents/arm/arch_timer:starting",
899 900 901
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
902 903
	return 0;

904 905 906
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

907
out_unreg_notify:
908 909 910
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
911 912 913 914 915 916 917 918
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

958
static bool __init
959
arch_timer_needs_probing(int type, const struct of_device_id *matches)
960 961
{
	struct device_node *dn;
962
	bool needs_probing = false;
963 964

	dn = of_find_matching_node(NULL, matches);
965
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
966
		needs_probing = true;
967 968
	of_node_put(dn);

969
	return needs_probing;
970 971
}

972
static int __init arch_timer_common_init(void)
973 974 975 976 977
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
978
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
979
			return 0;
980
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
981
			return 0;
982 983 984 985
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
986
	return arch_timer_arch_init();
987 988
}

989
static int __init arch_timer_init(void)
990
{
991
	int ret;
992
	/*
993 994 995 996
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
997 998
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
999 1000 1001 1002 1003
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
1004
	 */
1005
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
1016

1017
		if (!has_ppi) {
1018
			pr_warn("arch_timer: No interrupt available, giving up\n");
1019
			return -EINVAL;
1020 1021 1022
		}
	}

1023 1024 1025 1026 1027 1028 1029
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
1030 1031

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
1032 1033
	
	return 0;
1034
}
1035

1036
static int __init arch_timer_of_init(struct device_node *np)
1037 1038 1039 1040 1041
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
1042
		return 0;
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1053 1054
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1055

1056 1057 1058 1059 1060 1061
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1062
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
1063

1064 1065 1066 1067
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1068
	return arch_timer_init();
1069
}
1070 1071
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1072

1073
static int __init arch_timer_mem_init(struct device_node *np)
1074 1075 1076
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
1077
	unsigned int irq, ret = -EINVAL;
1078 1079 1080 1081 1082 1083
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
1084
		return -ENXIO;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
1095
		u32 cntacr;
1096 1097 1098 1099

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
1100
			goto out;
1101 1102
		}

1103 1104 1105 1106 1107 1108 1109 1110
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1111 1112 1113 1114 1115
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1116 1117 1118 1119

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1120 1121 1122 1123
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

1124
	ret= -ENXIO;
1125 1126 1127
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
1128
		pr_err("arch_timer: Can't map frame's registers\n");
1129
		goto out;
1130 1131 1132 1133 1134 1135
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
1136

1137
	ret = -EINVAL;
1138 1139
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
1140
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1141
		goto out;
1142 1143 1144
	}

	arch_timer_detect_rate(base, np);
1145 1146 1147 1148 1149
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
1150 1151 1152
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1153
	return ret;
1154
}
1155
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1156
		       arch_timer_mem_init);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
1214
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1215
#endif