arm_arch_timer.c 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

39 40 41 42 43 44 45 46
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

68 69 70 71 72 73 74 75 76 77 78 79 80 81
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

82
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83
static bool arch_timer_c3stop;
84
static bool arch_timer_mem_use_virtual;
85
static bool arch_counter_suspend_stop;
86
static bool vdso_default = true;
87

88 89 90 91 92 93 94 95
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

96 97 98 99
/*
 * Architected system timer support.
 */

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

193 194 195 196 197 198
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

199
#ifdef CONFIG_FSL_ERRATUM_A008585
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
219 220 221 222
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

223
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
224 225 226 227
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

228
static u64 notrace fsl_a008585_read_cntvct_el0(void)
229 230 231
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
232 233
#endif

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
	/*
	 * Note that trailing spaces are required to properly match
	 * the OEM table information.
	 */
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP05   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP06   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	},
	{ /* Sentinel indicating the end of the OEM array */ },
};
296 297
#endif

298 299 300 301 302 303 304 305 306 307 308
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

309
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
310 311
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
	       timer_unstable_counter_workaround);
312 313 314 315 316
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

static int erratum_set_next_event_tval_virt(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

static int erratum_set_next_event_tval_phys(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

349 350 351
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
352
		.match_type = ate_match_dt,
353
		.id = "fsl,erratum-a008585",
354
		.desc = "Freescale erratum a005858",
355 356 357
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
358 359
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
360 361
	},
#endif
362 363
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
364
		.match_type = ate_match_dt,
365
		.id = "hisilicon,erratum-161010101",
366
		.desc = "HiSilicon erratum 161010101",
367 368 369
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
370 371
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
372 373 374 375 376 377 378 379 380 381
	},
	{
		.match_type = ate_match_acpi_oem_info,
		.id = hisi_161010101_oem_info,
		.desc = "HiSilicon erratum 161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
382 383
	},
#endif
384 385 386 387 388 389 390 391
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
392
};
393 394 395 396 397 398 399 400 401 402 403 404 405

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

406 407 408 409 410 411 412
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
454 455
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
456
{
457 458 459 460 461 462 463 464 465
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

466
	static_branch_enable(&arch_timer_read_ool_enabled);
467 468 469 470 471 472 473 474 475 476 477

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
		clocksource_counter.archdata.vdso_direct = false;
		vdso_default = false;
	}
478 479 480 481 482 483 484
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
485
	bool local = false;
486 487 488 489 490

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
491 492 493 494
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
495 496 497
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
498 499 500 501 502 503 504 505 506
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

507
	if (needs_unstable_timer_counter_workaround()) {
508 509 510
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
511
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
512 513 514 515
				wa->desc, __wa->desc);

		if (__wa)
			return;
516 517
	}

518
	arch_timer_enable_workaround(wa, local);
519 520
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
521 522
}

523 524 525
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
526 527 528 529 530 531 532 533 534
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
535 536 537 538 539 540
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

541 542 543 544 545 546 547
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
	const struct arch_timer_erratum_workaround *wa;

	wa = __this_cpu_read(timer_unstable_counter_workaround);
	return wa && wa->read_cntvct_el0;
}
548 549
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
550 551
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
552
#define erratum_handler(fn, r, ...)			({false;})
553
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
554
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
555

556
static __always_inline irqreturn_t timer_handler(const int access,
557 558 559
					struct clock_event_device *evt)
{
	unsigned long ctrl;
560

561
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
562 563
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
564
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

600 601
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
602 603
{
	unsigned long ctrl;
604 605 606 607 608 609

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
610 611
}

612
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
613
{
614
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
615 616
}

617
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
618
{
619
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
620 621
}

622
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
623
{
624
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
625 626
}

627
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
628
{
629
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
630 631
}

632
static __always_inline void set_next_event(const int access, unsigned long evt,
633
					   struct clock_event_device *clk)
634 635
{
	unsigned long ctrl;
636
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
637 638
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
639 640
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
641 642 643
}

static int arch_timer_set_next_event_virt(unsigned long evt,
644
					  struct clock_event_device *clk)
645
{
646 647 648 649
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
650

651
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
652 653 654 655
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
656
					  struct clock_event_device *clk)
657
{
658 659 660 661
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
662

663
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
664 665 666
	return 0;
}

667 668
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
669
{
670 671 672 673 674 675 676 677 678 679 680
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

681 682
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
683 684 685 686
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
687 688
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
689 690 691
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
692 693 694
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
695
			clk->set_state_shutdown = arch_timer_shutdown_virt;
696
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
697
			clk->set_next_event = arch_timer_set_next_event_virt;
698 699 700 701
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
702
			clk->set_state_shutdown = arch_timer_shutdown_phys;
703
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
704
			clk->set_next_event = arch_timer_set_next_event_phys;
705 706 707
			break;
		default:
			BUG();
708
		}
709

710
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
711
	} else {
712
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
713 714 715 716
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
717
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
718
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
719 720 721
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
722
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
723
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
724 725 726
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
727 728
	}

729
	clk->set_state_shutdown(clk);
730

731 732
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

749 750 751 752 753 754 755 756 757 758 759 760 761
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

762 763 764 765
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

766
	/* Disable user access to the timers and both counters */
767 768 769
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
770
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
771 772 773
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

774 775 776 777 778 779 780 781 782
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
783 784 785 786

	arch_timer_set_cntkctl(cntkctl);
}

787 788 789 790 791 792
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

793 794 795 796 797 798 799 800 801 802 803 804 805
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

806
static int arch_timer_starting_cpu(unsigned int cpu)
807
{
808
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
809
	u32 flags;
810

811
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
812

813 814
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
815

816 817 818 819
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
820 821

	arch_counter_set_user_access();
822
	if (evtstrm_enable)
823
		arch_timer_configure_evtstream();
824 825 826 827

	return 0;
}

828 829
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
830
{
831 832 833
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
834

835 836 837 838 839 840
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
841 842 843 844
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
845 846
	}

847 848 849 850 851 852 853 854 855 856 857
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
858 859
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
860
		     type & ARCH_CP15_TIMER ?
861
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
862 863 864 865 866
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
867 868 869 870 871 872 873
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

874
static u64 arch_counter_get_cntvct_mem(void)
875
{
876 877 878 879 880 881 882 883 884
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
885 886
}

887 888 889 890 891 892
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
893

894 895 896 897 898
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
899
	if (type & ARCH_CP15_TIMER) {
900
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
901 902 903
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
904

905
		clocksource_counter.archdata.vdso_direct = vdso_default;
906
	} else {
907
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
908 909
	}

910 911
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
912 913 914 915
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
916 917
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
918 919 920

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
921 922
}

923
static void arch_timer_stop(struct clock_event_device *clk)
924 925 926 927
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

928 929 930
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
931

932
	clk->set_state_shutdown(clk);
933 934
}

935
static int arch_timer_dying_cpu(unsigned int cpu)
936
{
937
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
938

939 940
	arch_timer_stop(clk);
	return 0;
941 942
}

943
#ifdef CONFIG_CPU_PM
944
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
945 946 947 948
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
949
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
950
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
951
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
952 953 954 955 956 957 958 959 960 961 962
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
963 964 965 966 967 968

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

969 970 971 972 973
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
974 975 976 977

static void __init arch_timer_cpu_pm_deinit(void)
{
}
978 979
#endif

980 981 982 983 984 985 986 987 988 989 990
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

991 992 993
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
994 995
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
996 997 998
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
1009 1010 1011 1012 1013 1014 1015
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
1016 1017 1018 1019 1020 1021 1022 1023
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

1024 1025 1026 1027
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

1028

1029 1030
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
1031
				"clockevents/arm/arch_timer:starting",
1032 1033 1034
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1035 1036
	return 0;

1037 1038 1039
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1040
out_unreg_notify:
1041 1042 1043
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
1044 1045 1046 1047 1048 1049 1050 1051
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1091
static bool __init
1092
arch_timer_needs_probing(int type, const struct of_device_id *matches)
1093 1094
{
	struct device_node *dn;
1095
	bool needs_probing = false;
1096 1097

	dn = of_find_matching_node(NULL, matches);
1098
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
1099
		needs_probing = true;
1100 1101
	of_node_put(dn);

1102
	return needs_probing;
1103 1104
}

1105
static int __init arch_timer_common_init(void)
1106 1107 1108 1109 1110
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
1111
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
1112
			return 0;
1113
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
1114
			return 0;
1115 1116 1117 1118
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1119
	return arch_timer_arch_init();
1120 1121
}

1122
static int __init arch_timer_init(void)
1123
{
1124
	int ret;
1125
	/*
1126 1127 1128 1129
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
1130 1131
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
1132 1133 1134 1135 1136
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
1137
	 */
1138
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
1149

1150
		if (!has_ppi) {
1151
			pr_warn("arch_timer: No interrupt available, giving up\n");
1152
			return -EINVAL;
1153 1154 1155
		}
	}

1156 1157 1158 1159 1160 1161 1162
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
1163 1164

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
1165 1166
	
	return 0;
1167
}
1168

1169
static int __init arch_timer_of_init(struct device_node *np)
1170 1171 1172 1173 1174
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
1175
		return 0;
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1186 1187
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1188

1189 1190 1191 1192 1193 1194
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1195
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
1196

1197 1198 1199 1200
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1201
	return arch_timer_init();
1202
}
1203 1204
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1205

1206
static int __init arch_timer_mem_init(struct device_node *np)
1207 1208 1209
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
1210
	unsigned int irq, ret = -EINVAL;
1211 1212 1213 1214 1215 1216
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
1217
		return -ENXIO;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
1228
		u32 cntacr;
1229 1230 1231 1232

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
1233
			goto out;
1234 1235
		}

1236 1237 1238 1239 1240 1241 1242 1243
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1244 1245 1246 1247 1248
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1249 1250 1251 1252

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1253 1254 1255 1256
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

1257
	ret= -ENXIO;
1258 1259 1260
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
1261
		pr_err("arch_timer: Can't map frame's registers\n");
1262
		goto out;
1263 1264 1265 1266 1267 1268
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
1269

1270
	ret = -EINVAL;
1271 1272
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
1273
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1274
		goto out;
1275 1276 1277
	}

	arch_timer_detect_rate(base, np);
1278 1279 1280 1281 1282
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
1283 1284 1285
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1286
	return ret;
1287
}
1288
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1289
		       arch_timer_mem_init);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

1344 1345 1346
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1347 1348 1349
	arch_timer_init();
	return 0;
}
1350
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1351
#endif