arm_arch_timer.c 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/of_irq.h>
#include <linux/io.h>

#include <asm/arch_timer.h>
22
#include <asm/virt.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include <clocksource/arm_arch_timer.h>

static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

static bool arch_timer_use_virtual = true;

/*
 * Architected system timer support.
 */

46 47 48 49 50 51 52 53 54 55 56 57 58 59
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
		struct clock_event_device *clk)
{
	arch_timer_reg_write_cp15(access, reg, val);
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
		struct clock_event_device *clk)
{
	return arch_timer_reg_read_cp15(access, reg);
}

60
static __always_inline irqreturn_t timer_handler(const int access,
61 62 63
					struct clock_event_device *evt)
{
	unsigned long ctrl;
64
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
65 66
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
67
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

89 90
static __always_inline void timer_set_mode(const int access, int mode,
				  struct clock_event_device *clk)
91 92 93 94 95
{
	unsigned long ctrl;
	switch (mode) {
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
96
		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
97
		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
98
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
99 100 101 102 103 104 105 106 107
		break;
	default:
		break;
	}
}

static void arch_timer_set_mode_virt(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
108
	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
109 110 111 112 113
}

static void arch_timer_set_mode_phys(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
114
	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
115 116
}

117 118
static __always_inline void set_next_event(const int access, unsigned long evt,
				  struct clock_event_device *clk)
119 120
{
	unsigned long ctrl;
121
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
122 123
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
124 125
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
126 127 128
}

static int arch_timer_set_next_event_virt(unsigned long evt,
129
					  struct clock_event_device *clk)
130
{
131
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
132 133 134 135
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
136
					  struct clock_event_device *clk)
137
{
138
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	return 0;
}

static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
	clk->name = "arch_sys_timer";
	clk->rating = 450;
	if (arch_timer_use_virtual) {
		clk->irq = arch_timer_ppi[VIRT_PPI];
		clk->set_mode = arch_timer_set_mode_virt;
		clk->set_next_event = arch_timer_set_next_event_virt;
	} else {
		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
		clk->set_mode = arch_timer_set_mode_phys;
		clk->set_next_event = arch_timer_set_next_event_phys;
	}

	clk->cpumask = cpumask_of(smp_processor_id());

159
	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

	clockevents_config_and_register(clk, arch_timer_rate,
					0xf, 0x7fffffff);

	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}

	arch_counter_set_user_access();

	return 0;
}

static int arch_timer_available(void)
{
	u32 freq;

	if (arch_timer_rate == 0) {
		freq = arch_timer_get_cntfrq();

		/* Check the timer frequency. */
		if (freq == 0) {
			pr_warn("Architected timer frequency not available\n");
			return -EINVAL;
		}

		arch_timer_rate = freq;
	}

	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
		     arch_timer_use_virtual ? "virt" : "phys");
	return 0;
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

205
u64 arch_timer_read_counter(void)
206
{
207
	return arch_counter_get_cntvct();
208 209 210 211
}

static cycle_t arch_counter_read(struct clocksource *cs)
{
212
	return arch_counter_get_cntvct();
213 214 215 216
}

static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
217
	return arch_counter_get_cntvct();
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

static struct timecounter timecounter;

struct timecounter *arch_timer_get_timecounter(void)
{
	return &timecounter;
}

static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
}

static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
					   unsigned long action, void *hcpu)
{
259 260 261 262
	/*
	 * Grab cpu pointer in each case to avoid spurious
	 * preemptible warnings
	 */
263 264
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_STARTING:
265
		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
266 267
		break;
	case CPU_DYING:
268
		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
	.notifier_call = arch_timer_cpu_notify,
};

static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	err = arch_timer_available();
	if (err)
		goto out;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
	timecounter_init(&timecounter, &cyclecounter,
298
			 arch_counter_get_cntvct());
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

	err = register_cpu_notifier(&arch_timer_cpu_nb);
	if (err)
		goto out_free_irq;

	/* Immediately configure the timer on the boot CPU */
	arch_timer_setup(this_cpu_ptr(arch_timer_evt));

	return 0;

out_free_irq:
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

350
static void __init arch_timer_init(struct device_node *np)
351 352 353 354
{
	u32 freq;
	int i;

355 356 357
	if (arch_timer_get_rate()) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
		return;
358 359 360 361 362 363 364 365 366 367 368 369
	}

	/* Try to determine the frequency from the device tree or CNTFRQ */
	if (!of_property_read_u32(np, "clock-frequency", &freq))
		arch_timer_rate = freq;

	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	of_node_put(np);

	/*
370 371 372 373
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
374 375 376
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
377
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
378 379 380 381 382
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
383
			return;
384 385 386
		}
	}

387 388
	arch_timer_register();
	arch_timer_arch_init();
389
}
390 391
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);