arm_arch_timer.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/clockchips.h>
18
#include <linux/clocksource.h>
19 20
#include <linux/interrupt.h>
#include <linux/of_irq.h>
21
#include <linux/of_address.h>
22
#include <linux/io.h>
23
#include <linux/slab.h>
24
#include <linux/sched_clock.h>
25
#include <linux/acpi.h>
26 27

#include <asm/arch_timer.h>
28
#include <asm/virt.h>
29 30 31

#include <clocksource/arm_arch_timer.h>

32 33 34
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

35 36 37 38 39 40 41 42
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

64 65 66 67 68 69 70 71 72 73 74 75 76 77
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

78
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79
static bool arch_timer_c3stop;
80
static bool arch_timer_mem_use_virtual;
81

82 83 84 85 86 87 88 89
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

90 91 92 93
/*
 * Architected system timer support.
 */

94 95
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
96
			  struct clock_event_device *clk)
97
{
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
121 122 123 124
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
125
			struct clock_event_device *clk)
126
{
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
154 155
}

156
static __always_inline irqreturn_t timer_handler(const int access,
157 158 159
					struct clock_event_device *evt)
{
	unsigned long ctrl;
160

161
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
162 163
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
164
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

200 201
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
202 203
{
	unsigned long ctrl;
204 205 206 207 208 209

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
210 211
}

212
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
213
{
214
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
215 216
}

217
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
218
{
219
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
220 221
}

222
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
223
{
224
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
225 226
}

227
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
228
{
229
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
230 231
}

232
static __always_inline void set_next_event(const int access, unsigned long evt,
233
					   struct clock_event_device *clk)
234 235
{
	unsigned long ctrl;
236
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
237 238
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
239 240
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
241 242 243
}

static int arch_timer_set_next_event_virt(unsigned long evt,
244
					  struct clock_event_device *clk)
245
{
246
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
247 248 249 250
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
251
					  struct clock_event_device *clk)
252
{
253
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
254 255 256
	return 0;
}

257 258
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
259
{
260 261 262 263 264 265 266 267 268 269 270
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

271 272
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
273 274 275 276
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
277 278
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
279 280 281
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
282 283 284
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
285
			clk->set_state_shutdown = arch_timer_shutdown_virt;
286
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
287
			clk->set_next_event = arch_timer_set_next_event_virt;
288 289 290 291
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
292
			clk->set_state_shutdown = arch_timer_shutdown_phys;
293
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
294
			clk->set_next_event = arch_timer_set_next_event_phys;
295 296 297
			break;
		default:
			BUG();
298
		}
299
	} else {
300
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
301 302 303 304
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
305
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
306
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
307 308 309
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
310
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
311
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
312 313 314
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
315 316
	}

317
	clk->set_state_shutdown(clk);
318

319 320
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

337 338 339 340 341 342 343 344 345 346 347 348 349
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

367 368 369 370 371 372
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

373
static int arch_timer_setup(struct clock_event_device *clk)
374 375
{
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
376

377 378 379 380
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);

	if (arch_timer_has_nonsecure_ppi())
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
381 382

	arch_counter_set_user_access();
383
	if (evtstrm_enable)
384
		arch_timer_configure_evtstream();
385 386 387 388

	return 0;
}

389 390
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
391
{
392 393 394
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
395

396 397 398 399 400 401
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
402 403 404 405
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
406 407
	}

408 409 410 411 412 413 414 415 416 417 418
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
419 420
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
421
		     type & ARCH_CP15_TIMER ?
422
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
423 424 425 426 427
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
428 429 430 431 432 433 434
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

435
static u64 arch_counter_get_cntvct_mem(void)
436
{
437 438 439 440 441 442 443 444 445
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
446 447
}

448 449 450 451 452 453 454 455
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

456 457
static cycle_t arch_counter_read(struct clocksource *cs)
{
458
	return arch_timer_read_counter();
459 460 461 462
}

static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
463
	return arch_timer_read_counter();
464 465 466 467 468 469 470
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
471
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
472 473 474 475 476 477 478
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

479 480 481 482 483 484
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
485

486 487 488 489 490
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
491
	if (type & ARCH_CP15_TIMER) {
492
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
493 494 495
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
496
	} else {
497 498
		arch_timer_read_counter = arch_counter_get_cntvct_mem;

499 500 501 502 503 504 505 506
		/* If the clocksource name is "arch_sys_counter" the
		 * VDSO will attempt to read the CP15-based counter.
		 * Ensure this does not happen when CP15-based
		 * counter is not available.
		 */
		clocksource_counter.name = "arch_mem_counter";
	}

507 508 509 510
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
511 512
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
513 514 515

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
516 517
}

518
static void arch_timer_stop(struct clock_event_device *clk)
519 520 521 522
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

523 524 525
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
526

527
	clk->set_state_shutdown(clk);
528 529
}

530
static int arch_timer_cpu_notify(struct notifier_block *self,
531 532
					   unsigned long action, void *hcpu)
{
533 534 535 536
	/*
	 * Grab cpu pointer in each case to avoid spurious
	 * preemptible warnings
	 */
537 538
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_STARTING:
539
		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
540 541
		break;
	case CPU_DYING:
542
		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
543 544 545 546 547 548
		break;
	}

	return NOTIFY_OK;
}

549
static struct notifier_block arch_timer_cpu_nb = {
550 551 552
	.notifier_call = arch_timer_cpu_notify,
};

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
#endif

580 581 582 583 584 585 586 587 588 589 590
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

591 592 593
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
594 595
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
596 597 598
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
599 600 601 602 603 604 605 606 607 608
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
609 610 611 612 613 614 615
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
616 617 618 619 620 621 622 623 624 625 626 627
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

	err = register_cpu_notifier(&arch_timer_cpu_nb);
	if (err)
		goto out_free_irq;

628 629 630 631
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

632 633 634 635 636
	/* Immediately configure the timer on the boot CPU */
	arch_timer_setup(this_cpu_ptr(arch_timer_evt));

	return 0;

637 638
out_unreg_notify:
	unregister_cpu_notifier(&arch_timer_cpu_nb);
639
out_free_irq:
640 641 642
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
643 644 645 646 647 648 649 650
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

690
static bool __init
691
arch_timer_needs_probing(int type, const struct of_device_id *matches)
692 693
{
	struct device_node *dn;
694
	bool needs_probing = false;
695 696

	dn = of_find_matching_node(NULL, matches);
697
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
698
		needs_probing = true;
699 700
	of_node_put(dn);

701
	return needs_probing;
702 703
}

704
static int __init arch_timer_common_init(void)
705 706 707 708 709
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
710
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
711
			return 0;
712
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
713
			return 0;
714 715 716 717
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
718
	return arch_timer_arch_init();
719 720
}

721
static int __init arch_timer_init(void)
722
{
723
	int ret;
724
	/*
725 726 727 728
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
729 730
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
731 732 733 734 735
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
736
	 */
737
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
738 739 740 741 742 743 744 745 746 747
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
748

749
		if (!has_ppi) {
750
			pr_warn("arch_timer: No interrupt available, giving up\n");
751
			return -EINVAL;
752 753 754
		}
	}

755 756 757 758 759 760 761
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
762 763

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
764 765
	
	return 0;
766
}
767

768
static int __init arch_timer_of_init(struct device_node *np)
769 770 771 772 773
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
774
		return 0;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
791
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
792

793
	return arch_timer_init();
794
}
795 796
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
797

798
static int __init arch_timer_mem_init(struct device_node *np)
799 800 801
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
802
	unsigned int irq, ret = -EINVAL;
803 804 805 806 807 808
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
809
		return -ENXIO;
810 811 812 813 814 815 816 817 818 819
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
820
		u32 cntacr;
821 822 823 824

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
825
			goto out;
826 827
		}

828 829 830 831 832 833 834 835
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
836 837 838 839 840
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
841 842 843 844

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

845 846 847 848
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

849
	ret= -ENXIO;
850 851 852
	base = arch_counter_base = of_iomap(best_frame, 0);
	if (!base) {
		pr_err("arch_timer: Can't map frame's registers\n");
853
		goto out;
854 855 856 857 858 859
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
860

861
	ret = -EINVAL;
862 863
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
864
		       arch_timer_mem_use_virtual ? "virt" : "phys");
865
		goto out;
866 867 868
	}

	arch_timer_detect_rate(base, np);
869 870 871 872 873
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
874 875 876
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
877
	return ret;
878
}
879
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
880
		       arch_timer_mem_init);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
938
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
939
#endif