arm_arch_timer.c 38.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#undef pr_fmt
#define pr_fmt(fmt) "arch_timer: " fmt

39 40 41
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

42 43 44 45 46 47 48 49
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

69
static u32 arch_timer_rate;
70
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 72 73

static struct clock_event_device __percpu *arch_timer_evt;

74
static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75
static bool arch_timer_c3stop;
76
static bool arch_timer_mem_use_virtual;
77
static bool arch_counter_suspend_stop;
78
static bool vdso_default = true;
79

80 81 82 83 84 85 86 87
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

88 89 90 91
/*
 * Architected system timer support.
 */

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

185 186 187 188 189 190
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

191
#ifdef CONFIG_FSL_ERRATUM_A008585
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
211 212 213 214
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

215
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
216 217 218 219
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

220
static u64 notrace fsl_a008585_read_cntvct_el0(void)
221 222 223
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
224 225
#endif

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
	/*
	 * Note that trailing spaces are required to properly match
	 * the OEM table information.
	 */
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP05   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP06   ",
		.oem_revision	= 0,
	},
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	},
	{ /* Sentinel indicating the end of the OEM array */ },
};
288 289
#endif

290 291 292 293 294 295 296 297 298 299 300
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

301
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302 303
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
	       timer_unstable_counter_workaround);
304 305 306 307 308
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

static int erratum_set_next_event_tval_virt(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

static int erratum_set_next_event_tval_phys(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

341 342 343
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
344
		.match_type = ate_match_dt,
345
		.id = "fsl,erratum-a008585",
346
		.desc = "Freescale erratum a005858",
347 348 349
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
350 351
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
352 353
	},
#endif
354 355
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
356
		.match_type = ate_match_dt,
357
		.id = "hisilicon,erratum-161010101",
358
		.desc = "HiSilicon erratum 161010101",
359 360 361
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
362 363
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
364 365 366 367 368 369 370 371 372 373
	},
	{
		.match_type = ate_match_acpi_oem_info,
		.id = hisi_161010101_oem_info,
		.desc = "HiSilicon erratum 161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
374 375
	},
#endif
376 377 378 379 380 381 382 383
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
384
};
385 386 387 388 389 390 391 392 393 394 395 396 397

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

398 399 400 401 402 403 404
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
446 447
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
448
{
449 450 451 452 453 454 455 456 457
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

458
	static_branch_enable(&arch_timer_read_ool_enabled);
459 460 461 462 463 464 465 466 467 468 469

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
		clocksource_counter.archdata.vdso_direct = false;
		vdso_default = false;
	}
470 471 472 473 474 475 476
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
477
	bool local = false;
478 479 480 481 482

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
483 484 485 486
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
487 488 489
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
490 491 492 493 494 495 496 497 498
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

499
	if (needs_unstable_timer_counter_workaround()) {
500 501 502
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
503
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
504 505 506 507
				wa->desc, __wa->desc);

		if (__wa)
			return;
508 509
	}

510
	arch_timer_enable_workaround(wa, local);
511 512
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
513 514
}

515 516 517
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
518 519 520 521 522 523 524 525 526
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
527 528 529 530 531 532
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

533 534 535 536 537 538 539
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
	const struct arch_timer_erratum_workaround *wa;

	wa = __this_cpu_read(timer_unstable_counter_workaround);
	return wa && wa->read_cntvct_el0;
}
540 541
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
542 543
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
544
#define erratum_handler(fn, r, ...)			({false;})
545
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
546
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
547

548
static __always_inline irqreturn_t timer_handler(const int access,
549 550 551
					struct clock_event_device *evt)
{
	unsigned long ctrl;
552

553
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
554 555
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
556
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

592 593
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
594 595
{
	unsigned long ctrl;
596 597 598 599 600 601

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
602 603
}

604
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
605
{
606
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
607 608
}

609
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
610
{
611
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
612 613
}

614
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
615
{
616
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
617 618
}

619
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
620
{
621
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
622 623
}

624
static __always_inline void set_next_event(const int access, unsigned long evt,
625
					   struct clock_event_device *clk)
626 627
{
	unsigned long ctrl;
628
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 630
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
631 632
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
633 634 635
}

static int arch_timer_set_next_event_virt(unsigned long evt,
636
					  struct clock_event_device *clk)
637
{
638 639 640 641
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
642

643
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
644 645 646 647
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
648
					  struct clock_event_device *clk)
649
{
650 651 652 653
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
654

655
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
656 657 658
	return 0;
}

659 660
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
661
{
662 663 664 665 666 667 668 669 670 671 672
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

673 674
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
675 676 677
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

678
	if (type == ARCH_TIMER_TYPE_CP15) {
679 680
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
681 682 683
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
684 685
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
686
		case ARCH_TIMER_VIRT_PPI:
687
			clk->set_state_shutdown = arch_timer_shutdown_virt;
688
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
689
			clk->set_next_event = arch_timer_set_next_event_virt;
690
			break;
691 692 693
		case ARCH_TIMER_PHYS_SECURE_PPI:
		case ARCH_TIMER_PHYS_NONSECURE_PPI:
		case ARCH_TIMER_HYP_PPI:
694
			clk->set_state_shutdown = arch_timer_shutdown_phys;
695
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
696
			clk->set_next_event = arch_timer_set_next_event_phys;
697 698 699
			break;
		default:
			BUG();
700
		}
701

702
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
703
	} else {
704
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
705 706 707 708
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
709
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
710
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
711 712 713
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
714
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
715
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
716 717 718
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
719 720
	}

721
	clk->set_state_shutdown(clk);
722

723 724
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

741 742 743 744 745 746 747 748 749 750 751 752 753
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

754 755 756 757
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

758
	/* Disable user access to the timers and both counters */
759 760 761
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
762
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
763 764 765
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

766 767 768 769 770 771 772 773 774
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
775 776 777 778

	arch_timer_set_cntkctl(cntkctl);
}

779 780
static bool arch_timer_has_nonsecure_ppi(void)
{
781 782
	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

798
static int arch_timer_starting_cpu(unsigned int cpu)
799
{
800
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
801
	u32 flags;
802

803
	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
804

805 806
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
807

808
	if (arch_timer_has_nonsecure_ppi()) {
809 810 811
		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
				  flags);
812
	}
813 814

	arch_counter_set_user_access();
815
	if (evtstrm_enable)
816
		arch_timer_configure_evtstream();
817 818 819 820

	return 0;
}

821 822 823 824 825 826
/*
 * For historical reasons, when probing with DT we use whichever (non-zero)
 * rate was probed first, and don't verify that others match. If the first node
 * probed has a clock-frequency property, this overrides the HW register.
 */
static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
827
{
828 829 830
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
831

832 833
	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
		arch_timer_rate = rate;
834

835 836
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
837
		pr_warn("frequency not available\n");
838 839 840 841
}

static void arch_timer_banner(unsigned type)
{
842
	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
843 844 845 846
		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
			" and " : "",
		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
847 848
		(unsigned long)arch_timer_rate / 1000000,
		(unsigned long)(arch_timer_rate / 10000) % 100,
849
		type & ARCH_TIMER_TYPE_CP15 ?
850
			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
851
			"",
852 853
		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
		type & ARCH_TIMER_TYPE_MEM ?
854 855
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
856 857 858 859 860 861 862
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

863
static u64 arch_counter_get_cntvct_mem(void)
864
{
865 866 867 868 869 870 871 872 873
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
874 875
}

876 877 878 879 880 881
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
882

883 884 885 886 887
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
888
	if (type & ARCH_TIMER_TYPE_CP15) {
889 890
		if (IS_ENABLED(CONFIG_ARM64) ||
		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
891 892 893
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
894

895
		clocksource_counter.archdata.vdso_direct = vdso_default;
896
	} else {
897
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
898 899
	}

900 901
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
902 903 904 905
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
906 907
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
908 909 910

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
911 912
}

913
static void arch_timer_stop(struct clock_event_device *clk)
914
{
915
	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
916

917 918
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
919
		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
920

921
	clk->set_state_shutdown(clk);
922 923
}

924
static int arch_timer_dying_cpu(unsigned int cpu)
925
{
926
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
927

928 929
	arch_timer_stop(clk);
	return 0;
930 931
}

932
#ifdef CONFIG_CPU_PM
933
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
934 935 936 937
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
938
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
939
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
940
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
941 942 943 944 945 946 947 948 949 950 951
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
952 953 954 955 956 957

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

958 959 960 961 962
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
963 964 965 966

static void __init arch_timer_cpu_pm_deinit(void)
{
}
967 968
#endif

969 970 971 972 973 974 975 976 977 978 979
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

980 981
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
982
	case ARCH_TIMER_VIRT_PPI:
983 984
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
985
		break;
986 987
	case ARCH_TIMER_PHYS_SECURE_PPI:
	case ARCH_TIMER_PHYS_NONSECURE_PPI:
988 989
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
990
		if (!err && arch_timer_has_nonsecure_ppi()) {
991
			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
992 993 994
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
995
				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
996 997
						arch_timer_evt);
		}
998
		break;
999
	case ARCH_TIMER_HYP_PPI:
1000 1001 1002 1003 1004
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
1005 1006 1007
	}

	if (err) {
1008
		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1009 1010 1011
		goto out_free;
	}

1012 1013 1014 1015
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

1016

1017 1018
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
1019
				"clockevents/arm/arch_timer:starting",
1020 1021 1022
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1023 1024
	return 0;

1025 1026 1027
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1028
out_unreg_notify:
1029 1030
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
1031
		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1032 1033 1034 1035 1036 1037 1038 1039
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
1052
	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1053 1054 1055 1056 1057 1058 1059 1060

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
1061
		pr_err("Failed to request mem timer irq\n");
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1079
static bool __init arch_timer_needs_of_probing(void)
1080 1081
{
	struct device_node *dn;
1082
	bool needs_probing = false;
1083
	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	/* We have two timers, and both device-tree nodes are probed. */
	if ((arch_timers_present & mask) == mask)
		return false;

	/*
	 * Only one type of timer is probed,
	 * check if we have another type of timer node in device-tree.
	 */
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
	else
		dn = of_find_matching_node(NULL, arch_timer_of_match);

	if (dn && of_device_is_available(dn))
1099
		needs_probing = true;
1100

1101 1102
	of_node_put(dn);

1103
	return needs_probing;
1104 1105
}

1106
static int __init arch_timer_common_init(void)
1107 1108 1109
{
	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1110
	return arch_timer_arch_init();
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/**
 * arch_timer_select_ppi() - Select suitable PPI for the current system.
 *
 * If HYP mode is available, we know that the physical timer
 * has been configured to be accessible from PL1. Use it, so
 * that a guest can use the virtual timer instead.
 *
 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
 * accesses to CNTP_*_EL1 registers are silently redirected to
 * their CNTHP_*_EL2 counterparts, and use a different PPI
 * number.
 *
 * If no interrupt provided for virtual timer, we'll have to
 * stick to the physical timer. It'd better be accessible...
 * For arm64 we never use the secure interrupt.
 *
 * Return: a suitable PPI type for the current system.
 */
static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1132
{
1133 1134
	if (is_kernel_in_hyp_mode())
		return ARCH_TIMER_HYP_PPI;
1135

1136 1137
	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
		return ARCH_TIMER_VIRT_PPI;
1138

1139 1140 1141 1142 1143 1144
	if (IS_ENABLED(CONFIG_ARM64))
		return ARCH_TIMER_PHYS_NONSECURE_PPI;

	return ARCH_TIMER_PHYS_SECURE_PPI;
}

1145
static int __init arch_timer_of_init(struct device_node *np)
1146
{
1147
	int i, ret;
1148
	u32 rate;
1149

1150
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1151
		pr_warn("multiple nodes in dt, skipping\n");
1152
		return 0;
1153 1154
	}

1155
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1156
	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1157 1158
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

1159 1160
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1161
	rate = arch_timer_get_cntfrq();
1162
	arch_timer_of_configure_rate(rate, np);
1163 1164 1165

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1166 1167
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1168

1169 1170 1171 1172 1173 1174
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1175
		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1176 1177 1178 1179 1180 1181 1182
	else
		arch_timer_uses_ppi = arch_timer_select_ppi();

	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}
1183

1184 1185 1186 1187
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1188 1189 1190 1191 1192 1193 1194 1195
	ret = arch_timer_register();
	if (ret)
		return ret;

	if (arch_timer_needs_of_probing())
		return 0;

	return arch_timer_common_init();
1196
}
1197 1198
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1199

1200 1201
static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1202
{
1203 1204
	void __iomem *base;
	u32 rate;
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
		return 0;
	}

	rate = readl_relaxed(frame + CNTFRQ);

	iounmap(frame);

	return rate;
}

static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame, *best_frame = NULL;
	void __iomem *cntctlbase;
	u32 cnttidr;
	int i;

	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1228
	if (!cntctlbase) {
1229 1230 1231
		pr_err("Can't map CNTCTLBase @ %pa\n",
			&timer_mem->cntctlbase);
		return NULL;
1232 1233 1234 1235 1236 1237 1238 1239
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
1240 1241 1242
	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1243

1244 1245 1246
		frame = &timer_mem->frame[i];
		if (!frame->valid)
			continue;
1247

1248
		/* Try enabling everything, and see what sticks */
1249 1250
		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1251

1252
		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1253
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1254 1255 1256 1257
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1258 1259 1260 1261

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1262
		best_frame = frame;
1263 1264
	}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	iounmap(cntctlbase);

	if (!best_frame)
		pr_err("Unable to find a suitable frame in timer @ %pa\n",
			&timer_mem->cntctlbase);

	return frame;
}

static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
{
	void __iomem *base;
	int ret, irq = 0;
1279 1280

	if (arch_timer_mem_use_virtual)
1281
		irq = frame->virt_irq;
1282
	else
1283
		irq = frame->phys_irq;
1284

1285
	if (!irq) {
1286
		pr_err("Frame missing %s irq.\n",
1287
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		return -EINVAL;
	}

	if (!request_mem_region(frame->cntbase, frame->size,
				"arch_mem_timer"))
		return -EBUSY;

	base = ioremap(frame->cntbase, frame->size);
	if (!base) {
		pr_err("Can't map frame's registers\n");
		return -ENXIO;
1299 1300
	}

1301
	ret = arch_timer_mem_register(base, irq);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	if (ret) {
		iounmap(base);
		return ret;
	}

	arch_counter_base = base;
	arch_timers_present |= ARCH_TIMER_TYPE_MEM;

	return 0;
}

static int __init arch_timer_mem_of_init(struct device_node *np)
{
	struct arch_timer_mem *timer_mem;
	struct arch_timer_mem_frame *frame;
	struct device_node *frame_node;
	struct resource res;
	int ret = -EINVAL;
	u32 rate;

	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
	if (!timer_mem)
		return -ENOMEM;

	if (of_address_to_resource(np, 0, &res))
1327
		goto out;
1328 1329
	timer_mem->cntctlbase = res.start;
	timer_mem->size = resource_size(&res);
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	for_each_available_child_of_node(np, frame_node) {
		u32 n;
		struct arch_timer_mem_frame *frame;

		if (of_property_read_u32(frame_node, "frame-number", &n)) {
			pr_err(FW_BUG "Missing frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}
		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
			of_node_put(frame_node);
			goto out;
		}
		frame = &timer_mem->frame[n];

		if (frame->valid) {
			pr_err(FW_BUG "Duplicated frame-number.\n");
			of_node_put(frame_node);
			goto out;
		}

		if (of_address_to_resource(frame_node, 0, &res)) {
			of_node_put(frame_node);
			goto out;
		}
		frame->cntbase = res.start;
		frame->size = resource_size(&res);

		frame->virt_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_VIRT_SPI);
		frame->phys_irq = irq_of_parse_and_map(frame_node,
						       ARCH_TIMER_PHYS_SPI);

		frame->valid = true;
	}

	frame = arch_timer_mem_find_best_frame(timer_mem);
	if (!frame) {
		ret = -EINVAL;
		goto out;
	}

	rate = arch_timer_mem_frame_get_cntfrq(frame);
	arch_timer_of_configure_rate(rate, np);

	ret = arch_timer_mem_frame_register(frame);
	if (!ret && !arch_timer_needs_of_probing())
1380
		ret = arch_timer_common_init();
1381
out:
1382
	kfree(timer_mem);
1383
	return ret;
1384
}
1385
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1386
		       arch_timer_mem_of_init);
1387

1388
#ifdef CONFIG_ACPI_GTDT
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
{
	struct arch_timer_mem_frame *frame;
	u32 rate;
	int i;

	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
		frame = &timer_mem->frame[i];

		if (!frame->valid)
			continue;

		rate = arch_timer_mem_frame_get_cntfrq(frame);
		if (rate == arch_timer_rate)
			continue;

		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
			&frame->cntbase,
			(unsigned long)rate, (unsigned long)arch_timer_rate);

		return -EINVAL;
	}

	return 0;
}

static int __init arch_timer_mem_acpi_init(int platform_timer_count)
{
	struct arch_timer_mem *timers, *timer;
	struct arch_timer_mem_frame *frame;
	int timer_count, i, ret = 0;

	timers = kcalloc(platform_timer_count, sizeof(*timers),
			    GFP_KERNEL);
	if (!timers)
		return -ENOMEM;

	ret = acpi_arch_timer_mem_init(timers, &timer_count);
	if (ret || !timer_count)
		goto out;

	for (i = 0; i < timer_count; i++) {
		ret = arch_timer_mem_verify_cntfrq(&timers[i]);
		if (ret) {
			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
			goto out;
		}
	}

	/*
	 * While unlikely, it's theoretically possible that none of the frames
	 * in a timer expose the combination of feature we want.
	 */
	for (i = i; i < timer_count; i++) {
		timer = &timers[i];

		frame = arch_timer_mem_find_best_frame(timer);
		if (frame)
			break;
	}

	if (frame)
		ret = arch_timer_mem_frame_register(frame);
out:
	kfree(timers);
	return ret;
}

/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1459 1460
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
1461
	int ret, platform_timer_count;
1462

1463
	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1464
		pr_warn("already initialized, skipping\n");
1465 1466 1467
		return -EINVAL;
	}

1468
	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1469

1470
	ret = acpi_gtdt_init(table, &platform_timer_count);
1471 1472 1473 1474
	if (ret) {
		pr_err("Failed to init GTDT table.\n");
		return ret;
	}
1475

1476
	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1477
		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1478

1479
	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1480
		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1481

1482
	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1483
		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1484

1485 1486
	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];

1487 1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * When probing via ACPI, we have no mechanism to override the sysreg
	 * CNTFRQ value. This *must* be correct.
	 */
	arch_timer_rate = arch_timer_get_cntfrq();
	if (!arch_timer_rate) {
		pr_err(FW_BUG "frequency not available.\n");
		return -EINVAL;
	}
1496

1497 1498 1499 1500 1501 1502
	arch_timer_uses_ppi = arch_timer_select_ppi();
	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
		pr_err("No interrupt available, giving up\n");
		return -EINVAL;
	}

1503
	/* Always-on capability */
1504
	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1505

1506 1507 1508
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1509 1510 1511 1512
	ret = arch_timer_register();
	if (ret)
		return ret;

1513 1514 1515 1516
	if (platform_timer_count &&
	    arch_timer_mem_acpi_init(platform_timer_count))
		pr_err("Failed to initialize memory-mapped timer.\n");

1517
	return arch_timer_common_init();
1518
}
1519
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1520
#endif