arm_arch_timer.c 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

39 40 41 42 43 44 45 46
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

68 69 70 71 72 73 74 75 76 77 78 79 80 81
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

82
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83
static bool arch_timer_c3stop;
84
static bool arch_timer_mem_use_virtual;
85
static bool arch_counter_suspend_stop;
86

87 88 89 90 91 92 93 94
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

95 96 97 98
/*
 * Architected system timer support.
 */

99
#ifdef CONFIG_FSL_ERRATUM_A008585
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
119 120 121 122
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

123
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
124 125 126 127
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

128
static u64 notrace fsl_a008585_read_cntvct_el0(void)
129 130 131
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
132 133
#endif

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
#endif

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
		.id = "fsl,erratum-a008585",
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
	},
#endif
191 192 193 194 195 196 197 198
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
		.id = "hisilicon,erratum-161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
	},
#endif
199 200
};
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
201

202 203
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
204
			  struct clock_event_device *clk)
205
{
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
229 230 231 232
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
233
			struct clock_event_device *clk)
234
{
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
262 263
}

264
static __always_inline irqreturn_t timer_handler(const int access,
265 266 267
					struct clock_event_device *evt)
{
	unsigned long ctrl;
268

269
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
270 271
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
272
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

308 309
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
310 311
{
	unsigned long ctrl;
312 313 314 315 316 317

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
318 319
}

320
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
321
{
322
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
323 324
}

325
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
326
{
327
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
328 329
}

330
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
331
{
332
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
333 334
}

335
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
336
{
337
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
338 339
}

340
static __always_inline void set_next_event(const int access, unsigned long evt,
341
					   struct clock_event_device *clk)
342 343
{
	unsigned long ctrl;
344
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
345 346
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
347 348
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
349 350
}

351 352
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
static __always_inline void erratum_set_next_event_generic(const int access,
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		unsigned long evt, struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else if (access == ARCH_TIMER_VIRT_ACCESS)
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

370
static int erratum_set_next_event_virt(unsigned long evt,
371 372
					   struct clock_event_device *clk)
{
373
	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
374 375 376
	return 0;
}

377
static int erratum_set_next_event_phys(unsigned long evt,
378 379
					   struct clock_event_device *clk)
{
380
	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
381 382
	return 0;
}
383
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
384

385
static int arch_timer_set_next_event_virt(unsigned long evt,
386
					  struct clock_event_device *clk)
387
{
388
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
389 390 391 392
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
393
					  struct clock_event_device *clk)
394
{
395
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
396 397 398
	return 0;
}

399 400
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
401
{
402 403 404 405 406 407 408 409 410 411 412
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

413
static void erratum_workaround_set_sne(struct clock_event_device *clk)
414
{
415
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
416 417 418 419
	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
		return;

	if (arch_timer_uses_ppi == VIRT_PPI)
420
		clk->set_next_event = erratum_set_next_event_virt;
421
	else
422
		clk->set_next_event = erratum_set_next_event_phys;
423 424 425
#endif
}

426 427
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
428 429 430 431
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
432 433
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
434 435 436
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
437 438 439
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
440
			clk->set_state_shutdown = arch_timer_shutdown_virt;
441
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
442
			clk->set_next_event = arch_timer_set_next_event_virt;
443 444 445 446
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
447
			clk->set_state_shutdown = arch_timer_shutdown_phys;
448
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
449
			clk->set_next_event = arch_timer_set_next_event_phys;
450 451 452
			break;
		default:
			BUG();
453
		}
454

455
		erratum_workaround_set_sne(clk);
456
	} else {
457
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
458 459 460 461
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
462
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
463
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
464 465 466
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
467
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
468
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
469 470 471
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
472 473
	}

474
	clk->set_state_shutdown(clk);
475

476 477
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

494 495 496 497 498 499 500 501 502 503 504 505 506
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

524 525 526 527 528 529
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

530 531 532 533 534 535 536 537 538 539 540 541 542
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

543
static int arch_timer_starting_cpu(unsigned int cpu)
544
{
545
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
546
	u32 flags;
547

548
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
549

550 551
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
552

553 554 555 556
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
557 558

	arch_counter_set_user_access();
559
	if (evtstrm_enable)
560
		arch_timer_configure_evtstream();
561 562 563 564

	return 0;
}

565 566
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
567
{
568 569 570
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
571

572 573 574 575 576 577
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
578 579 580 581
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
582 583
	}

584 585 586 587 588 589 590 591 592 593 594
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
595 596
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
597
		     type & ARCH_CP15_TIMER ?
598
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
599 600 601 602 603
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
604 605 606 607 608 609 610
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

611
static u64 arch_counter_get_cntvct_mem(void)
612
{
613 614 615 616 617 618 619 620 621
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
622 623
}

624 625 626 627 628 629 630 631
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

632
static u64 arch_counter_read(struct clocksource *cs)
633
{
634
	return arch_timer_read_counter();
635 636
}

637
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
638
{
639
	return arch_timer_read_counter();
640 641 642 643 644 645 646
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
647
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
648 649
};

650
static struct cyclecounter cyclecounter __ro_after_init = {
651 652 653 654
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

655 656 657 658 659 660
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
661

662 663 664 665 666
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
667
	if (type & ARCH_CP15_TIMER) {
668
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
669 670 671
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
672

673 674
		clocksource_counter.archdata.vdso_direct = true;

675
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
676 677 678 679 680
		/*
		 * Don't use the vdso fastpath if errata require using
		 * the out-of-line counter accessor.
		 */
		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
681
			clocksource_counter.archdata.vdso_direct = false;
682
#endif
683
	} else {
684
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
685 686
	}

687 688
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
689 690 691 692
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
693 694
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
695 696 697

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
698 699
}

700
static void arch_timer_stop(struct clock_event_device *clk)
701 702 703 704
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

705 706 707
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
708

709
	clk->set_state_shutdown(clk);
710 711
}

712
static int arch_timer_dying_cpu(unsigned int cpu)
713
{
714
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
715

716 717
	arch_timer_stop(clk);
	return 0;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
740 741 742 743 744 745

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

746 747 748 749 750
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
751 752 753 754

static void __init arch_timer_cpu_pm_deinit(void)
{
}
755 756
#endif

757 758 759 760 761 762 763 764 765 766 767
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

768 769 770
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
771 772
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
773 774 775
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
776 777 778 779 780 781 782 783 784 785
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
786 787 788 789 790 791 792
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
793 794 795 796 797 798 799 800
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

801 802 803 804
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

805

806 807
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
808
				"clockevents/arm/arch_timer:starting",
809 810 811
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
812 813
	return 0;

814 815 816
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

817
out_unreg_notify:
818 819 820
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
821 822 823 824 825 826 827 828
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

868
static bool __init
869
arch_timer_needs_probing(int type, const struct of_device_id *matches)
870 871
{
	struct device_node *dn;
872
	bool needs_probing = false;
873 874

	dn = of_find_matching_node(NULL, matches);
875
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
876
		needs_probing = true;
877 878
	of_node_put(dn);

879
	return needs_probing;
880 881
}

882
static int __init arch_timer_common_init(void)
883 884 885 886 887
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
888
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
889
			return 0;
890
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
891
			return 0;
892 893 894 895
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
896
	return arch_timer_arch_init();
897 898
}

899
static int __init arch_timer_init(void)
900
{
901
	int ret;
902
	/*
903 904 905 906
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
907 908
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
909 910 911 912 913
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
914
	 */
915
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
916 917 918 919 920 921 922 923 924 925
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
926

927
		if (!has_ppi) {
928
			pr_warn("arch_timer: No interrupt available, giving up\n");
929
			return -EINVAL;
930 931 932
		}
	}

933 934 935 936 937 938 939
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
940 941

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
942 943
	
	return 0;
944
}
945

946
static int __init arch_timer_of_init(struct device_node *np)
947 948 949 950 951
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
952
		return 0;
953 954 955 956 957 958 959 960 961 962
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

963 964 965 966 967 968 969 970 971
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (of_property_read_bool(np, ool_workarounds[i].id)) {
			timer_unstable_counter_workaround = &ool_workarounds[i];
			static_branch_enable(&arch_timer_read_ool_enabled);
			pr_info("arch_timer: Enabling workaround for %s\n",
				timer_unstable_counter_workaround->id);
			break;
		}
972 973 974
	}
#endif

975 976 977 978 979 980
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
981
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
982

983 984 985 986
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

987
	return arch_timer_init();
988
}
989 990
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
991

992
static int __init arch_timer_mem_init(struct device_node *np)
993 994 995
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
996
	unsigned int irq, ret = -EINVAL;
997 998 999 1000 1001 1002
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
1003
		return -ENXIO;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
1014
		u32 cntacr;
1015 1016 1017 1018

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
1019
			goto out;
1020 1021
		}

1022 1023 1024 1025 1026 1027 1028 1029
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1030 1031 1032 1033 1034
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1035 1036 1037 1038

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1039 1040 1041 1042
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

1043
	ret= -ENXIO;
1044 1045 1046
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
1047
		pr_err("arch_timer: Can't map frame's registers\n");
1048
		goto out;
1049 1050 1051 1052 1053 1054
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
1055

1056
	ret = -EINVAL;
1057 1058
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
1059
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1060
		goto out;
1061 1062 1063
	}

	arch_timer_detect_rate(base, np);
1064 1065 1066 1067 1068
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
1069 1070 1071
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1072
	return ret;
1073
}
1074
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1075
		       arch_timer_mem_init);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
1133
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1134
#endif