arm_arch_timer.c 29.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched_clock.h>
28
#include <linux/acpi.h>
29 30

#include <asm/arch_timer.h>
31
#include <asm/virt.h>
32 33 34

#include <clocksource/arm_arch_timer.h>

35 36 37
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

38 39 40 41 42 43 44 45
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

67 68 69 70 71 72 73 74 75 76 77 78 79 80
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

81
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82
static bool arch_timer_c3stop;
83
static bool arch_timer_mem_use_virtual;
84
static bool arch_counter_suspend_stop;
85

86 87 88 89 90 91 92 93
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

94 95 96 97
/*
 * Architected system timer support.
 */

98
#ifdef CONFIG_FSL_ERRATUM_A008585
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
118 119 120 121
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

122
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
123 124 125 126
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

127
static u64 notrace fsl_a008585_read_cntvct_el0(void)
128 129 130
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
131 132
#endif

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
#endif

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
		.id = "fsl,erratum-a008585",
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
	},
#endif
190 191 192 193 194 195 196 197
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
		.id = "hisilicon,erratum-161010101",
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
	},
#endif
198 199
};
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
200

201 202
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
203
			  struct clock_event_device *clk)
204
{
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
228 229 230 231
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
232
			struct clock_event_device *clk)
233
{
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
261 262
}

263
static __always_inline irqreturn_t timer_handler(const int access,
264 265 266
					struct clock_event_device *evt)
{
	unsigned long ctrl;
267

268
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
269 270
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
271
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

307 308
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
309 310
{
	unsigned long ctrl;
311 312 313 314 315 316

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
317 318
}

319
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
320
{
321
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
322 323
}

324
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
325
{
326
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
327 328
}

329
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
330
{
331
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
332 333
}

334
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
335
{
336
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
337 338
}

339
static __always_inline void set_next_event(const int access, unsigned long evt,
340
					   struct clock_event_device *clk)
341 342
{
	unsigned long ctrl;
343
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
344 345
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
346 347
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348 349
}

350 351
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
static __always_inline void erratum_set_next_event_generic(const int access,
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		unsigned long evt, struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else if (access == ARCH_TIMER_VIRT_ACCESS)
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

369
static int erratum_set_next_event_virt(unsigned long evt,
370 371
					   struct clock_event_device *clk)
{
372
	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
373 374 375
	return 0;
}

376
static int erratum_set_next_event_phys(unsigned long evt,
377 378
					   struct clock_event_device *clk)
{
379
	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
380 381
	return 0;
}
382
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
383

384
static int arch_timer_set_next_event_virt(unsigned long evt,
385
					  struct clock_event_device *clk)
386
{
387
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
388 389 390 391
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
392
					  struct clock_event_device *clk)
393
{
394
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
395 396 397
	return 0;
}

398 399
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
400
{
401 402 403 404 405 406 407 408 409 410 411
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

412
static void erratum_workaround_set_sne(struct clock_event_device *clk)
413
{
414
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
415 416 417 418
	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
		return;

	if (arch_timer_uses_ppi == VIRT_PPI)
419
		clk->set_next_event = erratum_set_next_event_virt;
420
	else
421
		clk->set_next_event = erratum_set_next_event_phys;
422 423 424
#endif
}

425 426
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
427 428 429 430
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
431 432
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
433 434 435
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
436 437 438
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
439
			clk->set_state_shutdown = arch_timer_shutdown_virt;
440
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
441
			clk->set_next_event = arch_timer_set_next_event_virt;
442 443 444 445
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
446
			clk->set_state_shutdown = arch_timer_shutdown_phys;
447
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
448
			clk->set_next_event = arch_timer_set_next_event_phys;
449 450 451
			break;
		default:
			BUG();
452
		}
453

454
		erratum_workaround_set_sne(clk);
455
	} else {
456
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
457 458 459 460
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
461
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
462
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
463 464 465
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
466
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
467
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
468 469 470
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
471 472
	}

473
	clk->set_state_shutdown(clk);
474

475 476
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

493 494 495 496 497 498 499 500 501 502 503 504 505
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

523 524 525 526 527 528
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

529 530 531 532 533 534 535 536 537 538 539 540 541
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

542
static int arch_timer_starting_cpu(unsigned int cpu)
543
{
544
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
545
	u32 flags;
546

547
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
548

549 550
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
551

552 553 554 555
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
556 557

	arch_counter_set_user_access();
558
	if (evtstrm_enable)
559
		arch_timer_configure_evtstream();
560 561 562 563

	return 0;
}

564 565
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
566
{
567 568 569
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
570

571 572 573 574 575 576
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
577 578 579 580
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
581 582
	}

583 584 585 586 587 588 589 590 591 592 593
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
594 595
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
596
		     type & ARCH_CP15_TIMER ?
597
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
598 599 600 601 602
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
603 604 605 606 607 608 609
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

610
static u64 arch_counter_get_cntvct_mem(void)
611
{
612 613 614 615 616 617 618 619 620
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
621 622
}

623 624 625 626 627 628 629 630
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

631
static u64 arch_counter_read(struct clocksource *cs)
632
{
633
	return arch_timer_read_counter();
634 635
}

636
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
637
{
638
	return arch_timer_read_counter();
639 640 641 642 643 644 645
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
646
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
647 648
};

649
static struct cyclecounter cyclecounter __ro_after_init = {
650 651 652 653
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

654 655 656 657 658 659
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
660

661 662 663 664 665
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
666
	if (type & ARCH_CP15_TIMER) {
667
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
668 669 670
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
671

672 673
		clocksource_counter.archdata.vdso_direct = true;

674
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
675 676 677 678 679
		/*
		 * Don't use the vdso fastpath if errata require using
		 * the out-of-line counter accessor.
		 */
		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
680
			clocksource_counter.archdata.vdso_direct = false;
681
#endif
682
	} else {
683
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
684 685
	}

686 687
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
688 689 690 691
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
692 693
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
694 695 696

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
697 698
}

699
static void arch_timer_stop(struct clock_event_device *clk)
700 701 702 703
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

704 705 706
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
707

708
	clk->set_state_shutdown(clk);
709 710
}

711
static int arch_timer_dying_cpu(unsigned int cpu)
712
{
713
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
714

715 716
	arch_timer_stop(clk);
	return 0;
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
739 740 741 742 743 744

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

745 746 747 748 749
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
750 751 752 753

static void __init arch_timer_cpu_pm_deinit(void)
{
}
754 755
#endif

756 757 758 759 760 761 762 763 764 765 766
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

767 768 769
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
770 771
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
772 773 774
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
775 776 777 778 779 780 781 782 783 784
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
785 786 787 788 789 790 791
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
792 793 794 795 796 797 798 799
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

800 801 802 803
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

804

805 806
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
807
				"clockevents/arm/arch_timer:starting",
808 809 810
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
811 812
	return 0;

813 814 815
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

816
out_unreg_notify:
817 818 819
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
820 821 822 823 824 825 826 827
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

867
static bool __init
868
arch_timer_needs_probing(int type, const struct of_device_id *matches)
869 870
{
	struct device_node *dn;
871
	bool needs_probing = false;
872 873

	dn = of_find_matching_node(NULL, matches);
874
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
875
		needs_probing = true;
876 877
	of_node_put(dn);

878
	return needs_probing;
879 880
}

881
static int __init arch_timer_common_init(void)
882 883 884 885 886
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
887
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
888
			return 0;
889
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
890
			return 0;
891 892 893 894
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
895
	return arch_timer_arch_init();
896 897
}

898
static int __init arch_timer_init(void)
899
{
900
	int ret;
901
	/*
902 903 904 905
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
906 907
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
908 909 910 911 912
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
913
	 */
914
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
915 916 917 918 919 920 921 922 923 924
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
925

926
		if (!has_ppi) {
927
			pr_warn("arch_timer: No interrupt available, giving up\n");
928
			return -EINVAL;
929 930 931
		}
	}

932 933 934 935 936 937 938
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
939 940

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
941 942
	
	return 0;
943
}
944

945
static int __init arch_timer_of_init(struct device_node *np)
946 947 948 949 950
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
951
		return 0;
952 953 954 955 956 957 958 959 960 961
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

962 963 964 965 966 967 968 969 970
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (of_property_read_bool(np, ool_workarounds[i].id)) {
			timer_unstable_counter_workaround = &ool_workarounds[i];
			static_branch_enable(&arch_timer_read_ool_enabled);
			pr_info("arch_timer: Enabling workaround for %s\n",
				timer_unstable_counter_workaround->id);
			break;
		}
971 972 973
	}
#endif

974 975 976 977 978 979
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
980
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
981

982 983 984 985
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

986
	return arch_timer_init();
987
}
988 989
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
990

991
static int __init arch_timer_mem_init(struct device_node *np)
992 993 994
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
995
	unsigned int irq, ret = -EINVAL;
996 997 998 999 1000 1001
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
1002
		return -ENXIO;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
1013
		u32 cntacr;
1014 1015 1016 1017

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
1018
			goto out;
1019 1020
		}

1021 1022 1023 1024 1025 1026 1027 1028
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1029 1030 1031 1032 1033
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1034 1035 1036 1037

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1038 1039 1040 1041
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

1042
	ret= -ENXIO;
1043 1044 1045
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
1046
		pr_err("arch_timer: Can't map frame's registers\n");
1047
		goto out;
1048 1049 1050 1051 1052 1053
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
1054

1055
	ret = -EINVAL;
1056 1057
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
1058
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1059
		goto out;
1060 1061 1062
	}

	arch_timer_detect_rate(base, np);
1063 1064 1065 1066 1067
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
1068 1069 1070
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1071
	return ret;
1072
}
1073
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1074
		       arch_timer_mem_init);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
1132
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1133
#endif