arm_arch_timer.c 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched/clock.h>
28
#include <linux/sched_clock.h>
29
#include <linux/acpi.h>
30 31

#include <asm/arch_timer.h>
32
#include <asm/virt.h>
33 34 35

#include <clocksource/arm_arch_timer.h>

36 37 38
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

39 40 41 42 43 44 45 46
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

68 69 70 71 72 73 74 75 76 77 78 79 80 81
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

82
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83
static bool arch_timer_c3stop;
84
static bool arch_timer_mem_use_virtual;
85
static bool arch_counter_suspend_stop;
86
static bool vdso_default = true;
87

88 89 90 91 92 93 94 95
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

96 97 98 99
/*
 * Architected system timer support.
 */

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
			  struct clock_event_device *clk)
{
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
			struct clock_event_device *clk)
{
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

static u64 arch_counter_read(struct clocksource *cs)
{
	return arch_timer_read_counter();
}

static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
	return arch_timer_read_counter();
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct cyclecounter cyclecounter __ro_after_init = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

193 194 195 196 197 198
struct ate_acpi_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

199
#ifdef CONFIG_FSL_ERRATUM_A008585
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * The number of retries is an arbitrary value well beyond the highest number
 * of iterations the loop has been observed to take.
 */
#define __fsl_a008585_read_reg(reg) ({			\
	u64 _old, _new;					\
	int _retries = 200;				\
							\
	do {						\
		_old = read_sysreg(reg);		\
		_new = read_sysreg(reg);		\
		_retries--;				\
	} while (unlikely(_old != _new) && _retries);	\
							\
	WARN_ON_ONCE(!_retries);			\
	_new;						\
})

static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
219 220 221 222
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

223
static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
224 225 226 227
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

228
static u64 notrace fsl_a008585_read_cntvct_el0(void)
229 230 231
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
232 233
#endif

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
#ifdef CONFIG_HISILICON_ERRATUM_161010101
/*
 * Verify whether the value of the second read is larger than the first by
 * less than 32 is the only way to confirm the value is correct, so clear the
 * lower 5 bits to check whether the difference is greater than 32 or not.
 * Theoretically the erratum should not occur more than twice in succession
 * when reading the system counter, but it is possible that some interrupts
 * may lead to more than twice read errors, triggering the warning, so setting
 * the number of retries far beyond the number of iterations the loop has been
 * observed to take.
 */
#define __hisi_161010101_read_reg(reg) ({				\
	u64 _old, _new;						\
	int _retries = 50;					\
								\
	do {							\
		_old = read_sysreg(reg);			\
		_new = read_sysreg(reg);			\
		_retries--;					\
	} while (unlikely((_new - _old) >> 5) && _retries);	\
								\
	WARN_ON_ONCE(!_retries);				\
	_new;							\
})

static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntp_tval_el0);
}

static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
{
	return __hisi_161010101_read_reg(cntv_tval_el0);
}

static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
	return __hisi_161010101_read_reg(cntvct_el0);
}
#endif

275 276 277 278 279 280 281 282 283 284 285
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
	u64 old, new;

	old = read_sysreg(cntvct_el0);
	new = read_sysreg(cntvct_el0);
	return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif

286
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
287 288
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
	       timer_unstable_counter_workaround);
289 290 291 292 293
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);

DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
						struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

static int erratum_set_next_event_tval_virt(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

static int erratum_set_next_event_tval_phys(unsigned long evt,
					    struct clock_event_device *clk)
{
	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}

326 327 328
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
	{
329
		.match_type = ate_match_dt,
330
		.id = "fsl,erratum-a008585",
331
		.desc = "Freescale erratum a005858",
332 333 334
		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
335 336
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
337 338
	},
#endif
339 340
#ifdef CONFIG_HISILICON_ERRATUM_161010101
	{
341
		.match_type = ate_match_dt,
342
		.id = "hisilicon,erratum-161010101",
343
		.desc = "HiSilicon erratum 161010101",
344 345 346
		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
347 348
		.set_next_event_phys = erratum_set_next_event_tval_phys,
		.set_next_event_virt = erratum_set_next_event_tval_virt,
349 350
	},
#endif
351 352 353 354 355 356 357 358
#ifdef CONFIG_ARM64_ERRATUM_858921
	{
		.match_type = ate_match_local_cap_id,
		.id = (void *)ARM64_WORKAROUND_858921,
		.desc = "ARM erratum 858921",
		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
	},
#endif
359
};
360 361 362 363 364 365 366 367 368 369 370 371 372

typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
			       const void *);

static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
				 const void *arg)
{
	const struct device_node *np = arg;

	return of_property_read_bool(np, wa->id);
}

373 374 375 376 377 378 379
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
					const void *arg)
{
	return this_cpu_has_cap((uintptr_t)wa->id);
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
				       const void *arg)
{
	static const struct ate_acpi_oem_info empty_oem_info = {};
	const struct ate_acpi_oem_info *info = wa->id;
	const struct acpi_table_header *table = arg;

	/* Iterate over the ACPI OEM info array, looking for a match */
	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    info->oem_revision == table->oem_revision)
			return true;

		info++;
	}

	return false;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
			  ate_match_fn_t match_fn,
			  void *arg)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
		if (ool_workarounds[i].match_type != type)
			continue;

		if (match_fn(&ool_workarounds[i], arg))
			return &ool_workarounds[i];
	}

	return NULL;
}

static
421 422
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
				  bool local)
423
{
424 425 426 427 428 429 430 431 432
	int i;

	if (local) {
		__this_cpu_write(timer_unstable_counter_workaround, wa);
	} else {
		for_each_possible_cpu(i)
			per_cpu(timer_unstable_counter_workaround, i) = wa;
	}

433
	static_branch_enable(&arch_timer_read_ool_enabled);
434 435 436 437 438 439 440 441 442 443 444

	/*
	 * Don't use the vdso fastpath if errata require using the
	 * out-of-line counter accessor. We may change our mind pretty
	 * late in the game (with a per-CPU erratum, for example), so
	 * change both the default value and the vdso itself.
	 */
	if (wa->read_cntvct_el0) {
		clocksource_counter.archdata.vdso_direct = false;
		vdso_default = false;
	}
445 446 447 448 449 450 451
}

static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
					    void *arg)
{
	const struct arch_timer_erratum_workaround *wa;
	ate_match_fn_t match_fn = NULL;
452
	bool local = false;
453 454 455 456 457

	switch (type) {
	case ate_match_dt:
		match_fn = arch_timer_check_dt_erratum;
		break;
458 459 460 461
	case ate_match_local_cap_id:
		match_fn = arch_timer_check_local_cap_erratum;
		local = true;
		break;
462 463 464
	case ate_match_acpi_oem_info:
		match_fn = arch_timer_check_acpi_oem_erratum;
		break;
465 466 467 468 469 470 471 472 473
	default:
		WARN_ON(1);
		return;
	}

	wa = arch_timer_iterate_errata(type, match_fn, arg);
	if (!wa)
		return;

474
	if (needs_unstable_timer_counter_workaround()) {
475 476 477
		const struct arch_timer_erratum_workaround *__wa;
		__wa = __this_cpu_read(timer_unstable_counter_workaround);
		if (__wa && wa != __wa)
478
			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
479 480 481 482
				wa->desc, __wa->desc);

		if (__wa)
			return;
483 484
	}

485
	arch_timer_enable_workaround(wa, local);
486 487
	pr_info("Enabling %s workaround for %s\n",
		local ? "local" : "global", wa->desc);
488 489
}

490 491 492
#define erratum_handler(fn, r, ...)					\
({									\
	bool __val;							\
493 494 495 496 497 498 499 500 501
	if (needs_unstable_timer_counter_workaround()) {		\
		const struct arch_timer_erratum_workaround *__wa;	\
		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
		if (__wa && __wa->fn) {					\
			r = __wa->fn(__VA_ARGS__);			\
			__val = true;					\
		} else {						\
			__val = false;					\
		}							\
502 503 504 505 506 507
	} else {							\
		__val = false;						\
	}								\
	__val;								\
})

508 509 510 511 512 513 514
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
	const struct arch_timer_erratum_workaround *wa;

	wa = __this_cpu_read(timer_unstable_counter_workaround);
	return wa && wa->read_cntvct_el0;
}
515 516
#else
#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
517 518
#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
519
#define erratum_handler(fn, r, ...)			({false;})
520
#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
521
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
522

523
static __always_inline irqreturn_t timer_handler(const int access,
524 525 526
					struct clock_event_device *evt)
{
	unsigned long ctrl;
527

528
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
529 530
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
531
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

567 568
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
569 570
{
	unsigned long ctrl;
571 572 573 574 575 576

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
577 578
}

579
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
580
{
581
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
582 583
}

584
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
585
{
586
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
587 588
}

589
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
590
{
591
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
592 593
}

594
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
595
{
596
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
597 598
}

599
static __always_inline void set_next_event(const int access, unsigned long evt,
600
					   struct clock_event_device *clk)
601 602
{
	unsigned long ctrl;
603
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
604 605
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
606 607
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
608 609 610
}

static int arch_timer_set_next_event_virt(unsigned long evt,
611
					  struct clock_event_device *clk)
612
{
613 614 615 616
	int ret;

	if (erratum_handler(set_next_event_virt, ret, evt, clk))
		return ret;
617

618
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
619 620 621 622
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
623
					  struct clock_event_device *clk)
624
{
625 626 627 628
	int ret;

	if (erratum_handler(set_next_event_phys, ret, evt, clk))
		return ret;
629

630
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
631 632 633
	return 0;
}

634 635
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
636
{
637 638 639 640 641 642 643 644 645 646 647
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

648 649
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
650 651 652 653
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
654 655
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
656 657 658
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
659 660 661
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
662
			clk->set_state_shutdown = arch_timer_shutdown_virt;
663
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
664
			clk->set_next_event = arch_timer_set_next_event_virt;
665 666 667 668
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
669
			clk->set_state_shutdown = arch_timer_shutdown_phys;
670
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
671
			clk->set_next_event = arch_timer_set_next_event_phys;
672 673 674
			break;
		default:
			BUG();
675
		}
676

677
		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
678
	} else {
679
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
680 681 682 683
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
684
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
685
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
686 687 688
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
689
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
690
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
691 692 693
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
694 695
	}

696
	clk->set_state_shutdown(clk);
697

698 699
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

716 717 718 719 720 721 722 723 724 725 726 727 728
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

729 730 731 732
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

733
	/* Disable user access to the timers and both counters */
734 735 736
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
737
		        | ARCH_TIMER_USR_VCT_ACCESS_EN
738 739 740
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

741 742 743 744 745 746 747 748 749
	/*
	 * Enable user access to the virtual counter if it doesn't
	 * need to be workaround. The vdso may have been already
	 * disabled though.
	 */
	if (arch_timer_this_cpu_has_cntvct_wa())
		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
	else
		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
750 751 752 753

	arch_timer_set_cntkctl(cntkctl);
}

754 755 756 757 758 759
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

760 761 762 763 764 765 766 767 768 769 770 771 772
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

773
static int arch_timer_starting_cpu(unsigned int cpu)
774
{
775
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
776
	u32 flags;
777

778
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
779

780 781
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
782

783 784 785 786
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
787 788

	arch_counter_set_user_access();
789
	if (evtstrm_enable)
790
		arch_timer_configure_evtstream();
791 792 793 794

	return 0;
}

795 796
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
797
{
798 799 800
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
801

802 803 804 805 806 807
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
808 809 810 811
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
812 813
	}

814 815 816 817 818 819 820 821 822 823 824
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
825 826
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
827
		     type & ARCH_CP15_TIMER ?
828
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
829 830 831 832 833
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
834 835 836 837 838 839 840
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

841
static u64 arch_counter_get_cntvct_mem(void)
842
{
843 844 845 846 847 848 849 850 851
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
852 853
}

854 855 856 857 858 859
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
860

861 862 863 864 865
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
866
	if (type & ARCH_CP15_TIMER) {
867
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
868 869 870
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
871

872
		clocksource_counter.archdata.vdso_direct = vdso_default;
873
	} else {
874
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
875 876
	}

877 878
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
879 880 881 882
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
883 884
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
885 886 887

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
888 889
}

890
static void arch_timer_stop(struct clock_event_device *clk)
891 892 893 894
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

895 896 897
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
898

899
	clk->set_state_shutdown(clk);
900 901
}

902
static int arch_timer_dying_cpu(unsigned int cpu)
903
{
904
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
905

906 907
	arch_timer_stop(clk);
	return 0;
908 909
}

910
#ifdef CONFIG_CPU_PM
911
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
912 913 914 915
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
916
		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
917
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
918
		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
919 920 921 922 923 924 925 926 927 928 929
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
930 931 932 933 934 935

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

936 937 938 939 940
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
941 942 943 944

static void __init arch_timer_cpu_pm_deinit(void)
{
}
945 946
#endif

947 948 949 950 951 952 953 954 955 956 957
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

958 959 960
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
961 962
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
963 964 965
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
966 967 968 969 970 971 972 973 974 975
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
976 977 978 979 980 981 982
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
983 984 985 986 987 988 989 990
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

991 992 993 994
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

995

996 997
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
T
Thomas Gleixner 已提交
998
				"clockevents/arm/arch_timer:starting",
999 1000 1001
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
1002 1003
	return 0;

1004 1005 1006
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

1007
out_unreg_notify:
1008 1009 1010
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
1011 1012 1013 1014 1015 1016 1017 1018
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

1058
static bool __init
1059
arch_timer_needs_probing(int type, const struct of_device_id *matches)
1060 1061
{
	struct device_node *dn;
1062
	bool needs_probing = false;
1063 1064

	dn = of_find_matching_node(NULL, matches);
1065
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
1066
		needs_probing = true;
1067 1068
	of_node_put(dn);

1069
	return needs_probing;
1070 1071
}

1072
static int __init arch_timer_common_init(void)
1073 1074 1075 1076 1077
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
1078
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
1079
			return 0;
1080
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
1081
			return 0;
1082 1083 1084 1085
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
1086
	return arch_timer_arch_init();
1087 1088
}

1089
static int __init arch_timer_init(void)
1090
{
1091
	int ret;
1092
	/*
1093 1094 1095 1096
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
1097 1098
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
1099 1100 1101 1102 1103
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
1104
	 */
1105
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
1116

1117
		if (!has_ppi) {
1118
			pr_warn("arch_timer: No interrupt available, giving up\n");
1119
			return -EINVAL;
1120 1121 1122
		}
	}

1123 1124 1125 1126 1127 1128 1129
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
1130 1131

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
1132 1133
	
	return 0;
1134
}
1135

1136
static int __init arch_timer_of_init(struct device_node *np)
1137 1138 1139 1140 1141
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
1142
		return 0;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

1153 1154
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_dt, np);
1155

1156 1157 1158 1159 1160 1161
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1162
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
1163

1164 1165 1166 1167
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

1168
	return arch_timer_init();
1169
}
1170 1171
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1172

1173
static int __init arch_timer_mem_init(struct device_node *np)
1174 1175 1176
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
1177
	unsigned int irq, ret = -EINVAL;
1178 1179 1180 1181 1182 1183
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
1184
		return -ENXIO;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
1195
		u32 cntacr;
1196 1197 1198 1199

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
1200
			goto out;
1201 1202
		}

1203 1204 1205 1206 1207 1208 1209 1210
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1211 1212 1213 1214 1215
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
1216 1217 1218 1219

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

1220 1221 1222 1223
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

1224
	ret= -ENXIO;
1225 1226 1227
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
1228
		pr_err("arch_timer: Can't map frame's registers\n");
1229
		goto out;
1230 1231 1232 1233 1234 1235
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
1236

1237
	ret = -EINVAL;
1238 1239
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
1240
		       arch_timer_mem_use_virtual ? "virt" : "phys");
1241
		goto out;
1242 1243 1244
	}

	arch_timer_detect_rate(base, np);
1245 1246 1247 1248 1249
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
1250 1251 1252
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1253
	return ret;
1254
}
1255
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1256
		       arch_timer_mem_init);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

1311 1312 1313
	/* Check for globally applicable workarounds */
	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);

1314 1315 1316
	arch_timer_init();
	return 0;
}
1317
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1318
#endif