arm_arch_timer.c 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/clockchips.h>
18
#include <linux/clocksource.h>
19 20
#include <linux/interrupt.h>
#include <linux/of_irq.h>
21
#include <linux/of_address.h>
22
#include <linux/io.h>
23
#include <linux/slab.h>
24
#include <linux/sched_clock.h>
25
#include <linux/acpi.h>
26 27

#include <asm/arch_timer.h>
28
#include <asm/virt.h>
29 30 31

#include <clocksource/arm_arch_timer.h>

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

static bool arch_timer_use_virtual = true;
71
static bool arch_timer_c3stop;
72
static bool arch_timer_mem_use_virtual;
73 74 75 76 77

/*
 * Architected system timer support.
 */

78 79
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80
			  struct clock_event_device *clk)
81
{
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
105 106 107 108
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109
			struct clock_event_device *clk)
110
{
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
138 139
}

140
static __always_inline irqreturn_t timer_handler(const int access,
141 142 143
					struct clock_event_device *evt)
{
	unsigned long ctrl;
144

145
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146 147
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

184 185
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
186 187
{
	unsigned long ctrl;
188 189 190 191 192 193

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
194 195
}

196
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
197
{
198
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
199 200
}

201
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
202
{
203
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
204 205
}

206
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
207
{
208
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
209 210
}

211
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
212
{
213
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
214 215
}

216
static __always_inline void set_next_event(const int access, unsigned long evt,
217
					   struct clock_event_device *clk)
218 219
{
	unsigned long ctrl;
220
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
221 222
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
223 224
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
225 226 227
}

static int arch_timer_set_next_event_virt(unsigned long evt,
228
					  struct clock_event_device *clk)
229
{
230
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
231 232 233 234
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
235
					  struct clock_event_device *clk)
236
{
237
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
238 239 240
	return 0;
}

241 242
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
243
{
244 245 246 247 248 249 250 251 252 253 254
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

255 256
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
257 258 259 260
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
261 262
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
263 264 265 266 267
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
		if (arch_timer_use_virtual) {
			clk->irq = arch_timer_ppi[VIRT_PPI];
268
			clk->set_state_shutdown = arch_timer_shutdown_virt;
269 270 271
			clk->set_next_event = arch_timer_set_next_event_virt;
		} else {
			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
272
			clk->set_state_shutdown = arch_timer_shutdown_phys;
273 274
			clk->set_next_event = arch_timer_set_next_event_phys;
		}
275
	} else {
276
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
277 278 279 280
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
281
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
282 283 284
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
285
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
286 287 288
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
289 290
	}

291
	clk->set_state_shutdown(clk);
292

293 294
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

311 312 313 314 315 316 317 318 319 320 321 322 323
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

341
static int arch_timer_setup(struct clock_event_device *clk)
342 343
{
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
344 345 346 347 348 349 350 351 352 353

	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}

	arch_counter_set_user_access();
354 355
	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
		arch_timer_configure_evtstream();
356 357 358 359

	return 0;
}

360 361
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
362
{
363 364 365
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
366

367 368 369 370 371 372
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
373 374 375 376
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
377 378
	}

379 380 381 382 383 384 385 386 387 388 389
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
390 391
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
392 393 394 395 396 397 398
		     type & ARCH_CP15_TIMER ?
			arch_timer_use_virtual ? "virt" : "phys" :
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
399 400 401 402 403 404 405
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

406
static u64 arch_counter_get_cntvct_mem(void)
407
{
408 409 410 411 412 413 414 415 416
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
417 418
}

419 420 421 422 423 424 425 426
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

427 428
static cycle_t arch_counter_read(struct clocksource *cs)
{
429
	return arch_timer_read_counter();
430 431 432 433
}

static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
434
	return arch_timer_read_counter();
435 436 437 438 439 440 441
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
442
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
443 444 445 446 447 448 449 450 451 452 453 454 455 456
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

static struct timecounter timecounter;

struct timecounter *arch_timer_get_timecounter(void)
{
	return &timecounter;
}

457 458 459 460 461
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
462
	if (type & ARCH_CP15_TIMER) {
463
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
464 465 466
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
467
	} else {
468 469
		arch_timer_read_counter = arch_counter_get_cntvct_mem;

470 471 472 473 474 475 476 477
		/* If the clocksource name is "arch_sys_counter" the
		 * VDSO will attempt to read the CP15-based counter.
		 * Ensure this does not happen when CP15-based
		 * counter is not available.
		 */
		clocksource_counter.name = "arch_mem_counter";
	}

478 479 480 481 482
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
	timecounter_init(&timecounter, &cyclecounter, start_count);
483 484 485

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
486 487
}

488
static void arch_timer_stop(struct clock_event_device *clk)
489 490 491 492 493 494 495 496 497 498 499 500
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

501
	clk->set_state_shutdown(clk);
502 503
}

504
static int arch_timer_cpu_notify(struct notifier_block *self,
505 506
					   unsigned long action, void *hcpu)
{
507 508 509 510
	/*
	 * Grab cpu pointer in each case to avoid spurious
	 * preemptible warnings
	 */
511 512
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_STARTING:
513
		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
514 515
		break;
	case CPU_DYING:
516
		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
517 518 519 520 521 522
		break;
	}

	return NOTIFY_OK;
}

523
static struct notifier_block arch_timer_cpu_nb = {
524 525 526
	.notifier_call = arch_timer_cpu_notify,
};

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
#endif

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

	err = register_cpu_notifier(&arch_timer_cpu_nb);
	if (err)
		goto out_free_irq;

593 594 595 596
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

597 598 599 600 601
	/* Immediately configure the timer on the boot CPU */
	arch_timer_setup(this_cpu_ptr(arch_timer_evt));

	return 0;

602 603
out_unreg_notify:
	unregister_cpu_notifier(&arch_timer_cpu_nb);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
out_free_irq:
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

660
static bool __init
661
arch_timer_needs_probing(int type, const struct of_device_id *matches)
662 663
{
	struct device_node *dn;
664
	bool needs_probing = false;
665 666

	dn = of_find_matching_node(NULL, matches);
667
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
668
		needs_probing = true;
669 670
	of_node_put(dn);

671
	return needs_probing;
672 673
}

674 675 676 677 678 679
static void __init arch_timer_common_init(void)
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
680
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
681
			return;
682
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
683 684 685 686 687 688 689 690
			return;
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
	arch_timer_arch_init();
}

691
static void __init arch_timer_init(void)
692 693
{
	/*
694 695 696 697
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
698 699 700
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
701
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
702 703 704 705 706
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
707
			return;
708 709 710
		}
	}

711
	arch_timer_register();
712
	arch_timer_common_init();
713
}
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

static void __init arch_timer_of_init(struct device_node *np)
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
		return;
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
			arch_timer_use_virtual = false;

	arch_timer_init();
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

static void __init arch_timer_mem_init(struct device_node *np)
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
	unsigned int irq;
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
		return;
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
	iounmap(cntctlbase);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(best_frame);
			of_node_put(frame);
			return;
		}

		if (cnttidr & CNTTIDR_VIRT(n)) {
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

	base = arch_counter_base = of_iomap(best_frame, 0);
	if (!base) {
		pr_err("arch_timer: Can't map frame's registers\n");
		of_node_put(best_frame);
		return;
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
	of_node_put(best_frame);
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
800
		       arch_timer_mem_use_virtual ? "virt" : "phys");
801 802 803 804 805 806 807 808 809
		return;
	}

	arch_timer_detect_rate(base, np);
	arch_timer_mem_register(base, irq);
	arch_timer_common_init();
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
		       arch_timer_mem_init);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
867
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
868
#endif