sched_fair.c 38.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388 389 390
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 395
}

396
/*
397
 * We calculate the vruntime slice of a to be inserted task
398
 *
399
 * vs = s*rw/w = p
400
 */
401
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
402
{
403
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
404

405 406
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	return __sched_period(nr_running);
}

/*
 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
 * that it favours >=0 over <0.
 *
 *   -20         |
 *               |
 *     0 --------+-------
 *             .'
 *    19     .'
 *
 */
static unsigned long
calc_delta_asym(unsigned long delta, struct sched_entity *se)
{
	struct load_weight lw = {
		.weight = NICE_0_LOAD,
		.inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
	};
429

430
	for_each_sched_entity(se) {
431
		struct load_weight *se_lw = &se->load;
P
Peter Zijlstra 已提交
432
		unsigned long rw = cfs_rq_of(se)->load.weight;
433

P
Peter Zijlstra 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
#ifdef CONFIG_FAIR_SCHED_GROUP
		struct cfs_rq *cfs_rq = se->my_q;
		struct task_group *tg = NULL

		if (cfs_rq)
			tg = cfs_rq->tg;

		if (tg && tg->shares < NICE_0_LOAD) {
			/*
			 * scale shares to what it would have been had
			 * tg->weight been NICE_0_LOAD:
			 *
			 *   weight = 1024 * shares / tg->weight
			 */
			lw.weight *= se->load.weight;
			lw.weight /= tg->shares;

			lw.inv_weight = 0;

			se_lw = &lw;
P
Peter Zijlstra 已提交
454
			rw += lw.weight - se->load.weight;
P
Peter Zijlstra 已提交
455 456 457
		} else
#endif

P
Peter Zijlstra 已提交
458
		if (se->load.weight < NICE_0_LOAD) {
459
			se_lw = &lw;
P
Peter Zijlstra 已提交
460 461
			rw += NICE_0_LOAD - se->load.weight;
		}
462

P
Peter Zijlstra 已提交
463
		delta = calc_delta_mine(delta, rw, se_lw);
464 465
	}

466
	return delta;
P
Peter Zijlstra 已提交
467 468
}

469 470 471 472 473
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
474 475
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
476
{
477
	unsigned long delta_exec_weighted;
478

479
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
480 481

	curr->sum_exec_runtime += delta_exec;
482
	schedstat_add(cfs_rq, exec_clock, delta_exec);
483
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
484
	curr->vruntime += delta_exec_weighted;
485 486
}

487
static void update_curr(struct cfs_rq *cfs_rq)
488
{
489
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
490
	u64 now = rq_of(cfs_rq)->clock;
491 492 493 494 495 496 497 498 499 500
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
501
	delta_exec = (unsigned long)(now - curr->exec_start);
502

I
Ingo Molnar 已提交
503 504
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
505 506 507 508 509 510

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
511 512 513
}

static inline void
514
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
515
{
516
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
517 518 519 520 521
}

/*
 * Task is being enqueued - update stats:
 */
522
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 524 525 526 527
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
528
	if (se != cfs_rq->curr)
529
		update_stats_wait_start(cfs_rq, se);
530 531 532
}

static void
533
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
534
{
535 536
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
537 538 539
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
540
	schedstat_set(se->wait_start, 0);
541 542 543
}

static inline void
544
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 546 547 548 549
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
550
	if (se != cfs_rq->curr)
551
		update_stats_wait_end(cfs_rq, se);
552 553 554 555 556 557
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
558
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 560 561 562
{
	/*
	 * We are starting a new run period:
	 */
563
	se->exec_start = rq_of(cfs_rq)->clock;
564 565 566 567 568 569
}

/**************************************************
 * Scheduling class queueing methods:
 */

570 571 572 573 574 575 576 577 578 579 580 581 582
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

583 584 585 586
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
587 588 589 590
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, se->load.weight);
591 592
	cfs_rq->nr_running++;
	se->on_rq = 1;
593
	list_add(&se->group_node, &cfs_rq->tasks);
594 595 596 597 598 599
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
600 601 602 603
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, -se->load.weight);
604 605
	cfs_rq->nr_running--;
	se->on_rq = 0;
606
	list_del_init(&se->group_node);
607 608
}

609
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
610 611 612
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
613
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
614
		struct task_struct *tsk = task_of(se);
615 616 617 618 619 620 621 622 623

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
624 625

		account_scheduler_latency(tsk, delta >> 10, 1);
626 627
	}
	if (se->block_start) {
628
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
629
		struct task_struct *tsk = task_of(se);
630 631 632 633 634 635 636 637 638

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
639 640 641 642 643 644 645

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
646

I
Ingo Molnar 已提交
647 648 649
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
650
		account_scheduler_latency(tsk, delta >> 10, 0);
651 652 653 654
	}
#endif
}

P
Peter Zijlstra 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

668 669 670
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
671
	u64 vruntime;
672

P
Peter Zijlstra 已提交
673 674 675 676 677
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
678

679 680 681 682 683 684
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
685
	if (initial && sched_feat(START_DEBIT))
686
		vruntime += sched_vslice_add(cfs_rq, se);
687

I
Ingo Molnar 已提交
688
	if (!initial) {
689
		/* sleeps upto a single latency don't count. */
690 691 692 693 694 695 696 697 698 699 700
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
701

702 703
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
704 705
	}

P
Peter Zijlstra 已提交
706
	se->vruntime = vruntime;
707 708
}

709
static void
710
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
711 712
{
	/*
713
	 * Update run-time statistics of the 'current'.
714
	 */
715
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
716
	account_entity_enqueue(cfs_rq, se);
717

I
Ingo Molnar 已提交
718
	if (wakeup) {
719
		place_entity(cfs_rq, se, 0);
720
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
721
	}
722

723
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
724
	check_spread(cfs_rq, se);
725 726
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
727 728
}

I
Ingo Molnar 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

744
static void
745
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
746
{
747 748 749 750 751
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

752
	update_stats_dequeue(cfs_rq, se);
753
	if (sleep) {
I
Ingo Molnar 已提交
754
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
755
#ifdef CONFIG_SCHEDSTATS
756 757 758 759
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
760
				se->sleep_start = rq_of(cfs_rq)->clock;
761
			if (tsk->state & TASK_UNINTERRUPTIBLE)
762
				se->block_start = rq_of(cfs_rq)->clock;
763
		}
764
#endif
P
Peter Zijlstra 已提交
765 766
	}

767
	if (se != cfs_rq->curr)
768 769
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
770 771 772 773 774
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
775
static void
I
Ingo Molnar 已提交
776
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
777
{
778 779
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
780
	ideal_runtime = sched_slice(cfs_rq, curr);
781
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
782
	if (delta_exec > ideal_runtime)
783 784 785
		resched_task(rq_of(cfs_rq)->curr);
}

786
static void
787
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
788
{
789 790 791 792 793 794 795 796 797 798 799
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

800
	update_stats_curr_start(cfs_rq, se);
801
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
802 803 804 805 806 807
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
808
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
809 810 811 812
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
813
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
814 815
}

816 817 818
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
819 820
	struct rq *rq = rq_of(cfs_rq);
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
821

822 823
	if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
		cfs_rq->pair_start = rq->clock;
824
		return se;
825
	}
826 827 828 829

	return cfs_rq->next;
}

830
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
831
{
D
Dmitry Adamushko 已提交
832
	struct sched_entity *se = NULL;
833

D
Dmitry Adamushko 已提交
834 835
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
836
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
837 838
		set_next_entity(cfs_rq, se);
	}
839 840 841 842

	return se;
}

843
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
844 845 846 847 848 849
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
850
		update_curr(cfs_rq);
851

P
Peter Zijlstra 已提交
852
	check_spread(cfs_rq, prev);
853
	if (prev->on_rq) {
854
		update_stats_wait_start(cfs_rq, prev);
855 856 857
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
858
	cfs_rq->curr = NULL;
859 860
}

P
Peter Zijlstra 已提交
861 862
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
863 864
{
	/*
865
	 * Update run-time statistics of the 'current'.
866
	 */
867
	update_curr(cfs_rq);
868

P
Peter Zijlstra 已提交
869 870 871 872 873
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
874 875 876 877
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
878 879 880 881 882 883 884 885
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

886
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
887
		check_preempt_tick(cfs_rq, curr);
888 889 890 891 892 893
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

931 932 933 934 935
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
936
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
937 938
{
	struct cfs_rq *cfs_rq;
939
	struct sched_entity *se = &p->se;
940 941

	for_each_sched_entity(se) {
942
		if (se->on_rq)
943 944
			break;
		cfs_rq = cfs_rq_of(se);
945
		enqueue_entity(cfs_rq, se, wakeup);
946
		wakeup = 1;
947
	}
P
Peter Zijlstra 已提交
948 949

	hrtick_start_fair(rq, rq->curr);
950 951 952 953 954 955 956
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
957
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
958 959
{
	struct cfs_rq *cfs_rq;
960
	struct sched_entity *se = &p->se;
961 962 963

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
964
		dequeue_entity(cfs_rq, se, sleep);
965
		/* Don't dequeue parent if it has other entities besides us */
966
		if (cfs_rq->load.weight)
967
			break;
968
		sleep = 1;
969
	}
P
Peter Zijlstra 已提交
970 971

	hrtick_start_fair(rq, rq->curr);
972 973 974
}

/*
975 976 977
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
978
 */
979
static void yield_task_fair(struct rq *rq)
980
{
981 982 983
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
984 985

	/*
986 987 988 989 990
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

991
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
992
		update_rq_clock(rq);
993
		/*
994
		 * Update run-time statistics of the 'current'.
995
		 */
D
Dmitry Adamushko 已提交
996
		update_curr(cfs_rq);
997 998 999 1000 1001

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1002
	 */
D
Dmitry Adamushko 已提交
1003
	rightmost = __pick_last_entity(cfs_rq);
1004 1005 1006
	/*
	 * Already in the rightmost position?
	 */
1007
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1008 1009 1010 1011
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1012 1013
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1014
	 */
1015
	se->vruntime = rightmost->vruntime + 1;
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1042
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1043 1044 1045
		return cpu;

	for_each_domain(cpu, sd) {
1046 1047 1048
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1073

I
Ingo Molnar 已提交
1074 1075
static const struct sched_class fair_sched_class;

1076
static int
I
Ingo Molnar 已提交
1077 1078 1079
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1080 1081
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1082
	struct task_struct *curr = this_rq->curr;
1083 1084
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1085
	int balanced;
1086

1087
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1088 1089
		return 0;

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

	balanced = 100*(tl + p->se.load.weight) <= imbalance*load;

1100
	/*
I
Ingo Molnar 已提交
1101 1102 1103
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1104
	 */
1105
	if (sync && balanced && curr->sched_class == &fair_sched_class) {
I
Ingo Molnar 已提交
1106 1107 1108 1109
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1110 1111 1112 1113

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1114
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1115
			balanced) {
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1129 1130 1131
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1132
	int prev_cpu, this_cpu, new_cpu;
1133
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1134
	struct rq *rq, *this_rq;
1135 1136
	unsigned int imbalance;
	int idx;
1137

1138 1139 1140
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1141
	this_rq		= cpu_rq(this_cpu);
1142
	new_cpu		= prev_cpu;
1143

1144 1145 1146 1147
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1148
	for_each_domain(this_cpu, sd) {
1149
		if (cpu_isset(prev_cpu, sd->span)) {
1150 1151 1152 1153 1154 1155
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1156
		goto out;
1157 1158 1159 1160

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1161
	if (!this_sd)
1162
		goto out;
1163

1164 1165 1166 1167
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1168
	load = source_load(prev_cpu, idx);
1169 1170
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1171 1172 1173 1174 1175
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1176
		goto out;
1177 1178 1179 1180 1181 1182 1183 1184 1185

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1186
			return this_cpu;
1187 1188 1189
		}
	}

1190
out:
1191 1192 1193 1194
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1195 1196 1197 1198 1199
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1200 1201
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1202
	 */
P
Peter Zijlstra 已提交
1203 1204 1205 1206
	if (sched_feat(ASYM_GRAN))
		gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
	else
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1239

D
Dhaval Giani 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1251 1252 1253
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1254
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1255 1256
{
	struct task_struct *curr = rq->curr;
1257
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1258
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1259
	int se_depth, pse_depth;
1260 1261

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1262
		update_rq_clock(rq);
1263
		update_curr(cfs_rq);
1264 1265 1266
		resched_task(curr);
		return;
	}
1267

I
Ingo Molnar 已提交
1268 1269 1270 1271
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1272 1273
	cfs_rq_of(pse)->next = pse;

1274 1275 1276 1277 1278 1279
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1280

1281 1282
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1283

D
Dhaval Giani 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1305 1306 1307
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1308
	}
1309

1310
	if (wakeup_preempt_entity(se, pse) == 1)
1311
		resched_task(curr);
1312 1313
}

1314
static struct task_struct *pick_next_task_fair(struct rq *rq)
1315
{
P
Peter Zijlstra 已提交
1316
	struct task_struct *p;
1317 1318 1319 1320 1321 1322 1323
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1324
		se = pick_next_entity(cfs_rq);
1325 1326 1327
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1328 1329 1330 1331
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1332 1333 1334 1335 1336
}

/*
 * Account for a descheduled task:
 */
1337
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1338 1339 1340 1341 1342 1343
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1344
		put_prev_entity(cfs_rq, se);
1345 1346 1347
	}
}

1348
#ifdef CONFIG_SMP
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1360
static struct task_struct *
1361
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1362
{
D
Dhaval Giani 已提交
1363 1364
	struct task_struct *p = NULL;
	struct sched_entity *se;
1365

1366
	while (next != &cfs_rq->tasks) {
1367 1368
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
D
Dhaval Giani 已提交
1369

1370 1371 1372 1373 1374 1375
		/* Skip over entities that are not tasks */
		if (entity_is_task(se)) {
			p = task_of(se);
			break;
		}
	}
1376 1377

	cfs_rq->balance_iterator = next;
1378 1379 1380 1381 1382 1383 1384
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1385
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1386 1387 1388 1389 1390 1391
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1392
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1393 1394
}

1395 1396 1397 1398 1399
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1400
{
1401
	struct rq_iterator cfs_rq_iterator;
1402

1403 1404 1405
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1406

1407 1408 1409
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1410 1411
}

1412
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1413
static unsigned long
1414
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415
		  unsigned long max_load_move,
1416 1417
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1418 1419
{
	long rem_load_move = max_load_move;
1420 1421
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1422

1423
	rcu_read_lock();
1424 1425
	update_h_load(busiest_cpu);

1426
	list_for_each_entry(tg, &task_groups, list) {
1427
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1428
		long rem_load, moved_load;
1429 1430 1431 1432

		/*
		 * empty group
		 */
1433
		if (!busiest_cfs_rq->task_weight)
1434
			continue;
1435

1436 1437
		rem_load = rem_load_move * busiest_cfs_rq->load.weight;
		rem_load /= busiest_cfs_rq->h_load + 1;
1438

1439
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1440
				rem_load, sd, idle, all_pinned, this_best_prio,
1441 1442 1443
				tg->cfs_rq[busiest_cpu]);

		if (!moved_load)
1444 1445
			continue;

1446 1447
		moved_load *= busiest_cfs_rq->h_load;
		moved_load /= busiest_cfs_rq->load.weight + 1;
1448

1449 1450
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1451 1452
			break;
	}
1453
	rcu_read_unlock();
1454

P
Peter Williams 已提交
1455
	return max_load_move - rem_load_move;
1456
}
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1493
#endif
1494

1495 1496 1497
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1498
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1499 1500 1501 1502 1503 1504
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1505
		entity_tick(cfs_rq, se, queued);
1506 1507 1508
	}
}

1509
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1510

1511 1512 1513 1514 1515 1516 1517
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1518
static void task_new_fair(struct rq *rq, struct task_struct *p)
1519 1520
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1521
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1522
	int this_cpu = smp_processor_id();
1523 1524 1525

	sched_info_queued(p);

1526
	update_curr(cfs_rq);
1527
	place_entity(cfs_rq, se, 1);
1528

1529
	/* 'curr' will be NULL if the child belongs to a different group */
1530
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1531
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1532
		/*
1533 1534 1535
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1536 1537
		swap(curr->vruntime, se->vruntime);
	}
1538

1539
	enqueue_task_fair(rq, p, 0);
1540
	resched_task(rq->curr);
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1602 1603 1604
/*
 * All the scheduling class methods:
 */
1605 1606
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1607 1608 1609
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1610 1611 1612
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1613

I
Ingo Molnar 已提交
1614
	.check_preempt_curr	= check_preempt_wakeup,
1615 1616 1617 1618

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1619
#ifdef CONFIG_SMP
1620
	.load_balance		= load_balance_fair,
1621
	.move_one_task		= move_one_task_fair,
1622
#endif
1623

1624
	.set_curr_task          = set_curr_task_fair,
1625 1626
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1627 1628 1629

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1630 1631 1632 1633

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1634 1635 1636
};

#ifdef CONFIG_SCHED_DEBUG
1637
static void print_cfs_stats(struct seq_file *m, int cpu)
1638 1639 1640
{
	struct cfs_rq *cfs_rq;

1641
	rcu_read_lock();
1642
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1643
		print_cfs_rq(m, cpu, cfs_rq);
1644
	rcu_read_unlock();
1645 1646
}
#endif