tick-sched.c 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23

24 25
#include <asm/irq_regs.h>

26 27 28 29 30 31 32 33 34 35 36 37
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48 49 50
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

51 52 53 54 55 56 57
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
78 79 80

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
static int tick_nohz_enabled __read_mostly  = 1;

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
136
static void tick_nohz_update_jiffies(ktime_t now)
137 138 139 140 141
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

142
	ts->idle_waketime = now;
143 144 145 146

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
147 148

	touch_softlockup_watchdog();
149 150
}

151 152 153
/*
 * Updates the per cpu time idle statistics counters
 */
154
static void
155
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156
{
157
	ktime_t delta;
158

159 160
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
161
		if (nr_iowait_cpu(cpu) > 0)
162
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 164
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165
		ts->idle_entrytime = now;
166
	}
167

168
	if (last_update_time)
169 170
		*last_update_time = ktime_to_us(now);

171 172 173 174 175 176
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

177
	update_ts_time_stats(cpu, ts, now, NULL);
178
	ts->idle_active = 0;
179

180
	sched_clock_idle_wakeup_event(0);
181 182
}

183
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184
{
185
	ktime_t now = ktime_get();
186

187 188
	ts->idle_entrytime = now;
	ts->idle_active = 1;
189
	sched_clock_idle_sleep_event();
190 191 192
	return now;
}

193 194 195
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
196 197
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
198 199
 *
 * Return the cummulative idle time (since boot) for a given
200
 * CPU, in microseconds.
201 202 203 204 205 206
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
207 208 209
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210
	ktime_t now, idle;
211

212 213 214
	if (!tick_nohz_enabled)
		return -1;

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
230

231
}
232
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233

234
/**
235 236
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
237 238
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
239 240 241 242 243 244 245 246 247 248 249 250
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251
	ktime_t now, iowait;
252 253 254 255

	if (!tick_nohz_enabled)
		return -1;

256 257 258 259 260 261 262
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263

264 265 266 267 268
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
269

270
	return ktime_to_us(iowait);
271 272 273
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

274
static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
275
{
276
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277
	ktime_t last_update, expires, now;
278
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
279
	u64 time_delta;
280 281 282 283
	int cpu;

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);
284

285
	now = tick_nohz_start_idle(cpu, ts);
286

287 288 289 290 291 292 293 294 295
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
296
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
297 298
	}

299
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
300
		return;
301 302

	if (need_resched())
303
		return;
304

305
	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
306 307 308 309
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
T
Thomas Gleixner 已提交
310
			       (unsigned int) local_softirq_pending());
311 312
			ratelimit++;
		}
313
		return;
314
	}
315 316 317 318 319 320 321

	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
322
		time_delta = timekeeping_max_deferment();
323 324
	} while (read_seqretry(&xtime_lock, seq));

325
	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
326
	    arch_needs_cpu(cpu)) {
327
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
328
		delta_jiffies = 1;
329 330 331 332 333
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
334 335 336 337
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
338
	if (!ts->tick_stopped && delta_jiffies == 1)
339 340 341 342 343
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

344 345 346 347 348 349
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
350 351 352 353 354 355
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
356
		 */
T
Thomas Gleixner 已提交
357
		if (cpu == tick_do_timer_cpu) {
358
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
359 360 361 362 363 364 365 366
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

367
		/*
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
385

T
Thomas Gleixner 已提交
386 387 388 389
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
390 391 392 393 394

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

395 396 397 398 399 400 401 402
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
403
			select_nohz_load_balancer(1);
404

405
			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
406 407 408
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
		}
409

410 411
		ts->idle_sleeps++;

412 413 414
		/* Mark expires */
		ts->idle_expires = expires;

415
		/*
416 417
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
418
		 */
419
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
420 421 422 423 424
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

425 426
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
427
				      HRTIMER_MODE_ABS_PINNED);
428 429 430
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
431
		} else if (!tick_program_event(expires, 0))
432 433 434 435 436 437 438 439 440 441 442 443
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
444
	ts->sleep_length = ktime_sub(dev->next_event, now);
445 446 447 448 449 450 451
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
452
 *
453
 * The arch is responsible of calling:
454 455 456 457
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
458
 */
459
void tick_nohz_idle_enter(void)
460 461 462
{
	struct tick_sched *ts;

463 464
	WARN_ON_ONCE(irqs_disabled());

465 466 467 468 469 470 471 472
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

473 474
	local_irq_disable();

475 476 477 478 479 480 481 482
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
	tick_nohz_stop_sched_tick(ts);
483 484

	local_irq_enable();
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

	tick_nohz_stop_sched_tick(ts);
503 504
}

505 506 507 508 509 510 511 512 513 514 515 516
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

517 518 519
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
520
	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
521 522 523 524 525 526

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
527
			hrtimer_start_expires(&ts->sched_timer,
528
					      HRTIMER_MODE_ABS_PINNED);
529 530 531 532
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
533 534
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
535 536 537 538 539 540 541 542
				break;
		}
		/* Update jiffies and reread time */
		tick_do_update_jiffies64(now);
		now = ktime_get();
	}
}

543
/**
544
 * tick_nohz_idle_exit - restart the idle tick from the idle task
545 546
 *
 * Restart the idle tick when the CPU is woken up from idle
547 548
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
549
 */
550
void tick_nohz_idle_exit(void)
551 552 553
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
554
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
555
	unsigned long ticks;
556
#endif
557
	ktime_t now;
558

559
	local_irq_disable();
560

561 562 563 564 565
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
566 567 568 569
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
570

571
	if (!ts->tick_stopped) {
572
		local_irq_enable();
573
		return;
574
	}
575 576

	/* Update jiffies first */
577
	select_nohz_load_balancer(0);
578 579
	tick_do_update_jiffies64(now);

580
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
581 582 583 584 585 586 587 588 589
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
590 591 592
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
593

I
Ingo Molnar 已提交
594
	touch_softlockup_watchdog();
595 596 597 598
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
599
	ts->idle_exittime = now;
600

601
	tick_nohz_restart(ts, now);
602 603 604 605 606 607 608

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
609
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
610 611 612 613 614 615 616 617 618
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
619
	int cpu = smp_processor_id();
620 621 622 623
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

624 625 626 627 628 629 630
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
631
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
632 633
		tick_do_timer_cpu = cpu;

634
	/* Check, if the jiffies need an update */
635 636
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
688
		hrtimer_set_expires(&ts->sched_timer, next);
689 690 691 692 693 694 695
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

696 697 698 699 700 701 702 703 704 705 706
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
707
static void tick_nohz_kick_tick(int cpu, ktime_t now)
708
{
709 710 711
#if 0
	/* Switch back to 2.6.27 behaviour */

712
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
713
	ktime_t delta;
714

715 716 717 718
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
719
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
720 721 722 723
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
724
#endif
725 726
}

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

743 744 745
#else

static inline void tick_nohz_switch_to_nohz(void) { }
746
static inline void tick_check_nohz(int cpu) { }
747 748 749

#endif /* NO_HZ */

750 751 752 753 754
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
755
	tick_check_oneshot_broadcast(cpu);
756
	tick_check_nohz(cpu);
757 758
}

759 760 761 762 763
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
764
 * We rearm the timer until we get disabled by the idle code.
765 766 767 768 769 770 771 772
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
773 774 775 776 777 778 779 780 781 782
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
783
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
784 785
		tick_do_timer_cpu = cpu;
#endif
786 787

	/* Check, if the jiffies need an update */
788 789
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
			ts->idle_jiffies++;
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

831
	/* Get the next period (per cpu) */
832
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
833 834 835

	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
836 837
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
838 839 840 841 842 843 844
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
845
	if (tick_nohz_enabled)
846 847 848
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
849
#endif /* HIGH_RES_TIMERS */
850

851
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
852 853 854 855
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

856
# ifdef CONFIG_HIGH_RES_TIMERS
857 858
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
859
# endif
860

861 862
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
863
#endif
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

904
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
905 906 907 908 909 910 911 912
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}