intel_lrc.c 64.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
310 311
}

312 313 314 315 316 317 318 319 320
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

321
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
322
{
323
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
324
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
325
	u32 *reg_state = ce->lrc_reg_state;
326

C
Chris Wilson 已提交
327
	reg_state[CTX_RING_TAIL+1] = rq->tail;
328

329 330 331 332 333 334 335
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
336 337

	return ce->lrc_desc;
338 339
}

340
static void execlists_submit_ports(struct intel_engine_cs *engine)
341
{
342 343
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
344 345 346 347
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

348
	GEM_BUG_ON(port[0].count > 1);
349 350 351 352
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
353
	port[0].count++;
354 355 356 357 358 359 360

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
361 362 363
	} else {
		desc[1] = 0;
	}
364
	GEM_BUG_ON(desc[0] == desc[1]);
365 366 367 368 369 370 371 372 373 374

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

375
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
376
{
377
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
378
		i915_gem_context_force_single_submission(ctx));
379
}
380

381 382 383 384 385
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
386

387 388
	if (ctx_single_port_submission(prev))
		return false;
389

390
	return true;
391 392
}

393
static void execlists_dequeue(struct intel_engine_cs *engine)
394
{
395
	struct drm_i915_gem_request *last;
396
	struct execlist_port *port = engine->execlist_port;
397
	unsigned long flags;
398
	struct rb_node *rb;
399 400 401 402 403 404
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
405
		 * as we resubmit the request. See gen8_emit_breadcrumb()
406 407 408 409
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
410

411
	GEM_BUG_ON(port[1].request);
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
432
	 */
433

434
	spin_lock_irqsave(&engine->timeline->lock, flags);
435 436 437 438 439
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

440 441 442
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
443
		 *
444 445 446 447
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
448
		 */
449 450 451 452 453 454 455 456 457 458 459 460 461
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
462 463
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
464 465 466 467 468 469 470
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
471

472 473 474 475 476
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

477
		__i915_gem_request_submit(cursor);
478 479 480 481 482
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
483
		engine->execlist_first = rb;
484
	}
485
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
486

487 488
	if (submit)
		execlists_submit_ports(engine);
489 490
}

491
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
492
{
493
	return !engine->execlist_port[0].request;
494 495
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

511 512 513 514 515 516
	for_each_engine(engine, dev_priv, id) {
		/* Interrupt/tasklet pending? */
		if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
			return false;

		/* Both ports drained, no more ELSP submission? */
517 518
		if (!execlists_elsp_idle(engine))
			return false;
519
	}
520 521 522 523

	return true;
}

524
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
525
{
526
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
527

528
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
529 530
}

531
/*
532 533 534
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
535
static void intel_lrc_irq_handler(unsigned long data)
536
{
537
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538
	struct execlist_port *port = engine->execlist_port;
539
	struct drm_i915_private *dev_priv = engine->i915;
540

541
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542

543
	while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
544 545 546 547 548 549 550 551 552
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
553 554 555
		if (head == tail)
			break;

556 557
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
558
		do {
559 560 561 562 563 564
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

565 566 567 568 569
			/* Check the context/desc id for this event matches */
			GEM_BUG_ON(readl(buf + 2 * idx + 1) !=
				   upper_32_bits(intel_lr_context_descriptor(port[0].request->ctx,
									     engine)));

570 571 572 573 574 575 576 577 578 579
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
580

581 582
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
583
		} while (head < tail);
584

585 586 587
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
588 589
	}

590 591
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
592

593
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

622
static void execlists_submit_request(struct drm_i915_gem_request *request)
623
{
624
	struct intel_engine_cs *engine = request->engine;
625
	unsigned long flags;
626

627 628
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
629

630
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
631
		engine->execlist_first = &request->priotree.node;
632
		if (execlists_elsp_ready(engine))
633 634
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
635

636
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
637 638
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

666 667
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

696
		list_safe_reset_next(dep, p, dfs_link);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

737 738
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
739
{
740
	struct intel_context *ce = &ctx->engine[engine->id];
741
	unsigned int flags;
742
	void *vaddr;
743
	int ret;
744

745
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
746

747
	if (ce->pin_count++)
748 749
		return 0;

750 751 752 753 754
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
755
	GEM_BUG_ON(!ce->state);
756

757 758 759
	flags = PIN_GLOBAL;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
760
	if (i915_gem_context_is_kernel(ctx))
761 762 763
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
764
	if (ret)
765
		goto err;
766

767
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
768 769
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
770
		goto unpin_vma;
771 772
	}

773
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
774
	if (ret)
775
		goto unpin_map;
776

777
	intel_lr_context_descriptor_update(ctx, engine);
778

779 780
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
781
		i915_ggtt_offset(ce->ring->vma);
782

C
Chris Wilson 已提交
783
	ce->state->obj->mm.dirty = true;
784

785
	i915_gem_context_get(ctx);
786
	return 0;
787

788
unpin_map:
789 790 791
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
792
err:
793
	ce->pin_count = 0;
794 795 796
	return ret;
}

797 798
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
799
{
800
	struct intel_context *ce = &ctx->engine[engine->id];
801

802
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
803
	GEM_BUG_ON(ce->pin_count == 0);
804

805
	if (--ce->pin_count)
806
		return;
807

808
	intel_ring_unpin(ce->ring);
809

810 811
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
812

813
	i915_gem_context_put(ctx);
814 815
}

816
static int execlists_request_alloc(struct drm_i915_gem_request *request)
817 818 819 820 821
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

822 823
	GEM_BUG_ON(!ce->pin_count);

824 825 826 827 828 829
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

830
	GEM_BUG_ON(!ce->ring);
831 832 833 834 835 836 837 838 839 840
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
841
			goto err;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
869
err:
870 871 872
	return ret;
}

873
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
874 875
{
	int ret, i;
876
	struct intel_ring *ring = req->ring;
877
	struct i915_workarounds *w = &req->i915->workarounds;
878

879
	if (w->count == 0)
880 881
		return 0;

882
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
883 884 885
	if (ret)
		return ret;

886
	ret = intel_ring_begin(req, w->count * 2 + 2);
887 888 889
	if (ret)
		return ret;

890
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
891
	for (i = 0; i < w->count; i++) {
892 893
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
894
	}
895
	intel_ring_emit(ring, MI_NOOP);
896

897
	intel_ring_advance(ring);
898

899
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
900 901 902 903 904 905
	if (ret)
		return ret;

	return 0;
}

906
#define wa_ctx_emit(batch, index, cmd)					\
907
	do {								\
908 909
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
910 911
			return -ENOSPC;					\
		}							\
912
		batch[__index] = (cmd);					\
913 914
	} while (0)

V
Ville Syrjälä 已提交
915
#define wa_ctx_emit_reg(batch, index, reg) \
916
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
934
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
935
						uint32_t *batch,
936 937 938 939
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

940
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
941
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
942
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
943
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
944 945 946
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
947
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
948 949 950 951 952 953 954 955 956 957
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

958
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
959
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
960
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
961
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
962
	wa_ctx_emit(batch, index, 0);
963 964 965 966

	return index;
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

986 987 988 989 990 991
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
992
 *
993 994
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
995
 *
996 997 998 999
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1000
 */
1001
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1002
				    struct i915_wa_ctx_bb *wa_ctx,
1003
				    uint32_t *batch,
1004 1005
				    uint32_t *offset)
{
1006
	uint32_t scratch_addr;
1007 1008
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1009
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1010
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1011

1012
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1013
	if (IS_BROADWELL(engine->i915)) {
1014
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1015 1016 1017
		if (rc < 0)
			return rc;
		index = rc;
1018 1019
	}

1020 1021
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1022
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1033

1034 1035
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1036
		wa_ctx_emit(batch, index, MI_NOOP);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1047 1048 1049
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1050
 *
1051
 *  The number of DWORDS written are returned using this field.
1052 1053 1054 1055
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1056
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1057
			       struct i915_wa_ctx_bb *wa_ctx,
1058
			       uint32_t *batch,
1059 1060 1061 1062
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1063
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1064
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1065

1066
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1067 1068 1069 1070

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1071
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1072
				    struct i915_wa_ctx_bb *wa_ctx,
1073
				    uint32_t *batch,
1074 1075
				    uint32_t *offset)
{
1076
	int ret;
D
Dave Airlie 已提交
1077
	struct drm_i915_private *dev_priv = engine->i915;
1078 1079
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1080
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1081
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1082 1083 1084 1085
	if (ret < 0)
		return ret;
	index = ret;

1086
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1087 1088 1089 1090 1091 1092
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1093 1094
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1095
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1096
		u32 scratch_addr =
1097
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1109

1110
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1134 1135 1136 1137 1138 1139 1140
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1141
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1142
			       struct i915_wa_ctx_bb *wa_ctx,
1143
			       uint32_t *batch,
1144 1145 1146 1147 1148 1149 1150 1151 1152
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1153
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1154
{
1155 1156 1157
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1158

1159
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1160 1161
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1162

1163
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1164 1165 1166
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1167 1168
	}

1169 1170 1171 1172 1173
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1174
	return 0;
1175 1176 1177 1178

err:
	i915_gem_object_put(obj);
	return err;
1179 1180
}

1181
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1182
{
1183
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1184 1185
}

1186
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1187
{
1188
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1189 1190 1191
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1192
	int ret;
1193

1194
	WARN_ON(engine->id != RCS);
1195

1196
	/* update this when WA for higher Gen are added */
1197
	if (INTEL_GEN(engine->i915) > 9) {
1198
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1199
			  INTEL_GEN(engine->i915));
1200
		return 0;
1201
	}
1202

1203
	/* some WA perform writes to scratch page, ensure it is valid */
1204
	if (!engine->scratch) {
1205
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1206 1207 1208
		return -EINVAL;
	}

1209
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1210 1211 1212 1213 1214
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1215
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1216 1217 1218
	batch = kmap_atomic(page);
	offset = 0;

1219
	if (IS_GEN8(engine->i915)) {
1220
		ret = gen8_init_indirectctx_bb(engine,
1221 1222 1223 1224 1225 1226
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1227
		ret = gen8_init_perctx_bb(engine,
1228 1229 1230 1231 1232
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1233
	} else if (IS_GEN9(engine->i915)) {
1234
		ret = gen9_init_indirectctx_bb(engine,
1235 1236 1237 1238 1239 1240
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1241
		ret = gen9_init_perctx_bb(engine,
1242 1243 1244 1245 1246
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1247 1248 1249 1250 1251
	}

out:
	kunmap_atomic(batch);
	if (ret)
1252
		lrc_destroy_wa_ctx_obj(engine);
1253 1254 1255 1256

	return ret;
}

1257
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1258
{
1259
	struct drm_i915_private *dev_priv = engine->i915;
1260 1261 1262 1263 1264
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1265

1266
	intel_engine_reset_breadcrumbs(engine);
1267
	intel_engine_init_hangcheck(engine);
1268

1269 1270
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1271 1272
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1273 1274 1275
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1276

1277
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1278

1279
	/* After a GPU reset, we may have requests to replay */
1280
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1281 1282 1283
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1284
		execlists_submit_ports(engine);
1285
	}
1286 1287

	return 0;
1288 1289
}

1290
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1291
{
1292
	struct drm_i915_private *dev_priv = engine->i915;
1293 1294
	int ret;

1295
	ret = gen8_init_common_ring(engine);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1309
	return init_workarounds_ring(engine);
1310 1311
}

1312
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1313 1314 1315
{
	int ret;

1316
	ret = gen8_init_common_ring(engine);
1317 1318 1319
	if (ret)
		return ret;

1320
	return init_workarounds_ring(engine);
1321 1322
}

1323 1324 1325 1326 1327 1328
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1339
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1340 1341
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1342
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1359 1360 1361

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1362 1363
}

1364 1365 1366
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1367
	struct intel_ring *ring = req->ring;
1368
	struct intel_engine_cs *engine = req->engine;
1369 1370 1371
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1372
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1373 1374 1375
	if (ret)
		return ret;

1376
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1377 1378 1379
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1380 1381 1382 1383
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1384 1385
	}

1386 1387
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1388 1389 1390 1391

	return 0;
}

1392
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1393 1394
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1395
{
1396
	struct intel_ring *ring = req->ring;
1397
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1398 1399
	int ret;

1400 1401 1402 1403
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1404 1405
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1406
	if (req->ctx->ppgtt &&
1407
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1408
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1409
		    !intel_vgpu_active(req->i915)) {
1410 1411 1412 1413
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1414

1415
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1416 1417
	}

1418
	ret = intel_ring_begin(req, 4);
1419 1420 1421 1422
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1423 1424 1425 1426 1427 1428 1429 1430
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1431 1432 1433 1434

	return 0;
}

1435
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1436
{
1437
	struct drm_i915_private *dev_priv = engine->i915;
1438 1439 1440
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1441 1442
}

1443
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1444
{
1445
	struct drm_i915_private *dev_priv = engine->i915;
1446
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1447 1448
}

1449
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1450
{
1451 1452
	struct intel_ring *ring = request->ring;
	u32 cmd;
1453 1454
	int ret;

1455
	ret = intel_ring_begin(request, 4);
1456 1457 1458 1459 1460
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1461 1462 1463 1464 1465 1466 1467
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1468
	if (mode & EMIT_INVALIDATE) {
1469
		cmd |= MI_INVALIDATE_TLB;
1470
		if (request->engine->id == VCS)
1471
			cmd |= MI_INVALIDATE_BSD;
1472 1473
	}

1474 1475 1476 1477 1478 1479 1480
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1481 1482 1483 1484

	return 0;
}

1485
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1486
				  u32 mode)
1487
{
1488
	struct intel_ring *ring = request->ring;
1489
	struct intel_engine_cs *engine = request->engine;
1490 1491
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1492
	bool vf_flush_wa = false, dc_flush_wa = false;
1493 1494
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1495
	int len;
1496 1497 1498

	flags |= PIPE_CONTROL_CS_STALL;

1499
	if (mode & EMIT_FLUSH) {
1500 1501
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1502
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1503
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1504 1505
	}

1506
	if (mode & EMIT_INVALIDATE) {
1507 1508 1509 1510 1511 1512 1513 1514 1515
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1516 1517 1518 1519
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1520
		if (IS_GEN9(request->i915))
1521
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1522 1523 1524 1525

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1526
	}
1527

M
Mika Kuoppala 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1537 1538 1539
	if (ret)
		return ret;

1540
	if (vf_flush_wa) {
1541 1542 1543 1544 1545 1546
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1547 1548
	}

M
Mika Kuoppala 已提交
1549
	if (dc_flush_wa) {
1550 1551 1552 1553 1554 1555
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1556 1557
	}

1558 1559 1560 1561 1562 1563
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1564 1565

	if (dc_flush_wa) {
1566 1567 1568 1569 1570 1571
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1572 1573
	}

1574
	intel_ring_advance(ring);
1575 1576 1577 1578

	return 0;
}

1579 1580 1581 1582 1583
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1584
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1585
{
C
Chris Wilson 已提交
1586 1587 1588 1589
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1590

C
Chris Wilson 已提交
1591 1592 1593
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1594 1595
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1596

C
Chris Wilson 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1606
}
1607

1608 1609
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1610 1611
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1612
{
1613 1614 1615
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1616 1617 1618 1619
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1620 1621 1622 1623 1624 1625 1626
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1627
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1628 1629 1630 1631 1632 1633
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1634 1635
}

1636 1637
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1638
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1639 1640 1641
{
	int ret;

1642
	ret = intel_logical_ring_workarounds_emit(req);
1643 1644 1645
	if (ret)
		return ret;

1646 1647 1648 1649 1650 1651 1652 1653
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1654
	return i915_gem_render_state_emit(req);
1655 1656
}

1657 1658
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1659
 * @engine: Engine Command Streamer.
1660
 */
1661
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1662
{
1663
	struct drm_i915_private *dev_priv;
1664

1665 1666 1667 1668 1669 1670 1671
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1672
	dev_priv = engine->i915;
1673

1674 1675
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1676
	}
1677

1678 1679
	if (engine->cleanup)
		engine->cleanup(engine);
1680

1681 1682 1683
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1684
	}
1685 1686

	intel_engine_cleanup_common(engine);
1687

1688
	lrc_destroy_wa_ctx_obj(engine);
1689
	engine->i915 = NULL;
1690 1691
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1692 1693
}

1694 1695 1696
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1697
	enum intel_engine_id id;
1698

1699
	for_each_engine(engine, dev_priv, id) {
1700
		engine->submit_request = execlists_submit_request;
1701 1702
		engine->schedule = execlists_schedule;
	}
1703 1704
}

1705
static void
1706
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1707 1708
{
	/* Default vfuncs which can be overriden by each engine. */
1709
	engine->init_hw = gen8_init_common_ring;
1710
	engine->reset_hw = reset_common_ring;
1711 1712 1713 1714

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1715 1716
	engine->request_alloc = execlists_request_alloc;

1717
	engine->emit_flush = gen8_emit_flush;
1718
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1719
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1720
	engine->submit_request = execlists_submit_request;
1721
	engine->schedule = execlists_schedule;
1722

1723 1724
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1725
	engine->emit_bb_start = gen8_emit_bb_start;
1726 1727
}

1728
static inline void
1729
logical_ring_default_irqs(struct intel_engine_cs *engine)
1730
{
1731
	unsigned shift = engine->irq_shift;
1732 1733
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1734 1735
}

1736
static int
1737
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1738
{
1739
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1740
	void *hws;
1741 1742

	/* The HWSP is part of the default context object in LRC mode. */
1743
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1744 1745
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1746 1747

	engine->status_page.page_addr = hws + hws_offset;
1748
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1749
	engine->status_page.vma = vma;
1750 1751

	return 0;
1752 1753
}

1754 1755 1756 1757 1758 1759
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1760 1761
	intel_engine_setup_common(engine);

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1786 1787 1788 1789 1790 1791
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1792
	ret = intel_engine_init_common(engine);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1810
int logical_render_ring_init(struct intel_engine_cs *engine)
1811 1812 1813 1814
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1815 1816
	logical_ring_setup(engine);

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1827
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1828
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1829

1830
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1845
	return logical_ring_init(engine);
1846 1847
}

1848
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1849 1850 1851 1852
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1853 1854
}

1855
static u32
1856
make_rpcs(struct drm_i915_private *dev_priv)
1857 1858 1859 1860 1861 1862 1863
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1864
	if (INTEL_GEN(dev_priv) < 9)
1865 1866 1867 1868 1869 1870 1871 1872
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1873
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1874
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1875
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1876 1877 1878 1879
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1880
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1881
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1882
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1883 1884 1885 1886
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1887 1888
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1889
			GEN8_RPCS_EU_MIN_SHIFT;
1890
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1891 1892 1893 1894 1895 1896 1897
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1898
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1899 1900 1901
{
	u32 indirect_ctx_offset;

1902
	switch (INTEL_GEN(engine->i915)) {
1903
	default:
1904
		MISSING_CASE(INTEL_GEN(engine->i915));
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1919 1920 1921 1922
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1923
{
1924 1925
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1926 1927 1928 1929 1930 1931

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1932
	reg_state[CTX_LRI_HEADER_0] =
1933 1934 1935
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1936 1937
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1938
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1939
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1940 1941 1942 1943 1944 1945 1946 1947
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1948
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1949 1950 1951 1952 1953 1954
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1955
		       RING_BB_PPGTT);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1969
		if (engine->wa_ctx.vma) {
1970
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1971
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1972 1973 1974 1975 1976 1977

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1978
				intel_lr_indirect_ctx_offset(engine) << 6;
1979 1980 1981 1982 1983

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1984
	}
1985
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1986 1987
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1988
	/* PDP values well be assigned later if needed */
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2005

2006
	if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2007 2008 2009 2010 2011 2012 2013
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

2014
	if (engine->id == RCS) {
2015
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2016
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2017
			       make_rpcs(dev_priv));
2018
	}
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2042
	ctx_obj->mm.dirty = true;
2043 2044 2045 2046 2047 2048

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2049

2050
	i915_gem_object_unpin_map(ctx_obj);
2051 2052 2053 2054

	return 0;
}

2055 2056
/**
 * intel_lr_context_size() - return the size of the context for an engine
2057
 * @engine: which engine to find the context size for
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2069
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2070 2071 2072
{
	int ret = 0;

2073
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2074

2075
	switch (engine->id) {
2076
	case RCS:
2077
		if (INTEL_GEN(engine->i915) >= 9)
2078 2079 2080
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2091 2092
}

2093
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2094
					    struct intel_engine_cs *engine)
2095
{
2096
	struct drm_i915_gem_object *ctx_obj;
2097
	struct intel_context *ce = &ctx->engine[engine->id];
2098
	struct i915_vma *vma;
2099
	uint32_t context_size;
2100
	struct intel_ring *ring;
2101 2102
	int ret;

2103
	WARN_ON(ce->state);
2104

2105 2106
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2107

2108 2109 2110
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2111
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2112
	if (IS_ERR(ctx_obj)) {
2113
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2114
		return PTR_ERR(ctx_obj);
2115 2116
	}

2117
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2118 2119 2120 2121 2122
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2123
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2124 2125
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2126
		goto error_deref_obj;
2127 2128
	}

2129
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2130 2131
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2132
		goto error_ring_free;
2133 2134
	}

2135
	ce->ring = ring;
2136
	ce->state = vma;
2137
	ce->initialised = engine->init_context == NULL;
2138 2139

	return 0;
2140

2141
error_ring_free:
2142
	intel_ring_free(ring);
2143
error_deref_obj:
2144
	i915_gem_object_put(ctx_obj);
2145
	return ret;
2146
}
2147

2148
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2149
{
2150
	struct intel_engine_cs *engine;
2151
	struct i915_gem_context *ctx;
2152
	enum intel_engine_id id;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2165
		for_each_engine(engine, dev_priv, id) {
2166 2167
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2168

2169 2170
			if (!ce->state)
				continue;
2171

2172 2173 2174 2175
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2176

2177 2178 2179
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2180

C
Chris Wilson 已提交
2181
			ce->state->obj->mm.dirty = true;
2182
			i915_gem_object_unpin_map(ce->state->obj);
2183

2184 2185 2186 2187
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2188 2189
	}
}