amd_iommu.c 58.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_proto.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48 49 50
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

51 52
static struct iommu_ops amd_iommu_ops;

53 54 55
/*
 * general struct to manage commands send to an IOMMU
 */
56
struct iommu_cmd {
57 58 59
	u32 data[4];
};

60
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

149 150
	dev_data->dev = dev;

151 152 153 154 155 156
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

157 158
	atomic_set(&dev_data->bind, 0);

159 160 161 162 163 164 165 166 167 168
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
206 207 208 209 210 211
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

212
DECLARE_STATS_COUNTER(compl_wait);
213
DECLARE_STATS_COUNTER(cnt_map_single);
214
DECLARE_STATS_COUNTER(cnt_unmap_single);
215
DECLARE_STATS_COUNTER(cnt_map_sg);
216
DECLARE_STATS_COUNTER(cnt_unmap_sg);
217
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218
DECLARE_STATS_COUNTER(cnt_free_coherent);
219
DECLARE_STATS_COUNTER(cross_page);
220
DECLARE_STATS_COUNTER(domain_flush_single);
221
DECLARE_STATS_COUNTER(domain_flush_all);
222
DECLARE_STATS_COUNTER(alloced_io_mem);
223
DECLARE_STATS_COUNTER(total_map_requests);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
245 246

	amd_iommu_stats_add(&compl_wait);
247
	amd_iommu_stats_add(&cnt_map_single);
248
	amd_iommu_stats_add(&cnt_unmap_single);
249
	amd_iommu_stats_add(&cnt_map_sg);
250
	amd_iommu_stats_add(&cnt_unmap_sg);
251
	amd_iommu_stats_add(&cnt_alloc_coherent);
252
	amd_iommu_stats_add(&cnt_free_coherent);
253
	amd_iommu_stats_add(&cross_page);
254
	amd_iommu_stats_add(&domain_flush_single);
255
	amd_iommu_stats_add(&domain_flush_all);
256
	amd_iommu_stats_add(&alloced_io_mem);
257
	amd_iommu_stats_add(&total_map_requests);
258 259 260 261
}

#endif

262 263 264 265 266 267
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

268 269 270 271 272 273 274 275 276
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

277 278 279 280 281 282 283 284 285
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

286
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 288 289 290 291 292 293 294
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

295
	printk(KERN_ERR "AMD-Vi: Event logged [");
296 297 298 299 300 301 302

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
303
		dump_dte_entry(devid);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325
		iommu->reset_in_progress = true;
326
		reset_iommu_command_buffer(iommu);
327
		dump_command(address);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
361
		iommu_print_event(iommu, iommu->evt_buf + head);
362 363 364 365 366 367 368 369
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

370 371
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
372 373
	struct amd_iommu *iommu;

374
	for_each_iommu(iommu)
375 376 377
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
378 379
}

380 381 382 383 384 385 386 387 388 389
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
390
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
391 392 393 394 395
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
396
	target = iommu->cmd_buf + tail;
397 398 399 400 401 402 403 404 405 406
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

407 408 409 410
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
411
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
412 413 414 415 416 417
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
418
	if (!ret)
419
		iommu->need_sync = true;
420 421 422 423 424
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

425 426 427 428 429 430 431 432 433 434
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

435 436
	INC_STATS_COUNTER(compl_wait);

437 438 439 440 441 442 443 444 445 446 447
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

448 449
	if (unlikely(i == EXIT_LOOP_COUNT))
		iommu->reset_in_progress = true;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

467 468 469 470 471 472 473
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
474 475
static int iommu_completion_wait(struct amd_iommu *iommu)
{
476 477
	int ret = 0;
	unsigned long flags;
478

479 480
	spin_lock_irqsave(&iommu->lock, flags);

481 482 483
	if (!iommu->need_sync)
		goto out;

484
	ret = __iommu_completion_wait(iommu);
485

486
	iommu->need_sync = false;
487 488

	if (ret)
489
		goto out;
490

491
	__iommu_wait_for_completion(iommu);
492

493 494
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
495

496 497 498
	if (iommu->reset_in_progress)
		reset_iommu_command_buffer(iommu);

499 500 501
	return 0;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static void iommu_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
}

518 519 520
/*
 * Command send function for invalidating a device table entry
 */
521 522 523
static int iommu_flush_device(struct device *dev)
{
	struct amd_iommu *iommu;
524
	struct iommu_cmd cmd;
525 526 527 528 529
	u16 devid;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

530 531 532 533 534 535
	/* Build command */
	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	return iommu_queue_command(iommu, &cmd);
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

553 554 555
/*
 * Generic command send function for invalidaing TLB entries
 */
556 557 558
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
559
	struct iommu_cmd cmd;
560
	int ret;
561

562
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
563

564 565 566
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
567 568
}

569 570 571 572 573
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
574 575
static void __iommu_flush_pages(struct protection_domain *domain,
				u64 address, size_t size, int pde)
576
{
577
	int s = 0, i;
578
	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
579 580 581

	address &= PAGE_MASK;

582 583 584 585 586 587 588
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
589 590
	}

591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
					    domain->id, pde, s);
	}

	return;
}

static void iommu_flush_pages(struct protection_domain *domain,
			     u64 address, size_t size)
{
	__iommu_flush_pages(domain, address, size, 0);
611
}
612

613
/* Flush the whole IO/TLB for a given protection domain */
614
static void iommu_flush_tlb(struct protection_domain *domain)
615
{
616
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
617 618
}

619
/* Flush the whole IO/TLB for a given protection domain - including PDE */
620
static void iommu_flush_tlb_pde(struct protection_domain *domain)
621
{
622
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
623 624
}

625

626
/*
627
 * This function flushes the DTEs for all devices in domain
628
 */
629 630 631 632 633 634 635 636 637 638 639 640 641 642
static void iommu_flush_domain_devices(struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(dev_data, &domain->dev_list, list)
		iommu_flush_device(dev_data->dev);

	spin_unlock_irqrestore(&domain->lock, flags);
}

static void iommu_flush_all_domain_devices(void)
643
{
644
	struct protection_domain *domain;
645
	unsigned long flags;
646

647
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
648

649
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
650
		iommu_flush_domain_devices(domain);
651
		iommu_flush_complete(domain);
652
	}
653

654
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
655 656
}

657 658 659 660 661
void amd_iommu_flush_all_devices(void)
{
	iommu_flush_all_domain_devices();
}

662 663 664 665
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
666
void amd_iommu_flush_all_domains(void)
667
{
668
	struct protection_domain *domain;
669 670 671
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
672

673
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
674
		spin_lock(&domain->lock);
675 676
		iommu_flush_tlb_pde(domain);
		iommu_flush_complete(domain);
677
		spin_unlock(&domain->lock);
678
	}
679 680

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
681 682
}

683 684 685 686
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

687 688 689
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

690
	amd_iommu_reset_cmd_buffer(iommu);
691 692
	amd_iommu_flush_all_devices();
	amd_iommu_flush_all_domains();
693 694

	iommu->reset_in_progress = false;
695 696
}

697 698 699 700 701 702 703
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
		      int end_lvl,
		      u64 **pte_page,
		      gfp_t gfp)
{
	u64 *pte, *page;
	int level;

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address, int map_size)
{
	int level;
	u64 *pte;

	level =  domain->mode - 1;
	pte   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];

	while (level > map_size) {
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];

		if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
			pte = NULL;
			break;
		}
	}

	return pte;
}

798 799 800 801 802 803 804
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
805 806 807
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
808 809
			  int prot,
			  int map_size)
810
{
811
	u64 __pte, *pte;
812 813

	bus_addr  = PAGE_ALIGN(bus_addr);
814
	phys_addr = PAGE_ALIGN(phys_addr);
815

816 817 818
	BUG_ON(!PM_ALIGNED(map_size, bus_addr));
	BUG_ON(!PM_ALIGNED(map_size, phys_addr));

819
	if (!(prot & IOMMU_PROT_MASK))
820 821
		return -EINVAL;

822
	pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
823 824 825 826 827 828 829 830 831 832 833 834

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

835 836
	update_domain(dom);

837 838 839
	return 0;
}

840
static void iommu_unmap_page(struct protection_domain *dom,
841
			     unsigned long bus_addr, int map_size)
842
{
843
	u64 *pte = fetch_pte(dom, bus_addr, map_size);
844

845 846
	if (pte)
		*pte = 0;
847 848
}

849 850 851 852
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
853 854 855 856 857 858 859 860 861 862 863 864 865 866
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

867 868 869 870
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
871 872 873 874 875 876 877 878
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
879 880
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
				     PM_MAP_4k);
881 882 883 884 885 886 887
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
888
			__set_bit(addr >> PAGE_SHIFT,
889
				  dma_dom->aperture[0]->bitmap);
890 891 892 893 894
	}

	return 0;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

917 918 919
/*
 * Inits the unity mappings required for a specific device
 */
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

937 938 939 940 941 942 943 944 945
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
946

947
/*
948
 * The address allocator core functions.
949 950 951
 *
 * called with domain->lock held
 */
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

973 974 975 976 977
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
978
static int alloc_new_range(struct dma_ops_domain *dma_dom,
979 980 981
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
982
	struct amd_iommu *iommu;
983
	int i;
984

985 986 987 988
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1008
			pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1021
	/* Intialize the exclusion range if necessary */
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1044
		u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
1045 1046 1047 1048 1049 1050
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1051 1052
	update_domain(&dma_dom->domain);

1053 1054 1055
	return 0;

out_free:
1056 1057
	update_domain(&dma_dom->domain);

1058 1059 1060 1061 1062 1063 1064 1065
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1066 1067 1068 1069 1070 1071 1072
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1073
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1074 1075 1076 1077 1078 1079
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1080 1081
	next_bit >>= PAGE_SHIFT;

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1100
			dom->next_address = address + (pages << PAGE_SHIFT);
1101 1102 1103 1104 1105 1106 1107 1108 1109
			break;
		}

		next_bit = 0;
	}

	return address;
}

1110 1111
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1112
					     unsigned int pages,
1113 1114
					     unsigned long align_mask,
					     u64 dma_mask)
1115 1116 1117
{
	unsigned long address;

1118 1119 1120 1121
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1122

1123
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1124
				     dma_mask, dom->next_address);
1125

1126
	if (address == -1) {
1127
		dom->next_address = 0;
1128 1129
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1130 1131
		dom->need_flush = true;
	}
1132

1133
	if (unlikely(address == -1))
1134
		address = DMA_ERROR_CODE;
1135 1136 1137 1138 1139 1140

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1141 1142 1143 1144 1145
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1146 1147 1148 1149
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1150 1151
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1152

1153 1154
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1155 1156 1157 1158
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1159

1160
	if (address >= dom->next_address)
1161
		dom->need_flush = true;
1162 1163

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1164

1165 1166
	iommu_area_free(range->bitmap, address, pages);

1167 1168
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1231
static void free_pagetable(struct protection_domain *domain)
1232 1233 1234 1235
{
	int i, j;
	u64 *p1, *p2, *p3;

1236
	p1 = domain->pt_root;
1237 1238 1239 1240 1241 1242 1243 1244 1245

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1246
		for (j = 0; j < 512; ++j) {
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1257 1258

	domain->pt_root = NULL;
1259 1260
}

1261 1262 1263 1264
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1265 1266
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1267 1268
	int i;

1269 1270 1271
	if (!dom)
		return;

1272 1273
	del_domain_from_list(&dom->domain);

1274
	free_pagetable(&dom->domain);
1275

1276 1277 1278 1279 1280 1281
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1282 1283 1284 1285

	kfree(dom);
}

1286 1287 1288 1289 1290
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1291
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1304
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1305
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1306
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1307
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1308 1309 1310 1311
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1312
	dma_dom->need_flush = false;
1313
	dma_dom->target_dev = 0xffff;
1314

1315 1316
	add_domain_to_list(&dma_dom->domain);

1317
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1318 1319
		goto free_dma_dom;

1320
	/*
1321 1322
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1323
	 */
1324
	dma_dom->aperture[0]->bitmap[0] = 1;
1325
	dma_dom->next_address = 0;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1345
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1346 1347
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1348

1349 1350 1351
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1352 1353

	amd_iommu_dev_table[devid].data[2] = domain->id;
1354 1355
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
	set_dte_entry(devid, domain);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1388
	iommu_flush_device(dev);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1400 1401

	/* decrease reference counters */
1402 1403 1404 1405 1406 1407 1408
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1409

1410
	/* Flush the DTE entry */
1411
	iommu_flush_device(dev);
1412 1413 1414 1415 1416 1417
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1418 1419
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1420
{
1421 1422 1423 1424
	struct iommu_dev_data *dev_data, *alias_data;

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1425

1426 1427
	if (!alias_data)
		return -EINVAL;
1428

1429 1430 1431
	/* lock domain */
	spin_lock(&domain->lock);

1432
	/* Some sanity checks */
1433 1434
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1435
		return -EBUSY;
1436

1437 1438
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1439 1440 1441
		return -EBUSY;

	/* Do real assignment */
1442 1443 1444 1445
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1446 1447

		atomic_inc(&alias_data->bind);
1448
	}
1449

1450 1451
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1452

1453 1454
	atomic_inc(&dev_data->bind);

1455 1456
	/* ready */
	spin_unlock(&domain->lock);
1457 1458

	return 0;
1459
}
1460

1461 1462 1463 1464
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1465 1466
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1467
{
1468
	unsigned long flags;
1469
	int ret;
1470 1471

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1472
	ret = __attach_device(dev, domain);
1473 1474
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1475 1476 1477 1478 1479
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1480
	iommu_flush_tlb_pde(domain);
1481 1482

	return ret;
1483 1484
}

1485 1486 1487
/*
 * Removes a device from a protection domain (unlocked)
 */
1488
static void __detach_device(struct device *dev)
1489
{
1490
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1491
	struct iommu_dev_data *alias_data;
1492
	unsigned long flags;
1493

1494
	BUG_ON(!dev_data->domain);
1495

1496
	spin_lock_irqsave(&dev_data->domain->lock, flags);
1497

1498
	if (dev_data->alias != dev) {
1499
		alias_data = get_dev_data(dev_data->alias);
1500 1501
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1502 1503
	}

1504 1505 1506 1507
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

	spin_unlock_irqrestore(&dev_data->domain->lock, flags);
1508 1509 1510 1511 1512

	/*
	 * If we run in passthrough mode the device must be assigned to the
	 * passthrough domain if it is detached from any other domain
	 */
1513
	if (iommu_pass_through && dev_data->domain == NULL)
1514
		__attach_device(dev, pt_domain);
1515 1516 1517 1518 1519
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1520
static void detach_device(struct device *dev)
1521 1522 1523 1524 1525
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1526
	__detach_device(dev);
1527 1528
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1529

1530 1531 1532 1533 1534 1535 1536
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1537
	struct iommu_dev_data *dev_data, *alias_data;
1538 1539 1540
	unsigned long flags;
	u16 devid, alias;

1541 1542 1543 1544 1545 1546
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1547 1548

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1549
	dom = dev_data->domain;
1550
	if (dom == NULL &&
1551 1552 1553
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1554 1555 1556 1557 1558 1559 1560
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1561 1562 1563 1564
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1565
	u16 devid;
1566 1567 1568
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1569
	unsigned long flags;
1570

1571 1572
	if (!check_device(dev))
		return 0;
1573

1574 1575
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1576 1577

	switch (action) {
1578
	case BUS_NOTIFY_UNBOUND_DRIVER:
1579 1580 1581

		domain = domain_for_device(dev);

1582 1583
		if (!domain)
			goto out;
1584 1585
		if (iommu_pass_through)
			break;
1586
		detach_device(dev);
1587 1588
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1589 1590 1591 1592 1593

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1594 1595 1596 1597
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1598
		dma_domain = dma_ops_domain_alloc();
1599 1600 1601 1602 1603 1604 1605 1606
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1607
		break;
1608 1609 1610 1611
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1612 1613 1614 1615
	default:
		goto out;
	}

1616
	iommu_flush_device(dev);
1617 1618 1619 1620 1621 1622
	iommu_completion_wait(iommu);

out:
	return 0;
}

1623
static struct notifier_block device_nb = {
1624 1625
	.notifier_call = device_change_notifier,
};
1626

1627 1628 1629 1630 1631
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1645
static struct protection_domain *get_domain(struct device *dev)
1646
{
1647
	struct protection_domain *domain;
1648
	struct dma_ops_domain *dma_dom;
1649
	u16 devid = get_device_id(dev);
1650

1651
	if (!check_device(dev))
1652
		return ERR_PTR(-EINVAL);
1653

1654 1655 1656
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1657

1658 1659
	if (domain != NULL)
		return domain;
1660

1661
	/* Device not bount yet - bind it */
1662
	dma_dom = find_protection_domain(devid);
1663
	if (!dma_dom)
1664 1665
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1666
	DUMP_printk("Using protection domain %d for device %s\n",
1667
		    dma_dom->domain.id, dev_name(dev));
1668

1669
	return &dma_dom->domain;
1670 1671
}

1672 1673
static void update_device_table(struct protection_domain *domain)
{
1674
	struct iommu_dev_data *dev_data;
1675

1676 1677 1678
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		u16 devid = get_device_id(dev_data->dev);
		set_dte_entry(devid, domain);
1679 1680 1681 1682 1683 1684 1685 1686 1687
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1688
	iommu_flush_domain_devices(domain);
1689
	iommu_flush_tlb_pde(domain);
1690 1691 1692 1693

	domain->updated = false;
}

1694 1695 1696 1697 1698 1699
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1700
	struct aperture_range *aperture;
1701 1702
	u64 *pte, *pte_page;

1703 1704 1705 1706 1707
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1708
	if (!pte) {
1709 1710
		pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
				GFP_ATOMIC);
1711 1712
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1713
		pte += PM_LEVEL_INDEX(0, address);
1714

1715
	update_domain(&dom->domain);
1716 1717 1718 1719

	return pte;
}

1720 1721 1722 1723
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1724
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1735
	pte  = dma_ops_get_pte(dom, address);
1736
	if (!pte)
1737
		return DMA_ERROR_CODE;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1755 1756 1757
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1758
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1759 1760
				 unsigned long address)
{
1761
	struct aperture_range *aperture;
1762 1763 1764 1765 1766
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1767 1768 1769 1770 1771 1772 1773
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1774

1775
	pte += PM_LEVEL_INDEX(0, address);
1776 1777 1778 1779 1780 1781

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1782 1783
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1784 1785
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1786 1787
 * Must be called with the domain lock held.
 */
1788 1789 1790 1791
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1792
			       int dir,
1793 1794
			       bool align,
			       u64 dma_mask)
1795 1796
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1797
	dma_addr_t address, start, ret;
1798
	unsigned int pages;
1799
	unsigned long align_mask = 0;
1800 1801
	int i;

1802
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1803 1804
	paddr &= PAGE_MASK;

1805 1806
	INC_STATS_COUNTER(total_map_requests);

1807 1808 1809
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1810 1811 1812
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1813
retry:
1814 1815
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1816
	if (unlikely(address == DMA_ERROR_CODE)) {
1817 1818 1819 1820 1821 1822 1823
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1824
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1825 1826 1827 1828 1829 1830 1831 1832
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1833 1834 1835

	start = address;
	for (i = 0; i < pages; ++i) {
1836
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1837
		if (ret == DMA_ERROR_CODE)
1838 1839
			goto out_unmap;

1840 1841 1842 1843 1844
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1845 1846
	ADD_STATS_COUNTER(alloced_io_mem, size);

1847
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1848
		iommu_flush_tlb(&dma_dom->domain);
1849
		dma_dom->need_flush = false;
1850
	} else if (unlikely(amd_iommu_np_cache))
1851
		iommu_flush_pages(&dma_dom->domain, address, size);
1852

1853 1854
out:
	return address;
1855 1856 1857 1858 1859

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1860
		dma_ops_domain_unmap(dma_dom, start);
1861 1862 1863 1864
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1865
	return DMA_ERROR_CODE;
1866 1867
}

1868 1869 1870 1871
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1872
static void __unmap_single(struct dma_ops_domain *dma_dom,
1873 1874 1875 1876 1877 1878 1879
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1880
	if ((dma_addr == DMA_ERROR_CODE) ||
1881
	    (dma_addr + size > dma_dom->aperture_size))
1882 1883
		return;

1884
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1885 1886 1887 1888
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1889
		dma_ops_domain_unmap(dma_dom, start);
1890 1891 1892
		start += PAGE_SIZE;
	}

1893 1894
	SUB_STATS_COUNTER(alloced_io_mem, size);

1895
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1896

1897
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1898
		iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1899 1900
		dma_dom->need_flush = false;
	}
1901 1902
}

1903 1904 1905
/*
 * The exported map_single function for dma_ops.
 */
1906 1907 1908 1909
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1910 1911 1912 1913
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
1914
	u64 dma_mask;
1915
	phys_addr_t paddr = page_to_phys(page) + offset;
1916

1917 1918
	INC_STATS_COUNTER(cnt_map_single);

1919 1920
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
1921
		return (dma_addr_t)paddr;
1922 1923
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
1924

1925 1926
	dma_mask = *dev->dma_mask;

1927
	spin_lock_irqsave(&domain->lock, flags);
1928

1929
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
1930
			    dma_mask);
1931
	if (addr == DMA_ERROR_CODE)
1932 1933
		goto out;

1934
	iommu_flush_complete(domain);
1935 1936 1937 1938 1939 1940 1941

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1942 1943 1944
/*
 * The exported unmap_single function for dma_ops.
 */
1945 1946
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1947 1948 1949 1950
{
	unsigned long flags;
	struct protection_domain *domain;

1951 1952
	INC_STATS_COUNTER(cnt_unmap_single);

1953 1954
	domain = get_domain(dev);
	if (IS_ERR(domain))
1955 1956
		return;

1957 1958
	spin_lock_irqsave(&domain->lock, flags);

1959
	__unmap_single(domain->priv, dma_addr, size, dir);
1960

1961
	iommu_flush_complete(domain);
1962 1963 1964 1965

	spin_unlock_irqrestore(&domain->lock, flags);
}

1966 1967 1968 1969
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1984 1985 1986 1987
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1988
static int map_sg(struct device *dev, struct scatterlist *sglist,
1989 1990
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1991 1992 1993 1994 1995 1996 1997
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1998
	u64 dma_mask;
1999

2000 2001
	INC_STATS_COUNTER(cnt_map_sg);

2002 2003
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2004
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2005 2006
	else if (IS_ERR(domain))
		return 0;
2007

2008
	dma_mask = *dev->dma_mask;
2009 2010 2011 2012 2013 2014

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2015
		s->dma_address = __map_single(dev, domain->priv,
2016 2017
					      paddr, s->length, dir, false,
					      dma_mask);
2018 2019 2020 2021 2022 2023 2024 2025

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2026
	iommu_flush_complete(domain);
2027 2028 2029 2030 2031 2032 2033 2034

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2035
			__unmap_single(domain->priv, s->dma_address,
2036 2037 2038 2039 2040 2041 2042 2043 2044
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2045 2046 2047 2048
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2049
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2050 2051
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2052 2053 2054 2055 2056 2057
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2058 2059
	INC_STATS_COUNTER(cnt_unmap_sg);

2060 2061
	domain = get_domain(dev);
	if (IS_ERR(domain))
2062 2063
		return;

2064 2065 2066
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2067
		__unmap_single(domain->priv, s->dma_address,
2068 2069 2070 2071
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2072
	iommu_flush_complete(domain);
2073 2074 2075 2076

	spin_unlock_irqrestore(&domain->lock, flags);
}

2077 2078 2079
/*
 * The exported alloc_coherent function for dma_ops.
 */
2080 2081 2082 2083 2084 2085 2086
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2087
	u64 dma_mask = dev->coherent_dma_mask;
2088

2089 2090
	INC_STATS_COUNTER(cnt_alloc_coherent);

2091 2092
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2093 2094 2095
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2096 2097
	} else if (IS_ERR(domain))
		return NULL;
2098

2099 2100 2101
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2102 2103 2104

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2105
		return NULL;
2106 2107 2108

	paddr = virt_to_phys(virt_addr);

2109 2110 2111
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2112 2113
	spin_lock_irqsave(&domain->lock, flags);

2114
	*dma_addr = __map_single(dev, domain->priv, paddr,
2115
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2116

2117
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2118
		spin_unlock_irqrestore(&domain->lock, flags);
2119
		goto out_free;
J
Jiri Slaby 已提交
2120
	}
2121

2122
	iommu_flush_complete(domain);
2123 2124 2125 2126

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2127 2128 2129 2130 2131 2132

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2133 2134
}

2135 2136 2137
/*
 * The exported free_coherent function for dma_ops.
 */
2138 2139 2140 2141 2142 2143
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2144 2145
	INC_STATS_COUNTER(cnt_free_coherent);

2146 2147
	domain = get_domain(dev);
	if (IS_ERR(domain))
2148 2149
		goto free_mem;

2150 2151
	spin_lock_irqsave(&domain->lock, flags);

2152
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2153

2154
	iommu_flush_complete(domain);
2155 2156 2157 2158 2159 2160 2161

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2162 2163 2164 2165 2166 2167
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2168
	return check_device(dev);
2169 2170
}

2171
/*
2172 2173
 * The function for pre-allocating protection domains.
 *
2174 2175 2176 2177
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2178
static void prealloc_protection_domains(void)
2179 2180 2181
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2182
	u16 devid;
2183 2184

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2185 2186 2187

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2188
			continue;
2189 2190

		/* Is there already any domain for it? */
2191
		if (domain_for_device(&dev->dev))
2192
			continue;
2193 2194 2195

		devid = get_device_id(&dev->dev);

2196
		dma_dom = dma_ops_domain_alloc();
2197 2198 2199
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2200 2201
		dma_dom->target_dev = devid;

2202
		attach_device(&dev->dev, &dma_dom->domain);
2203

2204
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2205 2206 2207
	}
}

2208
static struct dma_map_ops amd_iommu_dma_ops = {
2209 2210
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2211 2212
	.map_page = map_page,
	.unmap_page = unmap_page,
2213 2214
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2215
	.dma_supported = amd_iommu_dma_supported,
2216 2217
};

2218 2219 2220
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2221 2222 2223 2224 2225
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2226 2227 2228 2229 2230
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2231
	for_each_iommu(iommu) {
2232
		iommu->default_dom = dma_ops_domain_alloc();
2233 2234
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2235
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2236 2237 2238 2239 2240
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2241
	/*
2242
	 * Pre-allocate the protection domains for each device.
2243
	 */
2244
	prealloc_protection_domains();
2245 2246

	iommu_detected = 1;
2247
	swiotlb = 0;
I
Ingo Molnar 已提交
2248
#ifdef CONFIG_GART_IOMMU
2249 2250
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
2251
#endif
2252

2253
	/* Make the driver finally visible to the drivers */
2254 2255
	dma_ops = &amd_iommu_dma_ops;

2256 2257
	register_iommu(&amd_iommu_ops);

2258 2259
	amd_iommu_stats_init();

2260 2261 2262 2263
	return 0;

free_domains:

2264
	for_each_iommu(iommu) {
2265 2266 2267 2268 2269 2270
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2284
	struct iommu_dev_data *dev_data, *next;
2285 2286 2287 2288
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2289 2290 2291 2292 2293 2294
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

		do_detach(dev);
		atomic_set(&dev_data->bind, 0);
	}
2295 2296 2297 2298

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2299 2300 2301 2302 2303
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2304 2305
	del_domain_from_list(domain);

2306 2307 2308 2309 2310 2311 2312
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2313 2314 2315 2316 2317
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2318
		return NULL;
2319 2320 2321 2322

	spin_lock_init(&domain->lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
2323
		goto out_err;
2324
	INIT_LIST_HEAD(&domain->dev_list);
2325

2326 2327
	add_domain_to_list(domain);

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2342
		goto out_free;
2343 2344

	domain->mode    = PAGE_MODE_3_LEVEL;
2345 2346 2347 2348 2349 2350 2351 2352 2353
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2354
	protection_domain_free(domain);
2355 2356 2357 2358

	return -ENOMEM;
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2380 2381 2382
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2383
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2384 2385 2386
	struct amd_iommu *iommu;
	u16 devid;

2387
	if (!check_device(dev))
2388 2389
		return;

2390
	devid = get_device_id(dev);
2391

2392
	if (dev_data->domain != NULL)
2393
		detach_device(dev);
2394 2395 2396 2397 2398

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2399
	iommu_flush_device(dev);
2400 2401 2402
	iommu_completion_wait(iommu);
}

2403 2404 2405 2406
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2407
	struct iommu_dev_data *dev_data;
2408
	struct amd_iommu *iommu;
2409
	int ret;
2410 2411
	u16 devid;

2412
	if (!check_device(dev))
2413 2414
		return -EINVAL;

2415 2416
	dev_data = dev->archdata.iommu;

2417
	devid = get_device_id(dev);
2418 2419 2420 2421 2422

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2423
	if (dev_data->domain)
2424
		detach_device(dev);
2425

2426
	ret = attach_device(dev, domain);
2427 2428 2429

	iommu_completion_wait(iommu);

2430
	return ret;
2431 2432
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2451
		ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
2472
		iommu_unmap_page(domain, iova, PM_MAP_4k);
2473 2474 2475
		iova  += PAGE_SIZE;
	}

2476
	iommu_flush_tlb_pde(domain);
2477 2478
}

2479 2480 2481 2482 2483 2484 2485 2486
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

2487
	pte = fetch_pte(domain, iova, PM_MAP_4k);
2488

2489
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2490 2491 2492 2493 2494 2495 2496 2497
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2498 2499 2500 2501 2502 2503
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2512
	.domain_has_cap = amd_iommu_domain_has_cap,
2513 2514
};

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2527
	struct amd_iommu *iommu;
2528
	struct pci_dev *dev = NULL;
2529
	u16 devid;
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	/* allocate passthroug domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {

2540
		if (!check_device(&dev->dev))
2541 2542
			continue;

2543 2544
		devid = get_device_id(&dev->dev);

2545
		iommu = amd_iommu_rlookup_table[devid];
2546 2547 2548
		if (!iommu)
			continue;

2549
		attach_device(&dev->dev, pt_domain);
2550 2551 2552 2553 2554 2555
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}