core.c 102.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static LIST_HEAD(regulator_ena_gpio_list);
55
static bool has_full_constraints;
56
static bool board_wants_dummy_regulator;
57

58 59
static struct dentry *debugfs_root;

60
/*
61 62 63 64 65 66
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
67
	const char *dev_name;   /* The dev_name() for the consumer */
68
	const char *supply;
69
	struct regulator_dev *regulator;
70 71
};

72 73 74 75 76 77 78 79 80 81 82 83 84
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
	int gpio;
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

85 86 87 88 89 90 91 92
/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
93
	unsigned int always_on:1;
94
	unsigned int bypass:1;
95 96 97 98 99 100
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
101
	struct dentry *debugfs;
102 103 104
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
105
static int _regulator_disable(struct regulator_dev *rdev);
106 107 108 109 110
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
111 112
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
113 114 115
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
116

117 118 119 120 121 122 123 124 125 126
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

127 128 129 130 131 132
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
133
 * returns the device node corresponding to the regulator if found, else
134 135 136 137 138 139 140 141 142 143 144 145 146
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
147
		dev_dbg(dev, "Looking up %s property in node %s failed",
148 149 150 151 152 153
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

154 155 156 157 158 159 160 161 162 163 164
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

165 166 167 168 169 170 171
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
172
		rdev_err(rdev, "no constraints\n");
173 174 175
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176
		rdev_err(rdev, "operation not allowed\n");
177 178 179 180 181 182 183 184
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

185 186
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187
			 *min_uV, *max_uV);
188
		return -EINVAL;
189
	}
190 191 192 193

	return 0;
}

194 195 196 197 198 199 200 201 202
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 204 205 206 207 208 209
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

210 211 212 213 214 215
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

216
	if (*min_uV > *max_uV) {
217 218
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
219
		return -EINVAL;
220
	}
221 222 223 224

	return 0;
}

225 226 227 228 229 230 231
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
232
		rdev_err(rdev, "no constraints\n");
233 234 235
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236
		rdev_err(rdev, "operation not allowed\n");
237 238 239 240 241 242 243 244
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

245 246
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247
			 *min_uA, *max_uA);
248
		return -EINVAL;
249
	}
250 251 252 253 254

	return 0;
}

/* operating mode constraint check */
255
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256
{
257
	switch (*mode) {
258 259 260 261 262 263
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
264
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 266 267
		return -EINVAL;
	}

268
	if (!rdev->constraints) {
269
		rdev_err(rdev, "no constraints\n");
270 271 272
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273
		rdev_err(rdev, "operation not allowed\n");
274 275
		return -EPERM;
	}
276 277 278 279 280 281 282 283

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
284
	}
285 286

	return -EINVAL;
287 288 289 290 291 292
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
293
		rdev_err(rdev, "no constraints\n");
294 295 296
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297
		rdev_err(rdev, "operation not allowed\n");
298 299 300 301 302 303 304 305
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
306
	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 308 309 310 311 312 313 314
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
315
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 317 318 319

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
320
	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 322 323

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
324
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325

326 327 328 329 330
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

331
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 333
}

D
David Brownell 已提交
334
static ssize_t regulator_print_opmode(char *buf, int mode)
335 336 337 338 339 340 341 342 343 344 345 346 347 348
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
349 350
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
351
{
352
	struct regulator_dev *rdev = dev_get_drvdata(dev);
353

D
David Brownell 已提交
354 355
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
356
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
357 358 359

static ssize_t regulator_print_state(char *buf, int state)
{
360 361 362 363 364 365 366 367
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
368 369 370 371
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
372 373 374 375 376
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
377

378
	return ret;
D
David Brownell 已提交
379
}
380
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
381

D
David Brownell 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
415 416 417
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
418 419 420
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
421 422 423 424 425 426 427 428
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

429 430 431
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
432
	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 434 435 436 437 438

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
439
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440 441 442 443

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
444
	struct regulator_dev *rdev = dev_get_drvdata(dev);
445 446 447 448 449 450

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
451
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452 453 454 455

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
456
	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 458 459 460 461 462

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
463
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464 465 466 467

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
468
	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 470 471 472 473 474

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
475
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476 477 478 479

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
480
	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 482 483 484 485
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
486
		uA += regulator->uA_load;
487 488 489
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
490
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491 492 493 494

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
495
	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 497 498 499 500 501
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
502
	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 504 505 506 507 508 509 510 511 512 513 514 515

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
516
	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 518 519

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
520 521
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
522 523 524 525

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
526
	struct regulator_dev *rdev = dev_get_drvdata(dev);
527 528 529

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
530 531
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
532 533 534 535

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 538 539

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
540 541
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
542 543 544 545

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
546
	struct regulator_dev *rdev = dev_get_drvdata(dev);
547

D
David Brownell 已提交
548 549
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
550
}
551 552
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
553 554 555 556

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
557
	struct regulator_dev *rdev = dev_get_drvdata(dev);
558

D
David Brownell 已提交
559 560
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
561
}
562 563
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
564 565 566 567

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
568
	struct regulator_dev *rdev = dev_get_drvdata(dev);
569

D
David Brownell 已提交
570 571
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
572
}
573 574
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
575 576 577 578

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
579
	struct regulator_dev *rdev = dev_get_drvdata(dev);
580

D
David Brownell 已提交
581 582
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
583
}
584 585
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
586 587 588 589

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
590
	struct regulator_dev *rdev = dev_get_drvdata(dev);
591

D
David Brownell 已提交
592 593
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
594
}
595 596
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
597 598 599 600

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
601
	struct regulator_dev *rdev = dev_get_drvdata(dev);
602

D
David Brownell 已提交
603 604
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
605
}
606 607 608
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
630

631 632 633 634
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
635
static struct device_attribute regulator_dev_attrs[] = {
636
	__ATTR(name, 0444, regulator_name_show, NULL),
637 638 639 640 641 642 643
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
644
	struct regulator_dev *rdev = dev_get_drvdata(dev);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 665 666
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
667
		return;
668 669

	/* get output voltage */
670
	output_uV = _regulator_get_voltage(rdev);
671 672 673 674
	if (output_uV <= 0)
		return;

	/* get input voltage */
675 676
	input_uV = 0;
	if (rdev->supply)
677
		input_uV = regulator_get_voltage(rdev->supply);
678
	if (input_uV <= 0)
679 680 681 682 683 684
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
685
		current_uA += sibling->uA_load;
686 687 688 689 690 691

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
692
	err = regulator_mode_constrain(rdev, &mode);
693 694 695 696 697 698 699 700
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
701 702

	/* If we have no suspend mode configration don't set anything;
703 704
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
705 706
	 */
	if (!rstate->enabled && !rstate->disabled) {
707 708
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
709
			rdev_warn(rdev, "No configuration\n");
710 711 712 713
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
714
		rdev_err(rdev, "invalid configuration\n");
715 716
		return -EINVAL;
	}
717

718
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719
		ret = rdev->desc->ops->set_suspend_enable(rdev);
720
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721
		ret = rdev->desc->ops->set_suspend_disable(rdev);
722 723 724
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

725
	if (ret < 0) {
726
		rdev_err(rdev, "failed to enabled/disable\n");
727 728 729 730 731 732
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
733
			rdev_err(rdev, "failed to set voltage\n");
734 735 736 737 738 739 740
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
741
			rdev_err(rdev, "failed to set mode\n");
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
772
	char buf[80] = "";
773 774
	int count = 0;
	int ret;
775

776
	if (constraints->min_uV && constraints->max_uV) {
777
		if (constraints->min_uV == constraints->max_uV)
778 779
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
780
		else
781 782 783 784 785 786 787 788 789 790 791 792
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

793 794 795 796
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

797
	if (constraints->min_uA && constraints->max_uA) {
798
		if (constraints->min_uA == constraints->max_uA)
799 800
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
801
		else
802 803 804 805 806 807 808 809 810
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
811
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
812
	}
813

814 815 816 817 818 819 820 821 822
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

823 824 825
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
826
	rdev_info(rdev, "%s\n", buf);
827 828 829 830 831

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 833
}

834
static int machine_constraints_voltage(struct regulator_dev *rdev,
835
	struct regulation_constraints *constraints)
836
{
837
	struct regulator_ops *ops = rdev->desc->ops;
838 839 840 841
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
842 843 844 845 846 847 848 849 850
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
851
	}
852

853 854 855 856 857 858 859 860 861 862 863
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

864 865
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
866
		if (count == 1 && !cmin) {
867
			cmin = 1;
868
			cmax = INT_MAX;
869 870
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
871 872
		}

873 874
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
875
			return 0;
876

877
		/* else require explicit machine-level constraints */
878
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879
			rdev_err(rdev, "invalid voltage constraints\n");
880
			return -EINVAL;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
900 901 902
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
903
			return -EINVAL;
904 905 906 907
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
908 909
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
910 911 912
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
913 914
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
915 916 917 918
			constraints->max_uV = max_uV;
		}
	}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
934
	const struct regulation_constraints *constraints)
935 936 937 938
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

939 940 941 942 943 944
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
945 946
	if (!rdev->constraints)
		return -ENOMEM;
947

948
	ret = machine_constraints_voltage(rdev, rdev->constraints);
949 950 951
	if (ret != 0)
		goto out;

952
	/* do we need to setup our suspend state */
953
	if (rdev->constraints->initial_state) {
954
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955
		if (ret < 0) {
956
			rdev_err(rdev, "failed to set suspend state\n");
957 958 959
			goto out;
		}
	}
960

961
	if (rdev->constraints->initial_mode) {
962
		if (!ops->set_mode) {
963
			rdev_err(rdev, "no set_mode operation\n");
964 965 966 967
			ret = -EINVAL;
			goto out;
		}

968
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969
		if (ret < 0) {
970
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971 972 973 974
			goto out;
		}
	}

975 976 977
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
978 979
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
980 981
		ret = ops->enable(rdev);
		if (ret < 0) {
982
			rdev_err(rdev, "failed to enable\n");
983 984 985 986
			goto out;
		}
	}

987 988 989 990 991 992 993 994
	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

995
	print_constraints(rdev);
996
	return 0;
997
out:
998 999
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1000 1001 1002 1003 1004
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1005 1006
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1007 1008 1009 1010 1011 1012
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1013
		      struct regulator_dev *supply_rdev)
1014 1015 1016
{
	int err;

1017 1018 1019
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020 1021
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1022
		return err;
1023
	}
1024
	supply_rdev->open_count++;
1025 1026

	return 0;
1027 1028 1029
}

/**
1030
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031
 * @rdev:         regulator source
1032
 * @consumer_dev_name: dev_name() string for device supply applies to
1033
 * @supply:       symbolic name for supply
1034 1035 1036 1037 1038 1039 1040
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1041 1042
				      const char *consumer_dev_name,
				      const char *supply)
1043 1044
{
	struct regulator_map *node;
1045
	int has_dev;
1046 1047 1048 1049

	if (supply == NULL)
		return -EINVAL;

1050 1051 1052 1053 1054
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1055
	list_for_each_entry(node, &regulator_map_list, list) {
1056 1057 1058 1059
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1060
			continue;
1061 1062
		}

1063 1064 1065
		if (strcmp(node->supply, supply) != 0)
			continue;

1066 1067 1068 1069 1070 1071
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1072 1073 1074
		return -EBUSY;
	}

1075
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076 1077 1078 1079 1080 1081
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1082 1083 1084 1085 1086 1087
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1088 1089
	}

1090 1091 1092 1093
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1094 1095 1096 1097 1098 1099 1100
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1101
			kfree(node->dev_name);
1102 1103 1104 1105 1106
			kfree(node);
		}
	}
}

1107
#define REG_STR_SIZE	64
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1126 1127
		regulator->dev = dev;

1128
		/* Add a link to the device sysfs entry */
1129 1130 1131
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1132
			goto overflow_err;
1133 1134 1135

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1136
			goto overflow_err;
1137 1138 1139 1140

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1141 1142
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1143
			/* non-fatal */
1144
		}
1145 1146 1147
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1148
			goto overflow_err;
1149 1150 1151 1152
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1153
	if (!regulator->debugfs) {
1154 1155 1156 1157 1158 1159 1160 1161
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1162
	}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1173 1174 1175 1176 1177 1178 1179 1180 1181
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1182 1183 1184
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1185
		return rdev->desc->enable_time;
1186 1187 1188
	return rdev->desc->ops->enable_time(rdev);
}

1189
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190 1191
						  const char *supply,
						  int *ret)
1192 1193 1194
{
	struct regulator_dev *r;
	struct device_node *node;
1195 1196
	struct regulator_map *map;
	const char *devname = NULL;
1197 1198 1199 1200

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1201
		if (node) {
1202 1203 1204 1205
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1206 1207 1208 1209 1210 1211 1212 1213 1214
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1215 1216 1217
	}

	/* if not found, try doing it non-dt way */
1218 1219 1220
	if (dev)
		devname = dev_name(dev);

1221 1222 1223 1224
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1236 1237 1238
	return NULL;
}

1239 1240 1241
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1242 1243
{
	struct regulator_dev *rdev;
1244
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245
	const char *devname = NULL;
1246
	int ret = 0;
1247 1248

	if (id == NULL) {
1249
		pr_err("get() with no identifier\n");
1250 1251 1252
		return regulator;
	}

1253 1254 1255
	if (dev)
		devname = dev_name(dev);

1256 1257
	mutex_lock(&regulator_list_mutex);

1258
	rdev = regulator_dev_lookup(dev, id, &ret);
1259 1260 1261
	if (rdev)
		goto found;

1262 1263 1264 1265 1266 1267 1268 1269 1270
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
	if (ret) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1271 1272 1273 1274 1275
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1276 1277 1278 1279 1280 1281 1282 1283
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1284 1285
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1286 1287 1288 1289 1290
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1291 1292 1293 1294
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1305 1306 1307
	if (!try_module_get(rdev->owner))
		goto out;

1308 1309 1310 1311
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1312
		goto out;
1313 1314
	}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1326
out:
1327
	mutex_unlock(&regulator_list_mutex);
1328

1329 1330
	return regulator;
}
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1349 1350
EXPORT_SYMBOL_GPL(regulator_get);

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1412 1413
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1414 1415 1416 1417 1418 1419 1420 1421
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1422 1423
	debugfs_remove_recursive(regulator->debugfs);

1424
	/* remove any sysfs entries */
1425
	if (regulator->dev)
1426
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427
	kfree(regulator->supply_name);
1428 1429 1430
	list_del(&regulator->list);
	kfree(regulator);

1431 1432 1433
	rdev->open_count--;
	rdev->exclusive = 0;

1434
	module_put(rdev->owner);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1449 1450 1451 1452
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1475
	rc = devres_release(regulator->dev, devm_regulator_release,
1476
			    devm_regulator_match, regulator);
1477
	if (rc != 0)
1478
		WARN_ON(rc);
1479 1480 1481
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
	int ret;

	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
		if (pin->gpio == config->ena_gpio) {
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

	pin->gpio = config->ena_gpio;
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
		if (pin->gpio == rdev->ena_pin->gpio) {
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				gpio_free(pin->gpio);
				list_del(&pin->list);
				kfree(pin);
			} else {
				pin->request_count--;
			}
		}
	}
}

1541
/**
1542 1543 1544 1545
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
			gpio_set_value_cansleep(pin->gpio,
						!pin->ena_gpio_invert);

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
			gpio_set_value_cansleep(pin->gpio,
						pin->ena_gpio_invert);
			pin->enable_count = 0;
		}
	}

	return 0;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1595 1596 1597 1598
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1599 1600
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1625 1626 1627
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1628
	int ret;
1629 1630

	/* check voltage and requested load before enabling */
1631 1632 1633
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1634

1635 1636 1637 1638 1639 1640 1641
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1642
			ret = _regulator_do_enable(rdev);
1643 1644 1645
			if (ret < 0)
				return ret;

1646
		} else if (ret < 0) {
1647
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648 1649
			return ret;
		}
1650
		/* Fallthrough on positive return values - already enabled */
1651 1652
	}

1653 1654 1655
	rdev->use_count++;

	return 0;
1656 1657 1658 1659 1660 1661
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1662 1663 1664 1665
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1666
 * NOTE: the output value can be set by other drivers, boot loader or may be
1667
 * hardwired in the regulator.
1668 1669 1670
 */
int regulator_enable(struct regulator *regulator)
{
1671 1672
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1673

1674 1675 1676
	if (regulator->always_on)
		return 0;

1677 1678 1679 1680 1681 1682
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1683
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1684
	ret = _regulator_enable(rdev);
1685
	mutex_unlock(&rdev->mutex);
1686

1687
	if (ret != 0 && rdev->supply)
1688 1689
		regulator_disable(rdev->supply);

1690 1691 1692 1693
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1694 1695 1696 1697 1698 1699
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1700 1701 1702 1703
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1719
/* locks held by regulator_disable() */
1720
static int _regulator_disable(struct regulator_dev *rdev)
1721 1722 1723
{
	int ret = 0;

D
David Brownell 已提交
1724
	if (WARN(rdev->use_count <= 0,
1725
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1726 1727
		return -EIO;

1728
	/* are we the last user and permitted to disable ? */
1729 1730
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1731 1732

		/* we are last user */
1733 1734
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1735
			if (ret < 0) {
1736
				rdev_err(rdev, "failed to disable\n");
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1751

1752 1753 1754 1755 1756 1757 1758
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1759 1760 1761
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1762
 *
1763
 * NOTE: this will only disable the regulator output if no other consumer
1764 1765
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1766 1767 1768
 */
int regulator_disable(struct regulator *regulator)
{
1769 1770
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1771

1772 1773 1774
	if (regulator->always_on)
		return 0;

1775
	mutex_lock(&rdev->mutex);
1776
	ret = _regulator_disable(rdev);
1777
	mutex_unlock(&rdev->mutex);
1778

1779 1780
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1781

1782 1783 1784 1785 1786
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1787
static int _regulator_force_disable(struct regulator_dev *rdev)
1788 1789 1790 1791 1792 1793 1794 1795
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1796
			rdev_err(rdev, "failed to force disable\n");
1797 1798 1799
			return ret;
		}
		/* notify other consumers that power has been forced off */
1800 1801
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1818
	struct regulator_dev *rdev = regulator->rdev;
1819 1820
	int ret;

1821
	mutex_lock(&rdev->mutex);
1822
	regulator->uA_load = 0;
1823
	ret = _regulator_force_disable(regulator->rdev);
1824
	mutex_unlock(&rdev->mutex);
1825

1826 1827 1828
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1829

1830 1831 1832 1833
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1881
	int ret;
1882

1883 1884 1885
	if (regulator->always_on)
		return 0;

1886 1887 1888
	if (!ms)
		return regulator_disable(regulator);

1889 1890 1891 1892
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1893 1894 1895 1896 1897 1898
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1899 1900 1901
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

1920 1921 1922 1923
	if (rdev->desc->enable_is_inverted)
		return (val & rdev->desc->enable_mask) == 0;
	else
		return (val & rdev->desc->enable_mask) != 0;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
1938 1939 1940 1941 1942 1943 1944
	unsigned int val;

	if (rdev->desc->enable_is_inverted)
		val = 0;
	else
		val = rdev->desc->enable_mask;

1945
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946
				  rdev->desc->enable_mask, val);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
1961 1962 1963 1964 1965 1966 1967
	unsigned int val;

	if (rdev->desc->enable_is_inverted)
		val = rdev->desc->enable_mask;
	else
		val = 0;

1968
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969
				  rdev->desc->enable_mask, val);
1970 1971 1972
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1973 1974
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1975
	/* A GPIO control always takes precedence */
1976
	if (rdev->ena_pin)
1977 1978
		return rdev->ena_gpio_state;

1979
	/* If we don't know then assume that the regulator is always on */
1980
	if (!rdev->desc->ops->is_enabled)
1981
		return 1;
1982

1983
	return rdev->desc->ops->is_enabled(rdev);
1984 1985 1986 1987 1988 1989
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1990 1991 1992 1993 1994 1995 1996
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1997 1998 1999
 */
int regulator_is_enabled(struct regulator *regulator)
{
2000 2001
	int ret;

2002 2003 2004
	if (regulator->always_on)
		return 1;

2005 2006 2007 2008 2009
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2010 2011 2012
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
 * can change its voltage, false otherwise. Usefull for detecting fixed
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2027 2028 2029 2030 2031 2032 2033 2034 2035
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2036 2037 2038 2039 2040

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{
	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
2072 2073 2074 2075
	if (selector < rdev->desc->linear_min_sel)
		return 0;

	selector -= rdev->desc->linear_min_sel;
2076 2077 2078 2079 2080

	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/**
 * regulator_list_voltage_table - List voltages with table based mapping
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with table based mapping between voltages and
 * selectors can set volt_table in the regulator descriptor
 * and then use this function as their list_voltage() operation.
 */
int regulator_list_voltage_table(struct regulator_dev *rdev,
				 unsigned int selector)
{
	if (!rdev->desc->volt_table) {
		BUG_ON(!rdev->desc->volt_table);
		return -EINVAL;
	}

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);

2106 2107 2108 2109 2110 2111 2112
/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2113
 * zero if this selector code can't be used on this system, or a
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2167
	struct regulator_dev *rdev = regulator->rdev;
2168 2169
	int i, voltages, ret;

2170 2171 2172 2173
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2174
			return (min_uV <= ret && ret <= max_uV);
2175 2176 2177 2178
		else
			return ret;
	}

2179 2180 2181 2182 2183
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2198
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
2237 2238
	int ret;

2239 2240
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

2241
	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2242
				  rdev->desc->vsel_mask, sel);
2243 2244 2245 2246 2247 2248 2249 2250
	if (ret)
		return ret;

	if (rdev->desc->apply_bit)
		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
					 rdev->desc->apply_bit,
					 rdev->desc->apply_bit);
	return ret;
2251 2252 2253
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	int best_val = INT_MAX;
	int selector = 0;
	int i, ret;

	/* Find the smallest voltage that falls within the specified
	 * range.
	 */
	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
			best_val = ret;
			selector = i;
		}
	}

	if (best_val != INT_MAX)
		return selector;
	else
		return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/**
 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers that have ascendant voltage list can use this as their
 * map_voltage() operation.
 */
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int i, ret;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret > max_uV)
			break;

		if (ret >= min_uV && ret <= max_uV)
			return i;
	}

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int ret, voltage;

2340 2341 2342 2343 2344 2345 2346 2347
	/* Allow uV_step to be 0 for fixed voltage */
	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
			return 0;
		else
			return -EINVAL;
	}

2348 2349 2350 2351 2352
	if (!rdev->desc->uV_step) {
		BUG_ON(!rdev->desc->uV_step);
		return -EINVAL;
	}

2353 2354 2355
	if (min_uV < rdev->desc->min_uV)
		min_uV = rdev->desc->min_uV;

2356
	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2357 2358 2359
	if (ret < 0)
		return ret;

2360 2361
	ret += rdev->desc->linear_min_sel;

2362 2363 2364 2365 2366 2367 2368 2369 2370
	/* Map back into a voltage to verify we're still in bounds */
	voltage = rdev->desc->ops->list_voltage(rdev, ret);
	if (voltage < min_uV || voltage > max_uV)
		return -EINVAL;

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);

2371 2372 2373 2374
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2375
	int delay = 0;
2376
	int best_val = 0;
2377
	unsigned int selector;
2378
	int old_selector = -1;
2379 2380 2381

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2382 2383 2384
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2385 2386 2387 2388
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2389 2390
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2391 2392 2393 2394 2395 2396
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2397 2398 2399
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2400 2401 2402 2403 2404 2405 2406 2407 2408

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2409
	} else if (rdev->desc->ops->set_voltage_sel) {
2410
		if (rdev->desc->ops->map_voltage) {
2411 2412
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2413 2414 2415 2416 2417 2418 2419 2420 2421
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2422

2423
		if (ret >= 0) {
2424 2425 2426
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2427 2428 2429 2430 2431
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2432 2433 2434
			} else {
				ret = -EINVAL;
			}
2435
		}
2436 2437 2438
	} else {
		ret = -EINVAL;
	}
2439

2440
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2441
	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2442
	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2443

2444 2445 2446 2447 2448 2449
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2450
		}
2451

2452 2453 2454 2455 2456 2457 2458
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2459 2460
	}

2461 2462 2463
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2464
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2465 2466
				     (void *)data);
	}
2467

2468
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2469 2470 2471 2472

	return ret;
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2488
 * Regulator system constraints must be set for this regulator before
2489 2490 2491 2492 2493
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2494
	int ret = 0;
2495
	int old_min_uV, old_max_uV;
2496 2497 2498

	mutex_lock(&rdev->mutex);

2499 2500 2501 2502 2503 2504 2505
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2506
	/* sanity check */
2507 2508
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2509 2510 2511 2512 2513 2514 2515 2516
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2517 2518 2519 2520
	
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2521 2522
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2523

2524 2525
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2526
		goto out2;
2527

2528
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2529 2530 2531
	if (ret < 0)
		goto out2;
	
2532 2533 2534
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2535 2536 2537 2538
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2539 2540 2541 2542
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2588
/**
2589 2590
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2591 2592 2593 2594 2595 2596
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2597
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2598
 * set_voltage_time_sel() operation.
2599 2600 2601 2602 2603
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2604
	unsigned int ramp_delay = 0;
2605
	int old_volt, new_volt;
2606 2607 2608 2609 2610 2611 2612

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2613
		rdev_warn(rdev, "ramp_delay not set\n");
2614
		return 0;
2615
	}
2616

2617 2618 2619
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2620

2621 2622 2623 2624
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2625
}
2626
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2675 2676
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2677
	int sel, ret;
2678 2679 2680 2681 2682

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2683
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2684
	} else if (rdev->desc->ops->get_voltage) {
2685
		ret = rdev->desc->ops->get_voltage(rdev);
2686 2687
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2688
	} else {
2689
		return -EINVAL;
2690
	}
2691

2692 2693
	if (ret < 0)
		return ret;
2694
	return ret - rdev->constraints->uV_offset;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2723
 * @min_uA: Minimum supported current in uA
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2810
	int regulator_curr_mode;
2811 2812 2813 2814 2815 2816 2817 2818 2819

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2820 2821 2822 2823 2824 2825 2826 2827 2828
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2829
	/* constraints check */
2830
	ret = regulator_mode_constrain(rdev, &mode);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2901
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2902 2903
	unsigned int mode;

2904 2905 2906
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2907 2908
	mutex_lock(&rdev->mutex);

2909 2910 2911 2912
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2913 2914
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2915 2916
	if (ret < 0) {
		ret = 0;
2917
		goto out;
2918
	}
2919 2920 2921 2922

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2923 2924 2925 2926 2927 2928
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2929 2930 2931
	if (!rdev->desc->ops->set_mode)
		goto out;

2932
	/* get output voltage */
2933
	output_uV = _regulator_get_voltage(rdev);
2934
	if (output_uV <= 0) {
2935
		rdev_err(rdev, "invalid output voltage found\n");
2936 2937 2938
		goto out;
	}

2939
	/* No supply? Use constraint voltage */
2940
	if (input_uV <= 0)
2941 2942
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2943
		rdev_err(rdev, "invalid input voltage found\n");
2944 2945 2946 2947 2948
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2949
		total_uA_load += consumer->uA_load;
2950 2951 2952 2953

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2954
	ret = regulator_mode_constrain(rdev, &mode);
2955
	if (ret < 0) {
2956 2957
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2958 2959 2960 2961
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2962
	if (ret < 0) {
2963
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2964 2965 2966 2967 2968 2969 2970 2971 2972
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/**
 * regulator_set_bypass_regmap - Default set_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: state to set.
 */
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
{
	unsigned int val;

	if (enable)
		val = rdev->desc->bypass_mask;
	else
		val = 0;

	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
				  rdev->desc->bypass_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);

/**
 * regulator_get_bypass_regmap - Default get_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: current state.
 */
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
	if (ret != 0)
		return ret;

	*enable = val & rdev->desc->bypass_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);

3014 3015 3016 3017
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3018
 * @enable: enable or disable bypass mode
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3067 3068 3069
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3070
 * @nb: notifier block
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3085
 * @nb: notifier block
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3097 3098 3099
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3100 3101 3102 3103
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3104
	blocking_notifier_call_chain(&rdev->notifier, event, data);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3135 3136
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3137 3138 3139 3140 3141 3142 3143 3144
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3145
	while (--i >= 0)
3146 3147 3148 3149 3150 3151
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

3198 3199 3200 3201 3202 3203 3204
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3220
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3221
	int i;
3222
	int ret = 0;
3223

3224 3225 3226 3227 3228 3229 3230
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3231 3232 3233 3234

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3235
	for (i = 0; i < num_consumers; i++) {
3236 3237
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3238
			goto err;
3239
		}
3240 3241 3242 3243 3244
	}

	return 0;

err:
3245 3246 3247 3248 3249 3250 3251
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3265 3266
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3267 3268 3269 3270 3271 3272
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3273
	int ret, r;
3274

3275
	for (i = num_consumers - 1; i >= 0; --i) {
3276 3277 3278 3279 3280 3281 3282 3283
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3284
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3285 3286 3287 3288 3289 3290
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3291 3292 3293 3294 3295

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3356
 * @rdev: regulator source
3357
 * @event: notifier block
3358
 * @data: callback-specific data.
3359 3360 3361
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3362
 * Note lock must be held by caller.
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3389
	case REGULATOR_MODE_STANDBY:
3390 3391
		return REGULATOR_STATUS_STANDBY;
	default:
3392
		return REGULATOR_STATUS_UNDEFINED;
3393 3394 3395 3396
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3408
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3409 3410
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3425
	if (rdev->ena_pin || ops->is_enabled) {
3426 3427 3428 3429
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3430 3431 3432 3433 3434
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3435 3436 3437 3438 3439
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3456
	if (ops->set_voltage || ops->set_voltage_sel) {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3516 3517 3518
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3519
	if (!rdev->debugfs) {
3520 3521 3522 3523 3524 3525 3526 3527
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3528 3529
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3530 3531
}

3532 3533
/**
 * regulator_register - register regulator
3534
 * @regulator_desc: regulator to register
3535
 * @config: runtime configuration for regulator
3536 3537
 *
 * Called by regulator drivers to register a regulator.
3538 3539
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3540
 */
3541 3542
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3543
		   const struct regulator_config *config)
3544
{
3545
	const struct regulation_constraints *constraints = NULL;
3546
	const struct regulator_init_data *init_data;
3547 3548
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3549
	struct device *dev;
3550
	int ret, i;
3551
	const char *supply = NULL;
3552

3553
	if (regulator_desc == NULL || config == NULL)
3554 3555
		return ERR_PTR(-EINVAL);

3556
	dev = config->dev;
3557
	WARN_ON(!dev);
3558

3559 3560 3561
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3562 3563
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3564 3565
		return ERR_PTR(-EINVAL);

3566 3567 3568
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3569 3570
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3571 3572 3573 3574 3575 3576

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3577 3578 3579 3580
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3581

3582 3583
	init_data = config->init_data;

3584 3585 3586 3587 3588 3589 3590
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3591
	rdev->reg_data = config->driver_data;
3592 3593
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3594 3595
	if (config->regmap)
		rdev->regmap = config->regmap;
3596
	else if (dev_get_regmap(dev, NULL))
3597
		rdev->regmap = dev_get_regmap(dev, NULL);
3598 3599
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3600 3601 3602
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3603
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3604

3605
	/* preform any regulator specific init */
3606
	if (init_data && init_data->regulator_init) {
3607
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3608 3609
		if (ret < 0)
			goto clean;
3610 3611 3612
	}

	/* register with sysfs */
3613
	rdev->dev.class = &regulator_class;
3614
	rdev->dev.of_node = config->of_node;
3615
	rdev->dev.parent = dev;
3616 3617
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3618
	ret = device_register(&rdev->dev);
3619 3620
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3621
		goto clean;
3622
	}
3623 3624 3625

	dev_set_drvdata(&rdev->dev, rdev);

3626
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3627
		ret = regulator_ena_gpio_request(rdev, config);
3628 3629 3630
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3631
			goto wash;
3632 3633 3634 3635 3636
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3637
		if (config->ena_gpio_invert)
3638 3639 3640
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3641
	/* set regulator constraints */
3642 3643 3644 3645
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3646 3647 3648
	if (ret < 0)
		goto scrub;

3649 3650 3651 3652 3653
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3654
	if (init_data && init_data->supply_regulator)
3655 3656 3657 3658 3659
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3660 3661
		struct regulator_dev *r;

3662
		r = regulator_dev_lookup(dev, supply, &ret);
3663

3664 3665 3666 3667 3668 3669 3670 3671
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3672
			dev_err(dev, "Failed to find supply %s\n", supply);
3673
			ret = -EPROBE_DEFER;
3674 3675 3676 3677 3678 3679
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3680 3681

		/* Enable supply if rail is enabled */
3682
		if (_regulator_is_enabled(rdev)) {
3683 3684 3685 3686
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3687 3688
	}

3689
add_dev:
3690
	/* add consumers devices */
3691 3692 3693 3694
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3695
				init_data->consumer_supplies[i].supply);
3696 3697 3698 3699 3700
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3701
		}
3702
	}
3703 3704

	list_add(&rdev->list, &regulator_list);
3705 3706

	rdev_init_debugfs(rdev);
3707
out:
3708 3709
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3710

3711 3712 3713
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3714
scrub:
3715
	if (rdev->supply)
3716
		_regulator_put(rdev->supply);
3717
	regulator_ena_gpio_free(rdev);
3718
	kfree(rdev->constraints);
3719
wash:
D
David Brownell 已提交
3720
	device_unregister(&rdev->dev);
3721 3722 3723 3724
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3725 3726 3727 3728
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3729 3730 3731 3732 3733
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3734
 * @rdev: regulator to unregister
3735 3736 3737 3738 3739 3740 3741 3742
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3743 3744 3745
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3746
		regulator_put(rdev->supply);
3747
	}
3748
	mutex_lock(&regulator_list_mutex);
3749
	debugfs_remove_recursive(rdev->debugfs);
3750
	flush_work(&rdev->disable_work.work);
3751
	WARN_ON(rdev->open_count);
3752
	unset_regulator_supplies(rdev);
3753
	list_del(&rdev->list);
3754
	kfree(rdev->constraints);
3755
	regulator_ena_gpio_free(rdev);
3756
	device_unregister(&rdev->dev);
3757 3758 3759 3760 3761
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3762
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3785
			rdev_err(rdev, "failed to prepare\n");
3786 3787 3788 3789 3790 3791 3792 3793 3794
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3821
			if (!_regulator_is_enabled(rdev))
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3869 3870
/**
 * rdev_get_drvdata - get rdev regulator driver data
3871
 * @rdev: regulator
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3908
 * @rdev: regulator
3909 3910 3911 3912 3913 3914 3915
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3958
#endif
3959 3960

static const struct file_operations supply_map_fops = {
3961
#ifdef CONFIG_DEBUG_FS
3962 3963 3964
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3965
};
3966

3967 3968
static int __init regulator_init(void)
{
3969 3970 3971 3972
	int ret;

	ret = class_register(&regulator_class);

3973
	debugfs_root = debugfs_create_dir("regulator", NULL);
3974
	if (!debugfs_root)
3975
		pr_warn("regulator: Failed to create debugfs directory\n");
3976

3977 3978
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3979

3980 3981 3982
	regulator_dummy_init();

	return ret;
3983 3984 3985 3986
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3987 3988 3989 3990 3991 3992 3993 3994

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3995 3996 3997 3998 3999 4000 4001 4002 4003
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

4014
		if (!ops->disable || (c && c->always_on))
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
4034
			rdev_info(rdev, "disabling\n");
4035 4036
			ret = ops->disable(rdev);
			if (ret != 0) {
4037
				rdev_err(rdev, "couldn't disable: %d\n", ret);
4038 4039 4040 4041 4042 4043 4044
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
4045
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);