core.c 74.9 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

16
#define pr_fmt(fmt) "%s: " fmt, __func__
17

18 19
#include <linux/kernel.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21
#include <linux/device.h>
22
#include <linux/slab.h>
23
#include <linux/async.h>
24 25 26
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
27
#include <linux/delay.h>
28 29 30 31
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

32 33 34
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

35 36
#include "dummy.h"

M
Mark Brown 已提交
37 38
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 40 41 42 43 44 45 46 47
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

48 49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
51
static bool has_full_constraints;
52
static bool board_wants_dummy_regulator;
53

54 55 56 57
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_root;
#endif

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
87
static int _regulator_disable(struct regulator_dev *rdev);
88 89 90 91 92
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
93 94
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98

99 100 101 102 103 104 105 106 107 108
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
138
		rdev_err(rdev, "no constraints\n");
139 140 141
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
142
		rdev_err(rdev, "operation not allowed\n");
143 144 145 146 147 148 149 150 151 152 153 154 155 156
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

157 158 159 160 161 162 163 164 165
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
166 167 168 169 170 171 172
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

173 174 175 176 177 178 179 180 181 182 183 184
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

185 186 187 188 189 190 191
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
192
		rdev_err(rdev, "no constraints\n");
193 194 195
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
196
		rdev_err(rdev, "operation not allowed\n");
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
212
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
213
{
214
	switch (*mode) {
215 216 217 218 219 220 221 222 223
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

224
	if (!rdev->constraints) {
225
		rdev_err(rdev, "no constraints\n");
226 227 228
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
229
		rdev_err(rdev, "operation not allowed\n");
230 231
		return -EPERM;
	}
232 233 234 235 236 237 238 239

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
240
	}
241 242

	return -EINVAL;
243 244 245 246 247 248
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
249
		rdev_err(rdev, "no constraints\n");
250 251 252
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
253
		rdev_err(rdev, "operation not allowed\n");
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
274
	struct regulator_dev *rdev = dev_get_drvdata(dev);
275 276 277 278 279 280 281 282
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
283
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
284 285 286 287

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
288
	struct regulator_dev *rdev = dev_get_drvdata(dev);
289 290 291

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
292
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
293

294 295 296 297 298
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

299
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
300 301
}

D
David Brownell 已提交
302
static ssize_t regulator_print_opmode(char *buf, int mode)
303 304 305 306 307 308 309 310 311 312 313 314 315 316
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
317 318
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
319
{
320
	struct regulator_dev *rdev = dev_get_drvdata(dev);
321

D
David Brownell 已提交
322 323
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
324
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
325 326 327

static ssize_t regulator_print_state(char *buf, int state)
{
328 329 330 331 332 333 334 335
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
336 337 338 339
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
340 341 342 343 344
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
345

346
	return ret;
D
David Brownell 已提交
347
}
348
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
349

D
David Brownell 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

391 392 393
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
394
	struct regulator_dev *rdev = dev_get_drvdata(dev);
395 396 397 398 399 400

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
401
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
402 403 404 405

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
406
	struct regulator_dev *rdev = dev_get_drvdata(dev);
407 408 409 410 411 412

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
413
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
414 415 416 417

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
418
	struct regulator_dev *rdev = dev_get_drvdata(dev);
419 420 421 422 423 424

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
425
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
426 427 428 429

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
430
	struct regulator_dev *rdev = dev_get_drvdata(dev);
431 432 433 434 435 436

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
437
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
438 439 440 441

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
442
	struct regulator_dev *rdev = dev_get_drvdata(dev);
443 444 445 446 447
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
448
		uA += regulator->uA_load;
449 450 451
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
452
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
453 454 455 456

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
457
	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 459 460 461 462 463
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
464
	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 466 467 468 469 470 471 472 473 474 475 476 477

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
478
	struct regulator_dev *rdev = dev_get_drvdata(dev);
479 480 481

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
482 483
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
484 485 486 487

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
488
	struct regulator_dev *rdev = dev_get_drvdata(dev);
489 490 491

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
492 493
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
494 495 496 497

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
498
	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 500 501

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
502 503
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
504 505 506 507

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
508
	struct regulator_dev *rdev = dev_get_drvdata(dev);
509

D
David Brownell 已提交
510 511
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
512
}
513 514
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
515 516 517 518

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
519
	struct regulator_dev *rdev = dev_get_drvdata(dev);
520

D
David Brownell 已提交
521 522
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
523
}
524 525
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
526 527 528 529

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
530
	struct regulator_dev *rdev = dev_get_drvdata(dev);
531

D
David Brownell 已提交
532 533
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
534
}
535 536
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
537 538 539 540

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
541
	struct regulator_dev *rdev = dev_get_drvdata(dev);
542

D
David Brownell 已提交
543 544
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
545
}
546 547
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
548 549 550 551

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
552
	struct regulator_dev *rdev = dev_get_drvdata(dev);
553

D
David Brownell 已提交
554 555
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
556
}
557 558
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
559 560 561 562

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
563
	struct regulator_dev *rdev = dev_get_drvdata(dev);
564

D
David Brownell 已提交
565 566
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
567
}
568 569 570
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

571

572 573 574 575
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
576
static struct device_attribute regulator_dev_attrs[] = {
577
	__ATTR(name, 0444, regulator_name_show, NULL),
578 579 580 581 582 583 584
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
585
	struct regulator_dev *rdev = dev_get_drvdata(dev);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
605 606 607
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
608
		return;
609 610

	/* get output voltage */
611
	output_uV = _regulator_get_voltage(rdev);
612 613 614 615
	if (output_uV <= 0)
		return;

	/* get input voltage */
616 617 618 619
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
620 621 622 623 624 625
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
626
		current_uA += sibling->uA_load;
627 628 629 630 631 632

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
633
	err = regulator_mode_constrain(rdev, &mode);
634 635 636 637 638 639 640 641
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
642 643 644 645 646 647 648 649 650 651 652
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
653
			rdev_warn(rdev, "No configuration\n");
654 655 656 657
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
658
		rdev_err(rdev, "invalid configuration\n");
659 660
		return -EINVAL;
	}
661

662
	if (!can_set_state) {
663
		rdev_err(rdev, "no way to set suspend state\n");
664
		return -EINVAL;
665
	}
666 667 668 669 670 671

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
672
		rdev_err(rdev, "failed to enabled/disable\n");
673 674 675 676 677 678
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
679
			rdev_err(rdev, "failed to set voltage\n");
680 681 682 683 684 685 686
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
687
			rdev_err(rdev, "failed to set mode\n");
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
718
	char buf[80] = "";
719 720
	int count = 0;
	int ret;
721

722
	if (constraints->min_uV && constraints->max_uV) {
723
		if (constraints->min_uV == constraints->max_uV)
724 725
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
726
		else
727 728 729 730 731 732 733 734 735 736 737 738
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

739 740 741 742
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

743
	if (constraints->min_uA && constraints->max_uA) {
744
		if (constraints->min_uA == constraints->max_uA)
745 746
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
747
		else
748 749 750 751 752 753 754 755 756
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
757
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
758
	}
759

760 761 762 763 764 765 766 767 768
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
769
	rdev_info(rdev, "%s\n", buf);
770 771
}

772
static int machine_constraints_voltage(struct regulator_dev *rdev,
773
	struct regulation_constraints *constraints)
774
{
775
	struct regulator_ops *ops = rdev->desc->ops;
776 777 778 779
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
780 781 782 783 784 785 786 787 788 789
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			rdev->constraints = NULL;
			return ret;
		}
790
	}
791

792 793 794 795 796 797 798 799 800 801 802
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

803 804
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
805
		if (count == 1 && !cmin) {
806
			cmin = 1;
807
			cmax = INT_MAX;
808 809
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
810 811
		}

812 813
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
814
			return 0;
815

816
		/* else require explicit machine-level constraints */
817
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
818
			rdev_err(rdev, "invalid voltage constraints\n");
819
			return -EINVAL;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
839
			rdev_err(rdev, "unsupportable voltage constraints\n");
840
			return -EINVAL;
841 842 843 844
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
845 846
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
847 848 849
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
850 851
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
852 853 854 855
			constraints->max_uV = max_uV;
		}
	}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
871
	const struct regulation_constraints *constraints)
872 873 874 875
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

876 877 878 879
	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
				    GFP_KERNEL);
	if (!rdev->constraints)
		return -ENOMEM;
880

881
	ret = machine_constraints_voltage(rdev, rdev->constraints);
882 883 884
	if (ret != 0)
		goto out;

885
	/* do we need to setup our suspend state */
886
	if (constraints->initial_state) {
887
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
888
		if (ret < 0) {
889
			rdev_err(rdev, "failed to set suspend state\n");
890 891 892 893
			rdev->constraints = NULL;
			goto out;
		}
	}
894

895 896
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
897
			rdev_err(rdev, "no set_mode operation\n");
898 899 900 901
			ret = -EINVAL;
			goto out;
		}

902
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
903
		if (ret < 0) {
904
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
905 906 907 908
			goto out;
		}
	}

909 910 911
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
912 913
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
914 915
		ret = ops->enable(rdev);
		if (ret < 0) {
916
			rdev_err(rdev, "failed to enable\n");
917 918 919 920 921
			rdev->constraints = NULL;
			goto out;
		}
	}

922 923 924 925 926 927 928
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
929 930
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
931 932 933 934 935 936
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
937
		      struct regulator_dev *supply_rdev)
938 939 940
{
	int err;

941 942 943 944 945 946 947
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
	if (IS_ERR(rdev->supply)) {
		err = PTR_ERR(rdev->supply);
		rdev->supply = NULL;
		return err;
948
	}
949 950

	return 0;
951 952 953
}

/**
954
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
955 956
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
957
 * @consumer_dev_name: dev_name() string for device supply applies to
958
 * @supply:       symbolic name for supply
959 960 961 962 963
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
964 965
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
966 967
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
968 969
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
970 971
{
	struct regulator_map *node;
972
	int has_dev;
973

974 975 976 977 978 979
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

980 981 982
	if (supply == NULL)
		return -EINVAL;

983 984 985 986 987
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

988
	list_for_each_entry(node, &regulator_map_list, list) {
989 990 991 992
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
993
			continue;
994 995
		}

996 997 998 999
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1000 1001 1002 1003
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
1004 1005 1006
		return -EBUSY;
	}

1007
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1008 1009 1010 1011 1012 1013
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1014 1015 1016 1017 1018 1019
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1020 1021
	}

1022 1023 1024 1025
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1026 1027 1028 1029 1030 1031 1032
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1033
			kfree(node->dev_name);
1034 1035 1036 1037 1038
			kfree(node);
		}
	}
}

1039
#define REG_STR_SIZE	64
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1059 1060 1061
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1062 1063 1064 1065
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1066
		sysfs_attr_init(&regulator->dev_attr.attr);
1067 1068 1069 1070 1071 1072 1073 1074
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1075
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1092 1093
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1112 1113 1114 1115 1116 1117 1118
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1119 1120 1121
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1122 1123 1124 1125
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1126
	const char *devname = NULL;
1127
	int ret;
1128 1129

	if (id == NULL) {
1130
		pr_err("get() with no identifier\n");
1131 1132 1133
		return regulator;
	}

1134 1135 1136
	if (dev)
		devname = dev_name(dev);

1137 1138 1139
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1140 1141 1142 1143 1144 1145
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1146
			rdev = map->regulator;
1147
			goto found;
1148
		}
1149
	}
1150

1151 1152 1153 1154 1155
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1156 1157 1158 1159 1160 1161 1162 1163
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1164 1165
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1166 1167 1168 1169 1170
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1171 1172 1173 1174
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1185 1186 1187
	if (!try_module_get(rdev->owner))
		goto out;

1188 1189 1190 1191 1192 1193
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1205
out:
1206
	mutex_unlock(&regulator_list_mutex);
1207

1208 1209
	return regulator;
}
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1228 1229
EXPORT_SYMBOL_GPL(regulator_get);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1285 1286 1287
	rdev->open_count--;
	rdev->exclusive = 0;

1288 1289 1290 1291 1292
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1304 1305 1306
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1307
	int ret, delay;
1308 1309

	/* check voltage and requested load before enabling */
1310 1311 1312
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1313

1314 1315 1316 1317 1318 1319 1320
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1321
			if (!rdev->desc->ops->enable)
1322
				return -EINVAL;
1323 1324

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1325
			 * dependent.  */
1326 1327 1328 1329
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1330
				rdev_warn(rdev, "enable_time() failed: %d\n",
1331
					   ret);
1332
				delay = 0;
1333
			}
1334

1335 1336
			trace_regulator_enable(rdev_get_name(rdev));

1337 1338 1339 1340 1341 1342 1343
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1344 1345
			trace_regulator_enable_delay(rdev_get_name(rdev));

1346
			if (delay >= 1000) {
1347
				mdelay(delay / 1000);
1348 1349
				udelay(delay % 1000);
			} else if (delay) {
1350
				udelay(delay);
1351
			}
1352

1353 1354
			trace_regulator_enable_complete(rdev_get_name(rdev));

1355
		} else if (ret < 0) {
1356
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1357 1358
			return ret;
		}
1359
		/* Fallthrough on positive return values - already enabled */
1360 1361
	}

1362 1363 1364
	rdev->use_count++;

	return 0;
1365 1366 1367 1368 1369 1370
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1371 1372 1373 1374
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1375
 * NOTE: the output value can be set by other drivers, boot loader or may be
1376
 * hardwired in the regulator.
1377 1378 1379
 */
int regulator_enable(struct regulator *regulator)
{
1380 1381
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1382

1383 1384 1385 1386 1387 1388
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1389
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1390
	ret = _regulator_enable(rdev);
1391
	mutex_unlock(&rdev->mutex);
1392 1393 1394 1395

	if (ret != 0)
		regulator_disable(rdev->supply);

1396 1397 1398 1399 1400
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1401
static int _regulator_disable(struct regulator_dev *rdev)
1402 1403 1404
{
	int ret = 0;

D
David Brownell 已提交
1405
	if (WARN(rdev->use_count <= 0,
1406
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1407 1408
		return -EIO;

1409
	/* are we the last user and permitted to disable ? */
1410 1411
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1412 1413

		/* we are last user */
1414 1415
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1416 1417
			trace_regulator_disable(rdev_get_name(rdev));

1418 1419
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1420
				rdev_err(rdev, "failed to disable\n");
1421 1422
				return ret;
			}
1423

1424 1425
			trace_regulator_disable_complete(rdev_get_name(rdev));

1426 1427
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1440

1441 1442 1443 1444 1445 1446 1447
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1448 1449 1450
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1451
 *
1452
 * NOTE: this will only disable the regulator output if no other consumer
1453 1454
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1455 1456 1457
 */
int regulator_disable(struct regulator *regulator)
{
1458 1459
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1460

1461
	mutex_lock(&rdev->mutex);
1462
	ret = _regulator_disable(rdev);
1463
	mutex_unlock(&rdev->mutex);
1464

1465 1466
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1467

1468 1469 1470 1471 1472
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1473
static int _regulator_force_disable(struct regulator_dev *rdev)
1474 1475 1476 1477 1478 1479 1480 1481
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1482
			rdev_err(rdev, "failed to force disable\n");
1483 1484 1485
			return ret;
		}
		/* notify other consumers that power has been forced off */
1486 1487
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1504
	struct regulator_dev *rdev = regulator->rdev;
1505 1506
	int ret;

1507
	mutex_lock(&rdev->mutex);
1508
	regulator->uA_load = 0;
1509
	ret = _regulator_force_disable(regulator->rdev);
1510
	mutex_unlock(&rdev->mutex);
1511

1512 1513 1514
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1515

1516 1517 1518 1519 1520 1521
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1522
	/* If we don't know then assume that the regulator is always on */
1523
	if (!rdev->desc->ops->is_enabled)
1524
		return 1;
1525

1526
	return rdev->desc->ops->is_enabled(rdev);
1527 1528 1529 1530 1531 1532
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1533 1534 1535 1536 1537 1538 1539
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1540 1541 1542
 */
int regulator_is_enabled(struct regulator *regulator)
{
1543 1544 1545 1546 1547 1548 1549
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1550 1551 1552
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1576
 * zero if this selector code can't be used on this system, or a
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1632 1633 1634 1635
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1636
	int delay = 0;
1637 1638 1639 1640
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1641 1642 1643
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1644 1645 1646 1647 1648 1649 1650 1651 1652
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		}

1689 1690 1691 1692 1693 1694
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
1695 1696 1697 1698
	} else {
		ret = -EINVAL;
	}

1699 1700 1701 1702 1703 1704 1705 1706
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1707 1708 1709 1710
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1711 1712 1713 1714 1715
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1731
 * Regulator system constraints must be set for this regulator before
1732 1733 1734 1735 1736
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1737
	int ret = 0;
1738 1739 1740

	mutex_lock(&rdev->mutex);

1741 1742 1743 1744 1745 1746 1747
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1748
	/* sanity check */
1749 1750
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1761

1762 1763 1764 1765
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1766
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1767

1768 1769 1770 1771 1772 1773
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

1866 1867
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
1868
	int sel, ret;
1869 1870 1871 1872 1873

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
1874
		ret = rdev->desc->ops->list_voltage(rdev, sel);
1875
	} else if (rdev->desc->ops->get_voltage) {
1876
		ret = rdev->desc->ops->get_voltage(rdev);
1877
	} else {
1878
		return -EINVAL;
1879
	}
1880

1881 1882
	if (ret < 0)
		return ret;
1883
	return ret - rdev->constraints->uV_offset;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1999
	int regulator_curr_mode;
2000 2001 2002 2003 2004 2005 2006 2007 2008

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2009 2010 2011 2012 2013 2014 2015 2016 2017
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2018
	/* constraints check */
2019
	ret = regulator_mode_constrain(rdev, &mode);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2095 2096 2097 2098
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2099 2100
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2101 2102
	if (ret < 0) {
		ret = 0;
2103
		goto out;
2104
	}
2105 2106 2107 2108

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2109 2110 2111 2112 2113 2114
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2115
	/* get output voltage */
2116
	output_uV = _regulator_get_voltage(rdev);
2117
	if (output_uV <= 0) {
2118
		rdev_err(rdev, "invalid output voltage found\n");
2119 2120 2121 2122
		goto out;
	}

	/* get input voltage */
2123 2124
	input_uV = 0;
	if (rdev->supply)
2125
		input_uV = regulator_get_voltage(rdev->supply);
2126
	if (input_uV <= 0)
2127 2128
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2129
		rdev_err(rdev, "invalid input voltage found\n");
2130 2131 2132 2133 2134
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2135
		total_uA_load += consumer->uA_load;
2136 2137 2138 2139

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2140
	ret = regulator_mode_constrain(rdev, &mode);
2141
	if (ret < 0) {
2142 2143
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2144 2145 2146 2147
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2148
	if (ret < 0) {
2149
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2162
 * @nb: notifier block
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2177
 * @nb: notifier block
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2189 2190 2191
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2227 2228
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2244 2245 2246 2247 2248 2249 2250
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2266
	LIST_HEAD(async_domain);
2267
	int i;
2268
	int ret = 0;
2269

2270 2271 2272 2273 2274 2275 2276
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2277
	for (i = 0; i < num_consumers; i++) {
2278 2279
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2280
			goto err;
2281
		}
2282 2283 2284 2285 2286
	}

	return 0;

err:
2287 2288 2289 2290 2291 2292
	for (i = 0; i < num_consumers; i++)
		if (consumers[i].ret == 0)
			regulator_disable(consumers[i].consumer);
		else
			pr_err("Failed to enable %s: %d\n",
			       consumers[i].supply, consumers[i].ret);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2325
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2326
	for (--i; i >= 0; --i)
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2356
 * @rdev: regulator source
2357
 * @event: notifier block
2358
 * @data: callback-specific data.
2359 2360 2361
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2362
 * Note lock must be held by caller.
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2408
	if (ops->get_voltage || ops->get_voltage_sel) {
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2428 2429 2430 2431 2432
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2449
	if (ops->set_voltage || ops->set_voltage_sel) {
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
#ifdef CONFIG_DEBUG_FS
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		rdev->debugfs = NULL;
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
#endif
}

2530 2531
/**
 * regulator_register - register regulator
2532 2533
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2534
 * @init_data: platform provided init data, passed through by driver
2535
 * @driver_data: private regulator data
2536 2537 2538 2539 2540
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2541
	struct device *dev, const struct regulator_init_data *init_data,
2542
	void *driver_data)
2543 2544 2545
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2546
	int ret, i;
2547 2548 2549 2550 2551 2552 2553

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2554 2555
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2556 2557
		return ERR_PTR(-EINVAL);

2558 2559 2560
	if (!init_data)
		return ERR_PTR(-EINVAL);

2561 2562 2563
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2564 2565
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2566 2567 2568 2569 2570 2571

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2572 2573 2574 2575
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2576

2577 2578 2579 2580 2581 2582 2583
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2584
	rdev->reg_data = driver_data;
2585 2586 2587 2588 2589 2590
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2591 2592 2593
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2594 2595
		if (ret < 0)
			goto clean;
2596 2597 2598
	}

	/* register with sysfs */
2599
	rdev->dev.class = &regulator_class;
2600
	rdev->dev.parent = dev;
2601 2602
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2603
	ret = device_register(&rdev->dev);
2604 2605
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2606
		goto clean;
2607
	}
2608 2609 2610

	dev_set_drvdata(&rdev->dev, rdev);

2611 2612 2613 2614 2615
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2616 2617 2618 2619 2620
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (init_data->supply_regulator) {
		struct regulator_dev *r;
		int found = 0;

		list_for_each_entry(r, &regulator_list, list) {
			if (strcmp(rdev_get_name(r),
				   init_data->supply_regulator) == 0) {
				found = 1;
				break;
			}
		}

		if (!found) {
			dev_err(dev, "Failed to find supply %s\n",
				init_data->supply_regulator);
2636
			ret = -ENODEV;
2637 2638 2639 2640 2641 2642 2643 2644
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
	}

2645 2646 2647 2648
	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2649
			init_data->consumer_supplies[i].dev_name,
2650
			init_data->consumer_supplies[i].supply);
2651 2652 2653
		if (ret < 0) {
			dev_err(dev, "Failed to set supply %s\n",
				init_data->consumer_supplies[i].supply);
2654
			goto unset_supplies;
2655
		}
2656
	}
2657 2658

	list_add(&rdev->list, &regulator_list);
2659 2660

	rdev_init_debugfs(rdev);
2661
out:
2662 2663
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2664

2665 2666 2667
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2668 2669
scrub:
	device_unregister(&rdev->dev);
2670 2671 2672 2673
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2674 2675 2676 2677
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2678 2679 2680 2681 2682
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2683
 * @rdev: regulator to unregister
2684 2685 2686 2687 2688 2689 2690 2691 2692
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2693 2694 2695
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(rdev->debugfs);
#endif
2696
	WARN_ON(rdev->open_count);
2697
	unset_regulator_supplies(rdev);
2698 2699
	list_del(&rdev->list);
	if (rdev->supply)
2700
		regulator_put(rdev->supply);
2701
	device_unregister(&rdev->dev);
2702
	kfree(rdev->constraints);
2703 2704 2705 2706 2707
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2708
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
2731
			rdev_err(rdev, "failed to prepare\n");
2732 2733 2734 2735 2736 2737 2738 2739 2740
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

2815 2816
/**
 * rdev_get_drvdata - get rdev regulator driver data
2817
 * @rdev: regulator
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2854
 * @rdev: regulator
2855 2856 2857 2858 2859 2860 2861
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2874 2875
static int __init regulator_init(void)
{
2876 2877 2878 2879
	int ret;

	ret = class_register(&regulator_class);

2880 2881 2882 2883 2884 2885 2886 2887
#ifdef CONFIG_DEBUG_FS
	debugfs_root = debugfs_create_dir("regulator", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("regulator: Failed to create debugfs directory\n");
		debugfs_root = NULL;
	}
#endif

2888 2889 2890
	regulator_dummy_init();

	return ret;
2891 2892 2893 2894
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2913
		if (!ops->disable || (c && c->always_on))
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
2933
			rdev_info(rdev, "disabling\n");
2934 2935
			ret = ops->disable(rdev);
			if (ret != 0) {
2936
				rdev_err(rdev, "couldn't disable: %d\n", ret);
2937 2938 2939 2940 2941 2942 2943
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
2944
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);