core.c 74.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

16
#define pr_fmt(fmt) "%s: " fmt, __func__
17

18 19
#include <linux/kernel.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21
#include <linux/device.h>
22
#include <linux/slab.h>
23
#include <linux/async.h>
24 25 26
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
27
#include <linux/delay.h>
28 29 30 31
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

32 33 34
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

35 36
#include "dummy.h"

37 38 39 40 41 42 43 44 45
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

46 47 48
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
49
static bool has_full_constraints;
50
static bool board_wants_dummy_regulator;
51

52 53 54 55
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_root;
#endif

56
/*
57 58 59 60 61 62
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
63
	const char *dev_name;   /* The dev_name() for the consumer */
64
	const char *supply;
65
	struct regulator_dev *regulator;
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
85
static int _regulator_disable(struct regulator_dev *rdev);
86 87 88 89 90
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
91 92
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
93 94 95
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
96

97 98 99 100 101 102 103 104 105 106
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
136
		rdev_err(rdev, "no constraints\n");
137 138 139
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
140
		rdev_err(rdev, "operation not allowed\n");
141 142 143 144 145 146 147 148 149 150 151 152 153 154
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

155 156 157 158 159 160 161 162 163
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
164 165 166 167 168 169 170
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

171 172 173 174 175 176 177 178 179 180 181 182
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

183 184 185 186 187 188 189
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
190
		rdev_err(rdev, "no constraints\n");
191 192 193
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
194
		rdev_err(rdev, "operation not allowed\n");
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
210
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
211
{
212
	switch (*mode) {
213 214 215 216 217 218 219 220 221
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

222
	if (!rdev->constraints) {
223
		rdev_err(rdev, "no constraints\n");
224 225 226
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
227
		rdev_err(rdev, "operation not allowed\n");
228 229
		return -EPERM;
	}
230 231 232 233 234 235 236 237

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
238
	}
239 240

	return -EINVAL;
241 242 243 244 245 246
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
247
		rdev_err(rdev, "no constraints\n");
248 249 250
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
251
		rdev_err(rdev, "operation not allowed\n");
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
272
	struct regulator_dev *rdev = dev_get_drvdata(dev);
273 274 275 276 277 278 279 280
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
281
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
282 283 284 285

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
286
	struct regulator_dev *rdev = dev_get_drvdata(dev);
287 288 289

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
290
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
291

292 293 294 295 296
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

297
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
298 299
}

D
David Brownell 已提交
300
static ssize_t regulator_print_opmode(char *buf, int mode)
301 302 303 304 305 306 307 308 309 310 311 312 313 314
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
315 316
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
317
{
318
	struct regulator_dev *rdev = dev_get_drvdata(dev);
319

D
David Brownell 已提交
320 321
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
322
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
323 324 325

static ssize_t regulator_print_state(char *buf, int state)
{
326 327 328 329 330 331 332 333
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
334 335 336 337
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
338 339 340 341 342
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
343

344
	return ret;
D
David Brownell 已提交
345
}
346
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
347

D
David Brownell 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

389 390 391
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
392
	struct regulator_dev *rdev = dev_get_drvdata(dev);
393 394 395 396 397 398

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
399
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
400 401 402 403

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
404
	struct regulator_dev *rdev = dev_get_drvdata(dev);
405 406 407 408 409 410

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
411
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
412 413 414 415

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
416
	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 418 419 420 421 422

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
423
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
424 425 426 427

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
428
	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 430 431 432 433 434

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
435
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
436 437 438 439

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
440
	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 442 443 444 445
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
446
		uA += regulator->uA_load;
447 448 449
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
450
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
451 452 453 454

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
455
	struct regulator_dev *rdev = dev_get_drvdata(dev);
456 457 458 459 460 461
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
462
	struct regulator_dev *rdev = dev_get_drvdata(dev);
463 464 465 466 467 468 469 470 471 472 473 474 475

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
480 481
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
482 483 484 485

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
486
	struct regulator_dev *rdev = dev_get_drvdata(dev);
487 488 489

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
490 491
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
492 493 494 495

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
496
	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 498 499

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
500 501
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
502 503 504 505

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
506
	struct regulator_dev *rdev = dev_get_drvdata(dev);
507

D
David Brownell 已提交
508 509
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
510
}
511 512
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
513 514 515 516

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
517
	struct regulator_dev *rdev = dev_get_drvdata(dev);
518

D
David Brownell 已提交
519 520
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
521
}
522 523
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
524 525 526 527

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
528
	struct regulator_dev *rdev = dev_get_drvdata(dev);
529

D
David Brownell 已提交
530 531
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
532
}
533 534
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
535 536 537 538

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
539
	struct regulator_dev *rdev = dev_get_drvdata(dev);
540

D
David Brownell 已提交
541 542
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
543
}
544 545
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
546 547 548 549

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551

D
David Brownell 已提交
552 553
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
554
}
555 556
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
557 558 559 560

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562

D
David Brownell 已提交
563 564
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
565
}
566 567 568
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

569

570 571 572 573
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
574
static struct device_attribute regulator_dev_attrs[] = {
575
	__ATTR(name, 0444, regulator_name_show, NULL),
576 577 578 579 580 581 582
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
603 604 605
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
606
		return;
607 608

	/* get output voltage */
609
	output_uV = _regulator_get_voltage(rdev);
610 611 612 613
	if (output_uV <= 0)
		return;

	/* get input voltage */
614 615 616 617
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
618 619 620 621 622 623
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
624
		current_uA += sibling->uA_load;
625 626 627 628 629 630

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
631
	err = regulator_mode_constrain(rdev, &mode);
632 633 634 635 636 637 638 639
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
640 641 642 643 644 645 646 647 648 649 650
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
651
			rdev_warn(rdev, "No configuration\n");
652 653 654 655
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
656
		rdev_err(rdev, "invalid configuration\n");
657 658
		return -EINVAL;
	}
659

660
	if (!can_set_state) {
661
		rdev_err(rdev, "no way to set suspend state\n");
662
		return -EINVAL;
663
	}
664 665 666 667 668 669

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
670
		rdev_err(rdev, "failed to enabled/disable\n");
671 672 673 674 675 676
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
677
			rdev_err(rdev, "failed to set voltage\n");
678 679 680 681 682 683 684
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
685
			rdev_err(rdev, "failed to set mode\n");
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
716
	char buf[80] = "";
717 718
	int count = 0;
	int ret;
719

720
	if (constraints->min_uV && constraints->max_uV) {
721
		if (constraints->min_uV == constraints->max_uV)
722 723
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
724
		else
725 726 727 728 729 730 731 732 733 734 735 736
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

737 738 739 740
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

741
	if (constraints->min_uA && constraints->max_uA) {
742
		if (constraints->min_uA == constraints->max_uA)
743 744
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
745
		else
746 747 748 749 750 751 752 753 754
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
755
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
756
	}
757

758 759 760 761 762 763 764 765 766
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
767
	rdev_info(rdev, "%s\n", buf);
768 769
}

770
static int machine_constraints_voltage(struct regulator_dev *rdev,
771
	struct regulation_constraints *constraints)
772
{
773
	struct regulator_ops *ops = rdev->desc->ops;
774 775 776 777
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
778 779 780 781 782 783 784 785 786 787
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			rdev->constraints = NULL;
			return ret;
		}
788
	}
789

790 791 792 793 794 795 796 797 798 799 800
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

801 802
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
803
		if (count == 1 && !cmin) {
804
			cmin = 1;
805
			cmax = INT_MAX;
806 807
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
808 809
		}

810 811
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
812
			return 0;
813

814
		/* else require explicit machine-level constraints */
815
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
816
			rdev_err(rdev, "invalid voltage constraints\n");
817
			return -EINVAL;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
837
			rdev_err(rdev, "unsupportable voltage constraints\n");
838
			return -EINVAL;
839 840 841 842
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
843 844
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
845 846 847
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
848 849
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
850 851 852 853
			constraints->max_uV = max_uV;
		}
	}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
869
	const struct regulation_constraints *constraints)
870 871 872 873
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

874 875 876 877
	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
				    GFP_KERNEL);
	if (!rdev->constraints)
		return -ENOMEM;
878

879
	ret = machine_constraints_voltage(rdev, rdev->constraints);
880 881 882
	if (ret != 0)
		goto out;

883
	/* do we need to setup our suspend state */
884
	if (constraints->initial_state) {
885
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
886
		if (ret < 0) {
887
			rdev_err(rdev, "failed to set suspend state\n");
888 889 890 891
			rdev->constraints = NULL;
			goto out;
		}
	}
892

893 894
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
895
			rdev_err(rdev, "no set_mode operation\n");
896 897 898 899
			ret = -EINVAL;
			goto out;
		}

900
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
901
		if (ret < 0) {
902
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
903 904 905 906
			goto out;
		}
	}

907 908 909
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
910 911
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
912 913
		ret = ops->enable(rdev);
		if (ret < 0) {
914
			rdev_err(rdev, "failed to enable\n");
915 916 917 918 919
			rdev->constraints = NULL;
			goto out;
		}
	}

920 921 922 923 924 925 926
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
927 928
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
929 930 931 932 933 934
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
935
		      struct regulator_dev *supply_rdev)
936 937 938
{
	int err;

939 940 941 942 943 944 945
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
	if (IS_ERR(rdev->supply)) {
		err = PTR_ERR(rdev->supply);
		rdev->supply = NULL;
		return err;
946
	}
947 948

	return 0;
949 950 951
}

/**
952
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
953 954
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
955
 * @consumer_dev_name: dev_name() string for device supply applies to
956
 * @supply:       symbolic name for supply
957 958 959 960 961
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
962 963
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
964 965
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
966 967
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
968 969
{
	struct regulator_map *node;
970
	int has_dev;
971

972 973 974 975 976 977
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

978 979 980
	if (supply == NULL)
		return -EINVAL;

981 982 983 984 985
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

986
	list_for_each_entry(node, &regulator_map_list, list) {
987 988 989 990
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
991
			continue;
992 993
		}

994 995 996 997
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
998 999 1000 1001
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
1002 1003 1004
		return -EBUSY;
	}

1005
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1006 1007 1008 1009 1010 1011
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1012 1013 1014 1015 1016 1017
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1018 1019
	}

1020 1021 1022 1023
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1024 1025 1026 1027 1028 1029 1030
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1031
			kfree(node->dev_name);
1032 1033 1034 1035 1036
			kfree(node);
		}
	}
}

1037
#define REG_STR_SIZE	64
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1057 1058 1059
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1060 1061 1062 1063
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1064
		sysfs_attr_init(&regulator->dev_attr.attr);
1065 1066 1067 1068 1069 1070 1071 1072
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1073
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1090 1091
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1110 1111 1112 1113 1114 1115 1116
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1117 1118 1119
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1120 1121 1122 1123
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1124
	const char *devname = NULL;
1125
	int ret;
1126 1127

	if (id == NULL) {
1128
		pr_err("get() with no identifier\n");
1129 1130 1131
		return regulator;
	}

1132 1133 1134
	if (dev)
		devname = dev_name(dev);

1135 1136 1137
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1138 1139 1140 1141 1142 1143
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1144
			rdev = map->regulator;
1145
			goto found;
1146
		}
1147
	}
1148

1149 1150 1151 1152 1153
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1154 1155 1156 1157 1158 1159 1160 1161
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1162 1163
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1164 1165 1166 1167 1168
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1169 1170 1171 1172
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1183 1184 1185
	if (!try_module_get(rdev->owner))
		goto out;

1186 1187 1188 1189 1190 1191
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1203
out:
1204
	mutex_unlock(&regulator_list_mutex);
1205

1206 1207
	return regulator;
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1226 1227
EXPORT_SYMBOL_GPL(regulator_get);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1283 1284 1285
	rdev->open_count--;
	rdev->exclusive = 0;

1286 1287 1288 1289 1290
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1302 1303 1304
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1305
	int ret, delay;
1306 1307

	/* check voltage and requested load before enabling */
1308 1309 1310
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1311

1312 1313 1314 1315 1316 1317 1318
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1319
			if (!rdev->desc->ops->enable)
1320
				return -EINVAL;
1321 1322

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1323
			 * dependent.  */
1324 1325 1326 1327
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1328
				rdev_warn(rdev, "enable_time() failed: %d\n",
1329
					   ret);
1330
				delay = 0;
1331
			}
1332

1333 1334
			trace_regulator_enable(rdev_get_name(rdev));

1335 1336 1337 1338 1339 1340 1341
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1342 1343
			trace_regulator_enable_delay(rdev_get_name(rdev));

1344
			if (delay >= 1000) {
1345
				mdelay(delay / 1000);
1346 1347
				udelay(delay % 1000);
			} else if (delay) {
1348
				udelay(delay);
1349
			}
1350

1351 1352
			trace_regulator_enable_complete(rdev_get_name(rdev));

1353
		} else if (ret < 0) {
1354
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1355 1356
			return ret;
		}
1357
		/* Fallthrough on positive return values - already enabled */
1358 1359
	}

1360 1361 1362
	rdev->use_count++;

	return 0;
1363 1364 1365 1366 1367 1368
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1369 1370 1371 1372
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1373
 * NOTE: the output value can be set by other drivers, boot loader or may be
1374
 * hardwired in the regulator.
1375 1376 1377
 */
int regulator_enable(struct regulator *regulator)
{
1378 1379
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1380

1381 1382 1383 1384 1385 1386
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1387
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1388
	ret = _regulator_enable(rdev);
1389
	mutex_unlock(&rdev->mutex);
1390 1391 1392 1393

	if (ret != 0)
		regulator_disable(rdev->supply);

1394 1395 1396 1397 1398
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1399
static int _regulator_disable(struct regulator_dev *rdev)
1400 1401 1402
{
	int ret = 0;

D
David Brownell 已提交
1403
	if (WARN(rdev->use_count <= 0,
1404
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1405 1406
		return -EIO;

1407
	/* are we the last user and permitted to disable ? */
1408 1409
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1410 1411

		/* we are last user */
1412 1413
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1414 1415
			trace_regulator_disable(rdev_get_name(rdev));

1416 1417
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1418
				rdev_err(rdev, "failed to disable\n");
1419 1420
				return ret;
			}
1421

1422 1423
			trace_regulator_disable_complete(rdev_get_name(rdev));

1424 1425
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1438

1439 1440 1441 1442 1443 1444 1445
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1446 1447 1448
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1449
 *
1450
 * NOTE: this will only disable the regulator output if no other consumer
1451 1452
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1453 1454 1455
 */
int regulator_disable(struct regulator *regulator)
{
1456 1457
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1458

1459
	mutex_lock(&rdev->mutex);
1460
	ret = _regulator_disable(rdev);
1461
	mutex_unlock(&rdev->mutex);
1462

1463 1464
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1465

1466 1467 1468 1469 1470
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1471
static int _regulator_force_disable(struct regulator_dev *rdev)
1472 1473 1474 1475 1476 1477 1478 1479
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1480
			rdev_err(rdev, "failed to force disable\n");
1481 1482 1483
			return ret;
		}
		/* notify other consumers that power has been forced off */
1484 1485
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1502
	struct regulator_dev *rdev = regulator->rdev;
1503 1504
	int ret;

1505
	mutex_lock(&rdev->mutex);
1506
	regulator->uA_load = 0;
1507
	ret = _regulator_force_disable(regulator->rdev);
1508
	mutex_unlock(&rdev->mutex);
1509

1510 1511 1512
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1513

1514 1515 1516 1517 1518 1519
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1520
	/* If we don't know then assume that the regulator is always on */
1521
	if (!rdev->desc->ops->is_enabled)
1522
		return 1;
1523

1524
	return rdev->desc->ops->is_enabled(rdev);
1525 1526 1527 1528 1529 1530
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1531 1532 1533 1534 1535 1536 1537
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1538 1539 1540
 */
int regulator_is_enabled(struct regulator *regulator)
{
1541 1542 1543 1544 1545 1546 1547
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1548 1549 1550
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1574
 * zero if this selector code can't be used on this system, or a
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1630 1631 1632 1633
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1634
	int delay = 0;
1635 1636 1637 1638
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1639 1640 1641
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		}

1687 1688 1689 1690 1691 1692
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
1693 1694 1695 1696
	} else {
		ret = -EINVAL;
	}

1697 1698 1699 1700 1701 1702 1703 1704
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1705 1706 1707 1708
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1709 1710 1711 1712 1713
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1729
 * Regulator system constraints must be set for this regulator before
1730 1731 1732 1733 1734
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1735
	int ret = 0;
1736 1737 1738

	mutex_lock(&rdev->mutex);

1739 1740 1741 1742 1743 1744 1745
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1746
	/* sanity check */
1747 1748
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1759

1760 1761 1762 1763
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1764
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1765

1766 1767 1768 1769 1770 1771
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

1864 1865
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
1866
	int sel, ret;
1867 1868 1869 1870 1871

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
1872
		ret = rdev->desc->ops->list_voltage(rdev, sel);
1873
	} else if (rdev->desc->ops->get_voltage) {
1874
		ret = rdev->desc->ops->get_voltage(rdev);
1875
	} else {
1876
		return -EINVAL;
1877
	}
1878

1879 1880
	if (ret < 0)
		return ret;
1881
	return ret - rdev->constraints->uV_offset;
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1997
	int regulator_curr_mode;
1998 1999 2000 2001 2002 2003 2004 2005 2006

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2007 2008 2009 2010 2011 2012 2013 2014 2015
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2016
	/* constraints check */
2017
	ret = regulator_mode_constrain(rdev, &mode);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2093 2094 2095 2096
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2097 2098
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2099 2100
	if (ret < 0) {
		ret = 0;
2101
		goto out;
2102
	}
2103 2104 2105 2106

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2107 2108 2109 2110 2111 2112
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2113
	/* get output voltage */
2114
	output_uV = _regulator_get_voltage(rdev);
2115
	if (output_uV <= 0) {
2116
		rdev_err(rdev, "invalid output voltage found\n");
2117 2118 2119 2120
		goto out;
	}

	/* get input voltage */
2121 2122
	input_uV = 0;
	if (rdev->supply)
2123
		input_uV = regulator_get_voltage(rdev->supply);
2124
	if (input_uV <= 0)
2125 2126
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2127
		rdev_err(rdev, "invalid input voltage found\n");
2128 2129 2130 2131 2132
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2133
		total_uA_load += consumer->uA_load;
2134 2135 2136 2137

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2138
	ret = regulator_mode_constrain(rdev, &mode);
2139
	if (ret < 0) {
2140 2141
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2142 2143 2144 2145
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2146
	if (ret < 0) {
2147
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2160
 * @nb: notifier block
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2175
 * @nb: notifier block
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2187 2188 2189
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2225 2226
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2242 2243 2244 2245 2246 2247 2248
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2264
	LIST_HEAD(async_domain);
2265
	int i;
2266
	int ret = 0;
2267

2268 2269 2270 2271 2272 2273 2274
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2275
	for (i = 0; i < num_consumers; i++) {
2276 2277
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2278
			goto err;
2279
		}
2280 2281 2282 2283 2284
	}

	return 0;

err:
2285 2286 2287 2288 2289 2290
	for (i = 0; i < num_consumers; i++)
		if (consumers[i].ret == 0)
			regulator_disable(consumers[i].consumer);
		else
			pr_err("Failed to enable %s: %d\n",
			       consumers[i].supply, consumers[i].ret);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2323
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2324
	for (--i; i >= 0; --i)
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2354
 * @rdev: regulator source
2355
 * @event: notifier block
2356
 * @data: callback-specific data.
2357 2358 2359
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2360
 * Note lock must be held by caller.
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2406
	if (ops->get_voltage || ops->get_voltage_sel) {
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2426 2427 2428 2429 2430
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2447
	if (ops->set_voltage || ops->set_voltage_sel) {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
#ifdef CONFIG_DEBUG_FS
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		rdev->debugfs = NULL;
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
#endif
}

2528 2529
/**
 * regulator_register - register regulator
2530 2531
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2532
 * @init_data: platform provided init data, passed through by driver
2533
 * @driver_data: private regulator data
2534 2535 2536 2537 2538
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2539
	struct device *dev, const struct regulator_init_data *init_data,
2540
	void *driver_data)
2541 2542 2543
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2544
	int ret, i;
2545 2546 2547 2548 2549 2550 2551

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2552 2553
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2554 2555
		return ERR_PTR(-EINVAL);

2556 2557 2558
	if (!init_data)
		return ERR_PTR(-EINVAL);

2559 2560 2561
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2562 2563
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2564 2565 2566 2567 2568 2569

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2570 2571 2572 2573
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2574

2575 2576 2577 2578 2579 2580 2581
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2582
	rdev->reg_data = driver_data;
2583 2584 2585 2586 2587 2588
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2589 2590 2591
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2592 2593
		if (ret < 0)
			goto clean;
2594 2595 2596
	}

	/* register with sysfs */
2597
	rdev->dev.class = &regulator_class;
2598
	rdev->dev.parent = dev;
2599 2600
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2601
	ret = device_register(&rdev->dev);
2602 2603
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2604
		goto clean;
2605
	}
2606 2607 2608

	dev_set_drvdata(&rdev->dev, rdev);

2609 2610 2611 2612 2613
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2614 2615 2616 2617 2618
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	if (init_data->supply_regulator) {
		struct regulator_dev *r;
		int found = 0;

		list_for_each_entry(r, &regulator_list, list) {
			if (strcmp(rdev_get_name(r),
				   init_data->supply_regulator) == 0) {
				found = 1;
				break;
			}
		}

		if (!found) {
			dev_err(dev, "Failed to find supply %s\n",
				init_data->supply_regulator);
2634
			ret = -ENODEV;
2635 2636 2637 2638 2639 2640 2641 2642
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
	}

2643 2644 2645 2646
	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2647
			init_data->consumer_supplies[i].dev_name,
2648
			init_data->consumer_supplies[i].supply);
2649 2650 2651
		if (ret < 0) {
			dev_err(dev, "Failed to set supply %s\n",
				init_data->consumer_supplies[i].supply);
2652
			goto unset_supplies;
2653
		}
2654
	}
2655 2656

	list_add(&rdev->list, &regulator_list);
2657 2658

	rdev_init_debugfs(rdev);
2659
out:
2660 2661
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2662

2663 2664 2665
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2666 2667
scrub:
	device_unregister(&rdev->dev);
2668 2669 2670 2671
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2672 2673 2674 2675
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2676 2677 2678 2679 2680
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2681
 * @rdev: regulator to unregister
2682 2683 2684 2685 2686 2687 2688 2689 2690
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2691 2692 2693
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(rdev->debugfs);
#endif
2694
	WARN_ON(rdev->open_count);
2695
	unset_regulator_supplies(rdev);
2696 2697
	list_del(&rdev->list);
	if (rdev->supply)
2698
		regulator_put(rdev->supply);
2699
	device_unregister(&rdev->dev);
2700
	kfree(rdev->constraints);
2701 2702 2703 2704 2705
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2706
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
2729
			rdev_err(rdev, "failed to prepare\n");
2730 2731 2732 2733 2734 2735 2736 2737 2738
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

2813 2814
/**
 * rdev_get_drvdata - get rdev regulator driver data
2815
 * @rdev: regulator
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2852
 * @rdev: regulator
2853 2854 2855 2856 2857 2858 2859
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2872 2873
static int __init regulator_init(void)
{
2874 2875 2876 2877
	int ret;

	ret = class_register(&regulator_class);

2878 2879 2880 2881 2882 2883 2884 2885
#ifdef CONFIG_DEBUG_FS
	debugfs_root = debugfs_create_dir("regulator", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("regulator: Failed to create debugfs directory\n");
		debugfs_root = NULL;
	}
#endif

2886 2887 2888
	regulator_dummy_init();

	return ret;
2889 2890 2891 2892
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2911
		if (!ops->disable || (c && c->always_on))
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
2931
			rdev_info(rdev, "disabling\n");
2932 2933
			ret = ops->disable(rdev);
			if (ret != 0) {
2934
				rdev_err(rdev, "couldn't disable: %d\n", ret);
2935 2936 2937 2938 2939 2940 2941
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
2942
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);