core.c 84.4 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26 27
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>
28 29 30
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
31
#include <linux/module.h>
32

33 34 35
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

36 37
#include "dummy.h"

M
Mark Brown 已提交
38 39
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 41 42 43 44 45 46 47 48
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

49 50 51
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
52
static bool has_full_constraints;
53
static bool board_wants_dummy_regulator;
54

55 56
static struct dentry *debugfs_root;

57
/*
58 59 60 61 62 63
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
64
	const char *dev_name;   /* The dev_name() for the consumer */
65
	const char *supply;
66
	struct regulator_dev *regulator;
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
83
	struct dentry *debugfs;
84 85 86
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
87
static int _regulator_disable(struct regulator_dev *rdev);
88 89 90 91 92
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
93 94
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98

99 100 101 102 103 104 105 106 107 108
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
151
		dev_dbg(dev, "Looking up %s property in node %s failed",
152 153 154 155 156 157
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

158 159 160 161 162 163 164
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
165
		rdev_err(rdev, "no constraints\n");
166 167 168
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169
		rdev_err(rdev, "operation not allowed\n");
170 171 172 173 174 175 176 177
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

178 179
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180
			 *min_uV, *max_uV);
181
		return -EINVAL;
182
	}
183 184 185 186

	return 0;
}

187 188 189 190 191 192 193 194 195
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196 197 198 199 200 201 202
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

203 204 205 206 207 208 209 210 211 212 213 214
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

215 216 217 218 219 220 221
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
222
		rdev_err(rdev, "no constraints\n");
223 224 225
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226
		rdev_err(rdev, "operation not allowed\n");
227 228 229 230 231 232 233 234
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

235 236
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237
			 *min_uA, *max_uA);
238
		return -EINVAL;
239
	}
240 241 242 243 244

	return 0;
}

/* operating mode constraint check */
245
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246
{
247
	switch (*mode) {
248 249 250 251 252 253
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
254
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255 256 257
		return -EINVAL;
	}

258
	if (!rdev->constraints) {
259
		rdev_err(rdev, "no constraints\n");
260 261 262
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263
		rdev_err(rdev, "operation not allowed\n");
264 265
		return -EPERM;
	}
266 267 268 269 270 271 272 273

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
274
	}
275 276

	return -EINVAL;
277 278 279 280 281 282
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
283
		rdev_err(rdev, "no constraints\n");
284 285 286
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287
		rdev_err(rdev, "operation not allowed\n");
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
308
	struct regulator_dev *rdev = dev_get_drvdata(dev);
309 310 311 312 313 314 315 316
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
317
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318 319 320 321

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
322
	struct regulator_dev *rdev = dev_get_drvdata(dev);
323 324 325

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
326
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327

328 329 330 331 332
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

333
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 335
}

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

425 426 427
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
428
	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 430 431 432 433 434

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
435
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436 437 438 439

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
440
	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 442 443 444 445 446

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
447
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448 449 450 451

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 454 455 456 457 458

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
459
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460 461 462 463

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
464
	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 466 467 468 469 470

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
471
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472 473 474 475

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479 480 481
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
482
		uA += regulator->uA_load;
483 484 485
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
486
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487 488 489 490

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
491
	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 493 494 495 496 497
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
498
	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 500 501 502 503 504 505 506 507 508 509 510 511

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
512
	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 514 515

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
516 517
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
518 519 520 521

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
522
	struct regulator_dev *rdev = dev_get_drvdata(dev);
523 524 525

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
526 527
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
528 529 530 531

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
532
	struct regulator_dev *rdev = dev_get_drvdata(dev);
533 534 535

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
536 537
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
538 539 540 541

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
542
	struct regulator_dev *rdev = dev_get_drvdata(dev);
543

D
David Brownell 已提交
544 545
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
546
}
547 548
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
549 550 551 552

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
553
	struct regulator_dev *rdev = dev_get_drvdata(dev);
554

D
David Brownell 已提交
555 556
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
557
}
558 559
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
560 561 562 563

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
564
	struct regulator_dev *rdev = dev_get_drvdata(dev);
565

D
David Brownell 已提交
566 567
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
568
}
569 570
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
571 572 573 574

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
575
	struct regulator_dev *rdev = dev_get_drvdata(dev);
576

D
David Brownell 已提交
577 578
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
579
}
580 581
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
582 583 584 585

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587

D
David Brownell 已提交
588 589
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
590
}
591 592
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
593 594 595 596

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
597
	struct regulator_dev *rdev = dev_get_drvdata(dev);
598

D
David Brownell 已提交
599 600
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
601
}
602 603 604
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

605

606 607 608 609
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
610
static struct device_attribute regulator_dev_attrs[] = {
611
	__ATTR(name, 0444, regulator_name_show, NULL),
612 613 614 615 616 617 618
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
619
	struct regulator_dev *rdev = dev_get_drvdata(dev);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639 640 641
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
642
		return;
643 644

	/* get output voltage */
645
	output_uV = _regulator_get_voltage(rdev);
646 647 648 649
	if (output_uV <= 0)
		return;

	/* get input voltage */
650 651
	input_uV = 0;
	if (rdev->supply)
652
		input_uV = regulator_get_voltage(rdev->supply);
653
	if (input_uV <= 0)
654 655 656 657 658 659
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
660
		current_uA += sibling->uA_load;
661 662 663 664 665 666

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
667
	err = regulator_mode_constrain(rdev, &mode);
668 669 670 671 672 673 674 675
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
676 677

	/* If we have no suspend mode configration don't set anything;
678 679
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
680 681
	 */
	if (!rstate->enabled && !rstate->disabled) {
682 683
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
684
			rdev_warn(rdev, "No configuration\n");
685 686 687 688
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
689
		rdev_err(rdev, "invalid configuration\n");
690 691
		return -EINVAL;
	}
692

693
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
694
		ret = rdev->desc->ops->set_suspend_enable(rdev);
695
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
696
		ret = rdev->desc->ops->set_suspend_disable(rdev);
697 698 699
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

700
	if (ret < 0) {
701
		rdev_err(rdev, "failed to enabled/disable\n");
702 703 704 705 706 707
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
708
			rdev_err(rdev, "failed to set voltage\n");
709 710 711 712 713 714 715
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
716
			rdev_err(rdev, "failed to set mode\n");
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
747
	char buf[80] = "";
748 749
	int count = 0;
	int ret;
750

751
	if (constraints->min_uV && constraints->max_uV) {
752
		if (constraints->min_uV == constraints->max_uV)
753 754
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
755
		else
756 757 758 759 760 761 762 763 764 765 766 767
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

768 769 770 771
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

772
	if (constraints->min_uA && constraints->max_uA) {
773
		if (constraints->min_uA == constraints->max_uA)
774 775
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
776
		else
777 778 779 780 781 782 783 784 785
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
786
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
787
	}
788

789 790 791 792 793 794 795 796 797
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
798
	rdev_info(rdev, "%s\n", buf);
799 800 801 802 803

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
804 805
}

806
static int machine_constraints_voltage(struct regulator_dev *rdev,
807
	struct regulation_constraints *constraints)
808
{
809
	struct regulator_ops *ops = rdev->desc->ops;
810 811 812 813
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
814 815 816 817 818 819 820 821 822
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
823
	}
824

825 826 827 828 829 830 831 832 833 834 835
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

836 837
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
838
		if (count == 1 && !cmin) {
839
			cmin = 1;
840
			cmax = INT_MAX;
841 842
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
843 844
		}

845 846
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
847
			return 0;
848

849
		/* else require explicit machine-level constraints */
850
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
851
			rdev_err(rdev, "invalid voltage constraints\n");
852
			return -EINVAL;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
872
			rdev_err(rdev, "unsupportable voltage constraints\n");
873
			return -EINVAL;
874 875 876 877
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
878 879
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
880 881 882
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
883 884
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
885 886 887 888
			constraints->max_uV = max_uV;
		}
	}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
904
	const struct regulation_constraints *constraints)
905 906 907 908
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

909 910 911 912 913 914
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
915 916
	if (!rdev->constraints)
		return -ENOMEM;
917

918
	ret = machine_constraints_voltage(rdev, rdev->constraints);
919 920 921
	if (ret != 0)
		goto out;

922
	/* do we need to setup our suspend state */
923
	if (rdev->constraints->initial_state) {
924
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
925
		if (ret < 0) {
926
			rdev_err(rdev, "failed to set suspend state\n");
927 928 929
			goto out;
		}
	}
930

931
	if (rdev->constraints->initial_mode) {
932
		if (!ops->set_mode) {
933
			rdev_err(rdev, "no set_mode operation\n");
934 935 936 937
			ret = -EINVAL;
			goto out;
		}

938
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
939
		if (ret < 0) {
940
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
941 942 943 944
			goto out;
		}
	}

945 946 947
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
948 949
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
950 951
		ret = ops->enable(rdev);
		if (ret < 0) {
952
			rdev_err(rdev, "failed to enable\n");
953 954 955 956
			goto out;
		}
	}

957
	print_constraints(rdev);
958
	return 0;
959
out:
960 961
	kfree(rdev->constraints);
	rdev->constraints = NULL;
962 963 964 965 966
	return ret;
}

/**
 * set_supply - set regulator supply regulator
967 968
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
969 970 971 972 973 974
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
975
		      struct regulator_dev *supply_rdev)
976 977 978
{
	int err;

979 980 981
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
982 983
	if (rdev->supply == NULL) {
		err = -ENOMEM;
984
		return err;
985
	}
986 987

	return 0;
988 989 990
}

/**
991
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
992
 * @rdev:         regulator source
993
 * @consumer_dev_name: dev_name() string for device supply applies to
994
 * @supply:       symbolic name for supply
995 996 997 998 999 1000 1001
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1002 1003
				      const char *consumer_dev_name,
				      const char *supply)
1004 1005
{
	struct regulator_map *node;
1006
	int has_dev;
1007 1008 1009 1010

	if (supply == NULL)
		return -EINVAL;

1011 1012 1013 1014 1015
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1016
	list_for_each_entry(node, &regulator_map_list, list) {
1017 1018 1019 1020
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1021
			continue;
1022 1023
		}

1024 1025 1026
		if (strcmp(node->supply, supply) != 0)
			continue;

1027 1028 1029 1030 1031 1032
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1033 1034 1035
		return -EBUSY;
	}

1036
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1037 1038 1039 1040 1041 1042
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1043 1044 1045 1046 1047 1048
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1049 1050
	}

1051 1052 1053 1054
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1055 1056 1057 1058 1059 1060 1061
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1062
			kfree(node->dev_name);
1063 1064 1065 1066 1067
			kfree(node);
		}
	}
}

1068
#define REG_STR_SIZE	64
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1088 1089 1090
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1091 1092 1093 1094
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1095
		sysfs_attr_init(&regulator->dev_attr.attr);
1096 1097 1098 1099 1100 1101 1102 1103
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1104
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1121 1122
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1123 1124
			goto link_name_err;
		}
1125 1126 1127 1128 1129 1130 1131 1132
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1133
	if (!regulator->debugfs) {
1134 1135 1136 1137 1138 1139 1140 1141
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1142
	}
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1159 1160 1161 1162 1163 1164 1165
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1166
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1167 1168
						  const char *supply,
						  int *ret)
1169 1170 1171
{
	struct regulator_dev *r;
	struct device_node *node;
1172 1173
	struct regulator_map *map;
	const char *devname = NULL;
1174 1175 1176 1177

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1178
		if (node) {
1179 1180 1181 1182
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1183 1184 1185 1186 1187 1188 1189 1190 1191
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1192 1193 1194
	}

	/* if not found, try doing it non-dt way */
1195 1196 1197
	if (dev)
		devname = dev_name(dev);

1198 1199 1200 1201
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1213 1214 1215
	return NULL;
}

1216 1217 1218
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1219 1220
{
	struct regulator_dev *rdev;
1221
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1222
	const char *devname = NULL;
1223
	int ret;
1224 1225

	if (id == NULL) {
1226
		pr_err("get() with no identifier\n");
1227 1228 1229
		return regulator;
	}

1230 1231 1232
	if (dev)
		devname = dev_name(dev);

1233 1234
	mutex_lock(&regulator_list_mutex);

1235
	rdev = regulator_dev_lookup(dev, id, &ret);
1236 1237 1238
	if (rdev)
		goto found;

1239 1240 1241 1242 1243
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1244 1245 1246 1247 1248 1249 1250 1251
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1252 1253
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1254 1255 1256 1257 1258
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1259 1260 1261 1262
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1273 1274 1275
	if (!try_module_get(rdev->owner))
		goto out;

1276 1277 1278 1279
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1280
		goto out;
1281 1282
	}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1294
out:
1295
	mutex_unlock(&regulator_list_mutex);
1296

1297 1298
	return regulator;
}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1317 1318
EXPORT_SYMBOL_GPL(regulator_get);

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1398 1399
	debugfs_remove_recursive(regulator->debugfs);

1400 1401 1402 1403 1404 1405
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1406
	kfree(regulator->supply_name);
1407 1408 1409
	list_del(&regulator->list);
	kfree(regulator);

1410 1411 1412
	rdev->open_count--;
	rdev->exclusive = 0;

1413 1414 1415 1416 1417
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

	rc = devres_destroy(regulator->dev, devm_regulator_release,
			    devm_regulator_match, regulator);
	WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1457 1458 1459
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1460
	int ret, delay;
1461 1462

	/* check voltage and requested load before enabling */
1463 1464 1465
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1466

1467 1468 1469 1470 1471 1472 1473
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1474
			if (!rdev->desc->ops->enable)
1475
				return -EINVAL;
1476 1477

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1478
			 * dependent.  */
1479 1480 1481 1482
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1483
				rdev_warn(rdev, "enable_time() failed: %d\n",
1484
					   ret);
1485
				delay = 0;
1486
			}
1487

1488 1489
			trace_regulator_enable(rdev_get_name(rdev));

1490 1491 1492 1493 1494 1495 1496
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1497 1498
			trace_regulator_enable_delay(rdev_get_name(rdev));

1499
			if (delay >= 1000) {
1500
				mdelay(delay / 1000);
1501 1502
				udelay(delay % 1000);
			} else if (delay) {
1503
				udelay(delay);
1504
			}
1505

1506 1507
			trace_regulator_enable_complete(rdev_get_name(rdev));

1508
		} else if (ret < 0) {
1509
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1510 1511
			return ret;
		}
1512
		/* Fallthrough on positive return values - already enabled */
1513 1514
	}

1515 1516 1517
	rdev->use_count++;

	return 0;
1518 1519 1520 1521 1522 1523
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1524 1525 1526 1527
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1528
 * NOTE: the output value can be set by other drivers, boot loader or may be
1529
 * hardwired in the regulator.
1530 1531 1532
 */
int regulator_enable(struct regulator *regulator)
{
1533 1534
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1535

1536 1537 1538 1539 1540 1541
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1542
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1543
	ret = _regulator_enable(rdev);
1544
	mutex_unlock(&rdev->mutex);
1545

1546
	if (ret != 0 && rdev->supply)
1547 1548
		regulator_disable(rdev->supply);

1549 1550 1551 1552 1553
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1554
static int _regulator_disable(struct regulator_dev *rdev)
1555 1556 1557
{
	int ret = 0;

D
David Brownell 已提交
1558
	if (WARN(rdev->use_count <= 0,
1559
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1560 1561
		return -EIO;

1562
	/* are we the last user and permitted to disable ? */
1563 1564
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1565 1566

		/* we are last user */
1567 1568
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1569 1570
			trace_regulator_disable(rdev_get_name(rdev));

1571 1572
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1573
				rdev_err(rdev, "failed to disable\n");
1574 1575
				return ret;
			}
1576

1577 1578
			trace_regulator_disable_complete(rdev_get_name(rdev));

1579 1580
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1593

1594 1595 1596 1597 1598 1599 1600
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1601 1602 1603
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1604
 *
1605
 * NOTE: this will only disable the regulator output if no other consumer
1606 1607
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1608 1609 1610
 */
int regulator_disable(struct regulator *regulator)
{
1611 1612
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1613

1614
	mutex_lock(&rdev->mutex);
1615
	ret = _regulator_disable(rdev);
1616
	mutex_unlock(&rdev->mutex);
1617

1618 1619
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1620

1621 1622 1623 1624 1625
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1626
static int _regulator_force_disable(struct regulator_dev *rdev)
1627 1628 1629 1630 1631 1632 1633 1634
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1635
			rdev_err(rdev, "failed to force disable\n");
1636 1637 1638
			return ret;
		}
		/* notify other consumers that power has been forced off */
1639 1640
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1657
	struct regulator_dev *rdev = regulator->rdev;
1658 1659
	int ret;

1660
	mutex_lock(&rdev->mutex);
1661
	regulator->uA_load = 0;
1662
	ret = _regulator_force_disable(regulator->rdev);
1663
	mutex_unlock(&rdev->mutex);
1664

1665 1666 1667
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1668

1669 1670 1671 1672
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1720
	int ret;
1721 1722 1723 1724 1725

	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1726 1727 1728 1729 1730 1731
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1732 1733 1734
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1735 1736
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1737
	/* If we don't know then assume that the regulator is always on */
1738
	if (!rdev->desc->ops->is_enabled)
1739
		return 1;
1740

1741
	return rdev->desc->ops->is_enabled(rdev);
1742 1743 1744 1745 1746 1747
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1748 1749 1750 1751 1752 1753 1754
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1755 1756 1757
 */
int regulator_is_enabled(struct regulator *regulator)
{
1758 1759 1760 1761 1762 1763 1764
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1765 1766 1767
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1791
 * zero if this selector code can't be used on this system, or a
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1846
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1847

1848 1849 1850 1851
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1852
	int delay = 0;
1853
	unsigned int selector;
1854 1855
	int old_selector = -1;
	int best_val = INT_MAX;
1856 1857 1858

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1859 1860 1861
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
	if (rdev->desc->ops->set_voltage_time_sel &&
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

1873 1874 1875 1876 1877
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
1878
			best_val = rdev->desc->ops->list_voltage(rdev,
1879 1880
								 selector);
		else
1881
			best_val = -1;
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	} else if (rdev->desc->ops->set_voltage_sel) {
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1901
		if (best_val != INT_MAX)
1902
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1903
		else
1904
			ret = -EINVAL;
1905 1906 1907 1908
	} else {
		ret = -EINVAL;
	}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/* Call set_voltage_time_sel if successfully obtained old_selector */
	if (ret == 0 && old_selector >= 0 &&
	    rdev->desc->ops->set_voltage_time_sel) {

		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
		}
	}

1922 1923 1924 1925 1926 1927 1928 1929
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1930 1931 1932 1933
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1934
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
1935 1936 1937 1938

	return ret;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1954
 * Regulator system constraints must be set for this regulator before
1955 1956 1957 1958 1959
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1960
	int ret = 0;
1961 1962 1963

	mutex_lock(&rdev->mutex);

1964 1965 1966 1967 1968 1969 1970
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1971
	/* sanity check */
1972 1973
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1984

1985 1986 1987 1988
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1989
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1990

1991 1992 1993 1994 1995 1996
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2089 2090
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2091
	int sel, ret;
2092 2093 2094 2095 2096

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2097
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2098
	} else if (rdev->desc->ops->get_voltage) {
2099
		ret = rdev->desc->ops->get_voltage(rdev);
2100
	} else {
2101
		return -EINVAL;
2102
	}
2103

2104 2105
	if (ret < 0)
		return ret;
2106
	return ret - rdev->constraints->uV_offset;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2222
	int regulator_curr_mode;
2223 2224 2225 2226 2227 2228 2229 2230 2231

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2232 2233 2234 2235 2236 2237 2238 2239 2240
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2241
	/* constraints check */
2242
	ret = regulator_mode_constrain(rdev, &mode);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2318 2319 2320 2321
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2322 2323
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2324 2325
	if (ret < 0) {
		ret = 0;
2326
		goto out;
2327
	}
2328 2329 2330 2331

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2332 2333 2334 2335 2336 2337
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2338
	/* get output voltage */
2339
	output_uV = _regulator_get_voltage(rdev);
2340
	if (output_uV <= 0) {
2341
		rdev_err(rdev, "invalid output voltage found\n");
2342 2343 2344 2345
		goto out;
	}

	/* get input voltage */
2346 2347
	input_uV = 0;
	if (rdev->supply)
2348
		input_uV = regulator_get_voltage(rdev->supply);
2349
	if (input_uV <= 0)
2350 2351
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2352
		rdev_err(rdev, "invalid input voltage found\n");
2353 2354 2355 2356 2357
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2358
		total_uA_load += consumer->uA_load;
2359 2360 2361 2362

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2363
	ret = regulator_mode_constrain(rdev, &mode);
2364
	if (ret < 0) {
2365 2366
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2367 2368 2369 2370
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2371
	if (ret < 0) {
2372
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2385
 * @nb: notifier block
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2400
 * @nb: notifier block
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2412 2413 2414
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2450 2451
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2452 2453 2454 2455 2456 2457 2458 2459
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2460
	while (--i >= 0)
2461 2462 2463 2464 2465 2466
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2513 2514 2515 2516 2517 2518 2519
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2535
	LIST_HEAD(async_domain);
2536
	int i;
2537
	int ret = 0;
2538

2539 2540 2541 2542 2543 2544 2545
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2546
	for (i = 0; i < num_consumers; i++) {
2547 2548
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2549
			goto err;
2550
		}
2551 2552 2553 2554 2555
	}

	return 0;

err:
2556 2557 2558
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2572 2573
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2574 2575 2576 2577 2578 2579
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
2580
	int ret, r;
2581

2582
	for (i = num_consumers - 1; i >= 0; --i) {
2583 2584 2585 2586 2587 2588 2589 2590
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2591
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2592 2593 2594 2595 2596 2597
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
2598 2599 2600 2601 2602

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2663
 * @rdev: regulator source
2664
 * @event: notifier block
2665
 * @data: callback-specific data.
2666 2667 2668
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2669
 * Note lock must be held by caller.
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2715 2716
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2736 2737 2738 2739 2740
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2757
	if (ops->set_voltage || ops->set_voltage_sel) {
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2817 2818 2819
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2820
	if (!rdev->debugfs) {
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

2831 2832
/**
 * regulator_register - register regulator
2833 2834
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2835
 * @init_data: platform provided init data, passed through by driver
2836
 * @driver_data: private regulator data
2837 2838
 * @of_node: OpenFirmware node to parse for device tree bindings (may be
 *           NULL).
2839 2840 2841 2842 2843
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2844
	struct device *dev, const struct regulator_init_data *init_data,
2845
	void *driver_data, struct device_node *of_node)
2846
{
2847
	const struct regulation_constraints *constraints = NULL;
2848 2849
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2850
	int ret, i;
2851
	const char *supply = NULL;
2852 2853 2854 2855 2856 2857 2858

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2859 2860
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2861 2862
		return ERR_PTR(-EINVAL);

2863 2864 2865
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2866 2867
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2868 2869 2870 2871 2872 2873

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2874 2875 2876 2877
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2878

2879 2880 2881 2882 2883 2884 2885
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2886
	rdev->reg_data = driver_data;
2887 2888 2889 2890 2891
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2892
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2893

2894
	/* preform any regulator specific init */
2895
	if (init_data && init_data->regulator_init) {
2896
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2897 2898
		if (ret < 0)
			goto clean;
2899 2900 2901
	}

	/* register with sysfs */
2902
	rdev->dev.class = &regulator_class;
2903
	rdev->dev.of_node = of_node;
2904
	rdev->dev.parent = dev;
2905 2906
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2907
	ret = device_register(&rdev->dev);
2908 2909
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2910
		goto clean;
2911
	}
2912 2913 2914

	dev_set_drvdata(&rdev->dev, rdev);

2915
	/* set regulator constraints */
2916 2917 2918 2919
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
2920 2921 2922
	if (ret < 0)
		goto scrub;

2923 2924 2925 2926 2927
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2928
	if (init_data && init_data->supply_regulator)
2929 2930 2931 2932 2933
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
2934 2935
		struct regulator_dev *r;

2936
		r = regulator_dev_lookup(dev, supply, &ret);
2937

2938 2939
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
2940
			ret = -EPROBE_DEFER;
2941 2942 2943 2944 2945 2946
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
2947 2948 2949 2950 2951 2952 2953 2954

		/* Enable supply if rail is enabled */
		if (rdev->desc->ops->is_enabled &&
				rdev->desc->ops->is_enabled(rdev)) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
2955 2956
	}

2957
	/* add consumers devices */
2958 2959 2960 2961
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
2962
				init_data->consumer_supplies[i].supply);
2963 2964 2965 2966 2967
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
2968
		}
2969
	}
2970 2971

	list_add(&rdev->list, &regulator_list);
2972 2973

	rdev_init_debugfs(rdev);
2974
out:
2975 2976
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2977

2978 2979 2980
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2981
scrub:
2982
	kfree(rdev->constraints);
D
David Brownell 已提交
2983
	device_unregister(&rdev->dev);
2984 2985 2986 2987
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2988 2989 2990 2991
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2992 2993 2994 2995 2996
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2997
 * @rdev: regulator to unregister
2998 2999 3000 3001 3002 3003 3004 3005 3006
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
3007
	debugfs_remove_recursive(rdev->debugfs);
3008
	flush_work_sync(&rdev->disable_work.work);
3009
	WARN_ON(rdev->open_count);
3010
	unset_regulator_supplies(rdev);
3011 3012
	list_del(&rdev->list);
	if (rdev->supply)
3013
		regulator_put(rdev->supply);
3014
	kfree(rdev->constraints);
3015
	device_unregister(&rdev->dev);
3016 3017 3018 3019 3020
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3021
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3044
			rdev_err(rdev, "failed to prepare\n");
3045 3046 3047 3048 3049 3050 3051 3052 3053
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3128 3129
/**
 * rdev_get_drvdata - get rdev regulator driver data
3130
 * @rdev: regulator
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3167
 * @rdev: regulator
3168 3169 3170 3171 3172 3173 3174
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3217
#endif
3218 3219

static const struct file_operations supply_map_fops = {
3220
#ifdef CONFIG_DEBUG_FS
3221 3222 3223
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3224
};
3225

3226 3227
static int __init regulator_init(void)
{
3228 3229 3230 3231
	int ret;

	ret = class_register(&regulator_class);

3232
	debugfs_root = debugfs_create_dir("regulator", NULL);
3233
	if (!debugfs_root)
3234
		pr_warn("regulator: Failed to create debugfs directory\n");
3235

3236 3237
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3238

3239 3240 3241
	regulator_dummy_init();

	return ret;
3242 3243 3244 3245
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3264
		if (!ops->disable || (c && c->always_on))
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3284
			rdev_info(rdev, "disabling\n");
3285 3286
			ret = ops->disable(rdev);
			if (ret != 0) {
3287
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3288 3289 3290 3291 3292 3293 3294
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3295
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);