core.c 74.9 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

16
#define pr_fmt(fmt) "%s: " fmt, __func__
17

18 19
#include <linux/kernel.h>
#include <linux/init.h>
20
#include <linux/debugfs.h>
21
#include <linux/device.h>
22
#include <linux/slab.h>
23 24 25
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
26
#include <linux/delay.h>
27 28 29 30
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

31 32 33
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

34 35
#include "dummy.h"

36 37 38 39 40 41 42 43 44
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

45 46 47
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
48
static bool has_full_constraints;
49
static bool board_wants_dummy_regulator;
50

51 52 53 54
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_root;
#endif

55
/*
56 57 58 59 60 61
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
62
	const char *dev_name;   /* The dev_name() for the consumer */
63
	const char *supply;
64
	struct regulator_dev *regulator;
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
84 85
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr);
86 87 88 89 90
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
91 92
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
93

94 95 96 97 98 99 100 101 102 103
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
133
		rdev_err(rdev, "no constraints\n");
134 135 136
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137
		rdev_err(rdev, "operation not allowed\n");
138 139 140 141 142 143 144 145 146 147 148 149 150 151
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

173 174 175 176 177 178 179
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
180
		rdev_err(rdev, "no constraints\n");
181 182 183
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184
		rdev_err(rdev, "operation not allowed\n");
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
200
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
201
{
202
	switch (*mode) {
203 204 205 206 207 208 209 210 211
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

212
	if (!rdev->constraints) {
213
		rdev_err(rdev, "no constraints\n");
214 215 216
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217
		rdev_err(rdev, "operation not allowed\n");
218 219
		return -EPERM;
	}
220 221 222 223 224 225 226 227

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
228
	}
229 230

	return -EINVAL;
231 232 233 234 235 236
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
237
		rdev_err(rdev, "no constraints\n");
238 239 240
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
241
		rdev_err(rdev, "operation not allowed\n");
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
262
	struct regulator_dev *rdev = dev_get_drvdata(dev);
263 264 265 266 267 268 269 270
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
271
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
272 273 274 275

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
276
	struct regulator_dev *rdev = dev_get_drvdata(dev);
277 278 279

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
280
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
281

282 283 284 285 286
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

287
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
288 289
}

D
David Brownell 已提交
290
static ssize_t regulator_print_opmode(char *buf, int mode)
291 292 293 294 295 296 297 298 299 300 301 302 303 304
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
305 306
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
307
{
308
	struct regulator_dev *rdev = dev_get_drvdata(dev);
309

D
David Brownell 已提交
310 311
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
312
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
313 314 315

static ssize_t regulator_print_state(char *buf, int state)
{
316 317 318 319 320 321 322 323
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
324 325 326 327
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
328 329 330 331 332
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
333

334
	return ret;
D
David Brownell 已提交
335
}
336
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
337

D
David Brownell 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

379 380 381
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
382
	struct regulator_dev *rdev = dev_get_drvdata(dev);
383 384 385 386 387 388

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
389
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
390 391 392 393

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
394
	struct regulator_dev *rdev = dev_get_drvdata(dev);
395 396 397 398 399 400

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
401
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
402 403 404 405

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
406
	struct regulator_dev *rdev = dev_get_drvdata(dev);
407 408 409 410 411 412

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
413
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
414 415 416 417

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
418
	struct regulator_dev *rdev = dev_get_drvdata(dev);
419 420 421 422 423 424

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
425
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
426 427 428 429

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
430
	struct regulator_dev *rdev = dev_get_drvdata(dev);
431 432 433 434 435
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
436
		uA += regulator->uA_load;
437 438 439
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
440
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
441 442 443 444

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
445
	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 447 448 449 450 451
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 454 455 456 457 458 459 460 461 462 463 464 465

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
466
	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 468 469

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
470 471
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
472 473 474 475

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
480 481
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
482 483 484 485

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
486
	struct regulator_dev *rdev = dev_get_drvdata(dev);
487 488 489

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
490 491
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
492 493 494 495

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
496
	struct regulator_dev *rdev = dev_get_drvdata(dev);
497

D
David Brownell 已提交
498 499
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
500
}
501 502
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
503 504 505 506

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
507
	struct regulator_dev *rdev = dev_get_drvdata(dev);
508

D
David Brownell 已提交
509 510
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
511
}
512 513
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
514 515 516 517

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
518
	struct regulator_dev *rdev = dev_get_drvdata(dev);
519

D
David Brownell 已提交
520 521
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
522
}
523 524
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
525 526 527 528

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
529
	struct regulator_dev *rdev = dev_get_drvdata(dev);
530

D
David Brownell 已提交
531 532
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
533
}
534 535
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541

D
David Brownell 已提交
542 543
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
544
}
545 546
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
547 548 549 550

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
551
	struct regulator_dev *rdev = dev_get_drvdata(dev);
552

D
David Brownell 已提交
553 554
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
555
}
556 557 558
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

559

560 561 562 563
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
564
static struct device_attribute regulator_dev_attrs[] = {
565
	__ATTR(name, 0444, regulator_name_show, NULL),
566 567 568 569 570 571 572
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
573
	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
593 594 595
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
596
		return;
597 598

	/* get output voltage */
599
	output_uV = _regulator_get_voltage(rdev);
600 601 602 603
	if (output_uV <= 0)
		return;

	/* get input voltage */
604 605 606 607
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
608 609 610 611 612 613
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
614
		current_uA += sibling->uA_load;
615 616 617 618 619 620

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
621
	err = regulator_mode_constrain(rdev, &mode);
622 623 624 625 626 627 628 629
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
630 631 632 633 634 635 636 637 638 639 640
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
641
			rdev_warn(rdev, "No configuration\n");
642 643 644 645
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
646
		rdev_err(rdev, "invalid configuration\n");
647 648
		return -EINVAL;
	}
649

650
	if (!can_set_state) {
651
		rdev_err(rdev, "no way to set suspend state\n");
652
		return -EINVAL;
653
	}
654 655 656 657 658 659

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
660
		rdev_err(rdev, "failed to enabled/disable\n");
661 662 663 664 665 666
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
667
			rdev_err(rdev, "failed to set voltage\n");
668 669 670 671 672 673 674
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
675
			rdev_err(rdev, "failed to set mode\n");
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
706
	char buf[80] = "";
707 708
	int count = 0;
	int ret;
709

710
	if (constraints->min_uV && constraints->max_uV) {
711
		if (constraints->min_uV == constraints->max_uV)
712 713
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
714
		else
715 716 717 718 719 720 721 722 723 724 725 726
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

727 728 729 730
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

731
	if (constraints->min_uA && constraints->max_uA) {
732
		if (constraints->min_uA == constraints->max_uA)
733 734
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
735
		else
736 737 738 739 740 741 742 743 744
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
745
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
746
	}
747

748 749 750 751 752 753 754 755 756
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
757
	rdev_info(rdev, "%s\n", buf);
758 759
}

760
static int machine_constraints_voltage(struct regulator_dev *rdev,
761
	struct regulation_constraints *constraints)
762
{
763
	struct regulator_ops *ops = rdev->desc->ops;
764 765 766 767
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
768 769 770 771 772 773 774 775 776 777
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			rdev->constraints = NULL;
			return ret;
		}
778
	}
779

780 781 782 783 784 785 786 787 788 789 790
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

791 792
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
793
		if (count == 1 && !cmin) {
794
			cmin = 1;
795
			cmax = INT_MAX;
796 797
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
798 799
		}

800 801
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
802
			return 0;
803

804
		/* else require explicit machine-level constraints */
805
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
806
			rdev_err(rdev, "invalid voltage constraints\n");
807
			return -EINVAL;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
827
			rdev_err(rdev, "unsupportable voltage constraints\n");
828
			return -EINVAL;
829 830 831 832
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
833 834
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
835 836 837
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
838 839
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
840 841 842 843
			constraints->max_uV = max_uV;
		}
	}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
859
	const struct regulation_constraints *constraints)
860 861 862 863
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

864 865 866 867
	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
				    GFP_KERNEL);
	if (!rdev->constraints)
		return -ENOMEM;
868

869
	ret = machine_constraints_voltage(rdev, rdev->constraints);
870 871 872
	if (ret != 0)
		goto out;

873
	/* do we need to setup our suspend state */
874
	if (constraints->initial_state) {
875
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
876
		if (ret < 0) {
877
			rdev_err(rdev, "failed to set suspend state\n");
878 879 880 881
			rdev->constraints = NULL;
			goto out;
		}
	}
882

883 884
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
885
			rdev_err(rdev, "no set_mode operation\n");
886 887 888 889
			ret = -EINVAL;
			goto out;
		}

890
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
891
		if (ret < 0) {
892
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
893 894 895 896
			goto out;
		}
	}

897 898 899
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
900 901
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
902 903
		ret = ops->enable(rdev);
		if (ret < 0) {
904
			rdev_err(rdev, "failed to enable\n");
905 906 907 908 909
			rdev->constraints = NULL;
			goto out;
		}
	}

910 911 912 913 914 915 916
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
917 918
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
919 920 921 922 923 924 925 926 927 928 929 930 931
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
	struct regulator_dev *supply_rdev)
{
	int err;

	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
				"supply");
	if (err) {
932 933
		rdev_err(rdev, "could not add device link %s err %d\n",
			 supply_rdev->dev.kobj.name, err);
934 935 936 937 938 939 940 941 942
		       goto out;
	}
	rdev->supply = supply_rdev;
	list_add(&rdev->slist, &supply_rdev->supply_list);
out:
	return err;
}

/**
943
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
944 945
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
946
 * @consumer_dev_name: dev_name() string for device supply applies to
947
 * @supply:       symbolic name for supply
948 949 950 951 952
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
953 954
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
955 956
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
957 958
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
959 960
{
	struct regulator_map *node;
961
	int has_dev;
962

963 964 965 966 967 968
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

969 970 971
	if (supply == NULL)
		return -EINVAL;

972 973 974 975 976
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

977
	list_for_each_entry(node, &regulator_map_list, list) {
978 979 980 981
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
982
			continue;
983 984
		}

985 986 987 988
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
989 990 991 992
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
993 994 995
		return -EBUSY;
	}

996
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
997 998 999 1000 1001 1002
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1003 1004 1005 1006 1007 1008
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1009 1010
	}

1011 1012 1013 1014
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1015 1016 1017 1018 1019 1020 1021
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1022
			kfree(node->dev_name);
1023 1024 1025 1026 1027
			kfree(node);
		}
	}
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#define REG_STR_SIZE	32

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
			supply_name);
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1054
		sysfs_attr_init(&regulator->dev_attr.attr);
1055 1056 1057 1058 1059 1060 1061 1062
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1063
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1080 1081
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1100 1101 1102 1103 1104 1105 1106
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1107 1108 1109
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1110 1111 1112 1113
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1114
	const char *devname = NULL;
1115
	int ret;
1116 1117

	if (id == NULL) {
1118
		pr_err("get() with no identifier\n");
1119 1120 1121
		return regulator;
	}

1122 1123 1124
	if (dev)
		devname = dev_name(dev);

1125 1126 1127
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1128 1129 1130 1131 1132 1133
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1134
			rdev = map->regulator;
1135
			goto found;
1136
		}
1137
	}
1138

1139 1140 1141 1142 1143
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1144 1145 1146 1147 1148 1149 1150 1151
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1152 1153
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1154 1155 1156 1157 1158
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1159 1160 1161 1162
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1173 1174 1175
	if (!try_module_get(rdev->owner))
		goto out;

1176 1177 1178 1179 1180 1181
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1193
out:
1194
	mutex_unlock(&regulator_list_mutex);
1195

1196 1197
	return regulator;
}
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1216 1217
EXPORT_SYMBOL_GPL(regulator_get);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1273 1274 1275
	rdev->open_count--;
	rdev->exclusive = 0;

1276 1277 1278 1279 1280
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1292 1293 1294
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1295
	int ret, delay;
1296

1297 1298 1299 1300 1301 1302 1303
	if (rdev->use_count == 0) {
		/* do we need to enable the supply regulator first */
		if (rdev->supply) {
			mutex_lock(&rdev->supply->mutex);
			ret = _regulator_enable(rdev->supply);
			mutex_unlock(&rdev->supply->mutex);
			if (ret < 0) {
1304
				rdev_err(rdev, "failed to enable: %d\n", ret);
1305 1306
				return ret;
			}
1307 1308 1309 1310
		}
	}

	/* check voltage and requested load before enabling */
1311 1312 1313
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1314

1315 1316 1317 1318 1319 1320 1321
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1322
			if (!rdev->desc->ops->enable)
1323
				return -EINVAL;
1324 1325

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1326
			 * dependent.  */
1327 1328 1329 1330
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1331
				rdev_warn(rdev, "enable_time() failed: %d\n",
1332
					   ret);
1333
				delay = 0;
1334
			}
1335

1336 1337
			trace_regulator_enable(rdev_get_name(rdev));

1338 1339 1340 1341 1342 1343 1344
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1345 1346
			trace_regulator_enable_delay(rdev_get_name(rdev));

1347
			if (delay >= 1000) {
1348
				mdelay(delay / 1000);
1349 1350
				udelay(delay % 1000);
			} else if (delay) {
1351
				udelay(delay);
1352
			}
1353

1354 1355
			trace_regulator_enable_complete(rdev_get_name(rdev));

1356
		} else if (ret < 0) {
1357
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1358 1359
			return ret;
		}
1360
		/* Fallthrough on positive return values - already enabled */
1361 1362
	}

1363 1364 1365
	rdev->use_count++;

	return 0;
1366 1367 1368 1369 1370 1371
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1372 1373 1374 1375
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1376
 * NOTE: the output value can be set by other drivers, boot loader or may be
1377
 * hardwired in the regulator.
1378 1379 1380
 */
int regulator_enable(struct regulator *regulator)
{
1381 1382
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1383

1384
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1385
	ret = _regulator_enable(rdev);
1386
	mutex_unlock(&rdev->mutex);
1387 1388 1389 1390 1391
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1392 1393
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1394 1395
{
	int ret = 0;
1396
	*supply_rdev_ptr = NULL;
1397

D
David Brownell 已提交
1398
	if (WARN(rdev->use_count <= 0,
1399
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1400 1401
		return -EIO;

1402
	/* are we the last user and permitted to disable ? */
1403 1404
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1405 1406

		/* we are last user */
1407 1408
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1409 1410
			trace_regulator_disable(rdev_get_name(rdev));

1411 1412
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1413
				rdev_err(rdev, "failed to disable\n");
1414 1415
				return ret;
			}
1416

1417 1418
			trace_regulator_disable_complete(rdev_get_name(rdev));

1419 1420
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1421 1422 1423
		}

		/* decrease our supplies ref count and disable if required */
1424
		*supply_rdev_ptr = rdev->supply;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1443 1444 1445
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1446
 *
1447
 * NOTE: this will only disable the regulator output if no other consumer
1448 1449
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1450 1451 1452
 */
int regulator_disable(struct regulator *regulator)
{
1453
	struct regulator_dev *rdev = regulator->rdev;
1454
	struct regulator_dev *supply_rdev = NULL;
1455
	int ret = 0;
1456

1457
	mutex_lock(&rdev->mutex);
1458
	ret = _regulator_disable(rdev, &supply_rdev);
1459
	mutex_unlock(&rdev->mutex);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	/* decrease our supplies ref count and disable if required */
	while (supply_rdev != NULL) {
		rdev = supply_rdev;

		mutex_lock(&rdev->mutex);
		_regulator_disable(rdev, &supply_rdev);
		mutex_unlock(&rdev->mutex);
	}

1470 1471 1472 1473 1474
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1475 1476
static int _regulator_force_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1477 1478 1479 1480 1481 1482 1483 1484
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1485
			rdev_err(rdev, "failed to force disable\n");
1486 1487 1488
			return ret;
		}
		/* notify other consumers that power has been forced off */
1489 1490
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1491 1492 1493
	}

	/* decrease our supplies ref count and disable if required */
1494
	*supply_rdev_ptr = rdev->supply;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	rdev->use_count = 0;
	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1511
	struct regulator_dev *rdev = regulator->rdev;
1512
	struct regulator_dev *supply_rdev = NULL;
1513 1514
	int ret;

1515
	mutex_lock(&rdev->mutex);
1516
	regulator->uA_load = 0;
1517 1518
	ret = _regulator_force_disable(rdev, &supply_rdev);
	mutex_unlock(&rdev->mutex);
1519 1520 1521 1522

	if (supply_rdev)
		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));

1523 1524 1525 1526 1527 1528
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1529
	/* If we don't know then assume that the regulator is always on */
1530
	if (!rdev->desc->ops->is_enabled)
1531
		return 1;
1532

1533
	return rdev->desc->ops->is_enabled(rdev);
1534 1535 1536 1537 1538 1539
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1540 1541 1542 1543 1544 1545 1546
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1547 1548 1549
 */
int regulator_is_enabled(struct regulator *regulator)
{
1550 1551 1552 1553 1554 1555 1556
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1557 1558 1559
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1583
 * zero if this selector code can't be used on this system, or a
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1639 1640 1641 1642
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1643
	int delay = 0;
1644 1645 1646 1647
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1648 1649 1650
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		}

1696 1697 1698 1699 1700 1701
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
1702 1703 1704 1705
	} else {
		ret = -EINVAL;
	}

1706 1707 1708 1709 1710 1711 1712 1713
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1714 1715 1716 1717
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1718 1719 1720 1721 1722
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1738
 * Regulator system constraints must be set for this regulator before
1739 1740 1741 1742 1743
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1744
	int ret = 0;
1745 1746 1747

	mutex_lock(&rdev->mutex);

1748 1749 1750 1751 1752 1753 1754
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1755
	/* sanity check */
1756 1757
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1768

1769 1770 1771 1772
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1773
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1774

1775 1776 1777 1778 1779 1780
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

1873 1874
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
1875
	int sel, ret;
1876 1877 1878 1879 1880

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
1881
		ret = rdev->desc->ops->list_voltage(rdev, sel);
1882
	}
1883
	if (rdev->desc->ops->get_voltage)
1884
		ret = rdev->desc->ops->get_voltage(rdev);
1885 1886
	else
		return -EINVAL;
1887 1888

	return ret - rdev->constraints->uV_offset;
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2004
	int regulator_curr_mode;
2005 2006 2007 2008 2009 2010 2011 2012 2013

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2014 2015 2016 2017 2018 2019 2020 2021 2022
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2023
	/* constraints check */
2024
	ret = regulator_mode_constrain(rdev, &mode);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
	if (ret < 0)
		goto out;
	ret = -EINVAL;

	/* sanity check */
	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

	/* get output voltage */
2111
	output_uV = _regulator_get_voltage(rdev);
2112
	if (output_uV <= 0) {
2113
		rdev_err(rdev, "invalid output voltage found\n");
2114 2115 2116 2117
		goto out;
	}

	/* get input voltage */
2118 2119 2120 2121
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev->supply);
	if (input_uV <= 0)
2122 2123
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2124
		rdev_err(rdev, "invalid input voltage found\n");
2125 2126 2127 2128 2129
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2130
		total_uA_load += consumer->uA_load;
2131 2132 2133 2134

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2135
	ret = regulator_mode_constrain(rdev, &mode);
2136
	if (ret < 0) {
2137 2138
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2139 2140 2141 2142
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2143
	if (ret < 0) {
2144
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2157
 * @nb: notifier block
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2172
 * @nb: notifier block
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2184 2185 2186
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2187 2188 2189 2190 2191 2192 2193 2194 2195
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	struct regulator_dev *_rdev;

	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);

	/* now notify regulator we supply */
2196
	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2197 2198 2199
		mutex_lock(&_rdev->mutex);
		_notifier_call_chain(_rdev, event, data);
		mutex_unlock(&_rdev->mutex);
2200
	}
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2231 2232
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_enable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2275
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2276
	for (--i; i >= 0; --i)
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		regulator_disable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2310
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2311
	for (--i; i >= 0; --i)
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2341
 * @rdev: regulator source
2342
 * @event: notifier block
2343
 * @data: callback-specific data.
2344 2345 2346
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2347
 * Note lock must be held by caller.
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2393
	if (ops->get_voltage || ops->get_voltage_sel) {
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2413 2414 2415 2416 2417
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2434
	if (ops->set_voltage || ops->set_voltage_sel) {
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
#ifdef CONFIG_DEBUG_FS
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		rdev->debugfs = NULL;
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
#endif
}

2515 2516
/**
 * regulator_register - register regulator
2517 2518
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2519
 * @init_data: platform provided init data, passed through by driver
2520
 * @driver_data: private regulator data
2521 2522 2523 2524 2525
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2526
	struct device *dev, const struct regulator_init_data *init_data,
2527
	void *driver_data)
2528 2529 2530
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2531
	int ret, i;
2532 2533 2534 2535 2536 2537 2538

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2539 2540
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2541 2542
		return ERR_PTR(-EINVAL);

2543 2544 2545
	if (!init_data)
		return ERR_PTR(-EINVAL);

2546 2547 2548
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2549 2550
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2551 2552 2553 2554 2555 2556

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2557 2558 2559 2560
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2561

2562 2563 2564 2565 2566 2567 2568
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2569
	rdev->reg_data = driver_data;
2570 2571 2572 2573 2574 2575 2576 2577
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->supply_list);
	INIT_LIST_HEAD(&rdev->list);
	INIT_LIST_HEAD(&rdev->slist);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2578 2579 2580
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2581 2582
		if (ret < 0)
			goto clean;
2583 2584 2585
	}

	/* register with sysfs */
2586
	rdev->dev.class = &regulator_class;
2587
	rdev->dev.parent = dev;
2588 2589
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2590
	ret = device_register(&rdev->dev);
2591 2592
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2593
		goto clean;
2594
	}
2595 2596 2597

	dev_set_drvdata(&rdev->dev, rdev);

2598 2599 2600 2601 2602
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2603 2604 2605 2606 2607
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (init_data->supply_regulator) {
		struct regulator_dev *r;
		int found = 0;

		list_for_each_entry(r, &regulator_list, list) {
			if (strcmp(rdev_get_name(r),
				   init_data->supply_regulator) == 0) {
				found = 1;
				break;
			}
		}

		if (!found) {
			dev_err(dev, "Failed to find supply %s\n",
				init_data->supply_regulator);
2623
			ret = -ENODEV;
2624 2625 2626 2627 2628 2629 2630 2631
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
	}

2632 2633 2634 2635
	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2636
			init_data->consumer_supplies[i].dev_name,
2637
			init_data->consumer_supplies[i].supply);
2638 2639 2640
		if (ret < 0) {
			dev_err(dev, "Failed to set supply %s\n",
				init_data->consumer_supplies[i].supply);
2641
			goto unset_supplies;
2642
		}
2643
	}
2644 2645

	list_add(&rdev->list, &regulator_list);
2646 2647

	rdev_init_debugfs(rdev);
2648
out:
2649 2650
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2651

2652 2653 2654
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2655 2656
scrub:
	device_unregister(&rdev->dev);
2657 2658 2659 2660
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2661 2662 2663 2664
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2665 2666 2667 2668 2669
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2670
 * @rdev: regulator to unregister
2671 2672 2673 2674 2675 2676 2677 2678 2679
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2680 2681 2682
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(rdev->debugfs);
#endif
2683
	WARN_ON(rdev->open_count);
2684
	unset_regulator_supplies(rdev);
2685 2686 2687 2688
	list_del(&rdev->list);
	if (rdev->supply)
		sysfs_remove_link(&rdev->dev.kobj, "supply");
	device_unregister(&rdev->dev);
2689
	kfree(rdev->constraints);
2690 2691 2692 2693 2694
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2695
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
2718
			rdev_err(rdev, "failed to prepare\n");
2719 2720 2721 2722 2723 2724 2725 2726 2727
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

2802 2803
/**
 * rdev_get_drvdata - get rdev regulator driver data
2804
 * @rdev: regulator
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2841
 * @rdev: regulator
2842 2843 2844 2845 2846 2847 2848
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2861 2862
static int __init regulator_init(void)
{
2863 2864 2865 2866
	int ret;

	ret = class_register(&regulator_class);

2867 2868 2869 2870 2871 2872 2873 2874
#ifdef CONFIG_DEBUG_FS
	debugfs_root = debugfs_create_dir("regulator", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("regulator: Failed to create debugfs directory\n");
		debugfs_root = NULL;
	}
#endif

2875 2876 2877
	regulator_dummy_init();

	return ret;
2878 2879 2880 2881
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2900
		if (!ops->disable || (c && c->always_on))
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
2920
			rdev_info(rdev, "disabling\n");
2921 2922
			ret = ops->disable(rdev);
			if (ret != 0) {
2923
				rdev_err(rdev, "couldn't disable: %d\n", ret);
2924 2925 2926 2927 2928 2929 2930
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
2931
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);