core.c 89.7 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/of.h>
27
#include <linux/regmap.h>
28
#include <linux/regulator/of_regulator.h>
29 30 31
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
32
#include <linux/module.h>
33

34 35 36
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

37 38
#include "dummy.h"

M
Mark Brown 已提交
39 40
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 42 43 44 45 46 47 48 49
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

50 51 52
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
53
static bool has_full_constraints;
54
static bool board_wants_dummy_regulator;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69 70 71 72 73 74 75 76 77
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
78
	unsigned int always_on:1;
79 80 81 82 83 84
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
85
	struct dentry *debugfs;
86 87 88
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
89
static int _regulator_disable(struct regulator_dev *rdev);
90 91 92 93 94
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
95 96
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
97 98 99
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
100

101 102 103 104 105 106 107 108 109 110
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
131
		dev_dbg(dev, "Looking up %s property in node %s failed",
132 133 134 135 136 137
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

138 139 140 141 142 143 144 145 146 147 148
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

149 150 151 152 153 154 155
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
156
		rdev_err(rdev, "no constraints\n");
157 158 159
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
160
		rdev_err(rdev, "operation not allowed\n");
161 162 163 164 165 166 167 168
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

169 170
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
171
			 *min_uV, *max_uV);
172
		return -EINVAL;
173
	}
174 175 176 177

	return 0;
}

178 179 180 181 182 183 184 185 186
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
187 188 189 190 191 192 193
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

194 195 196 197 198 199 200 201 202 203 204 205
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

206 207 208 209 210 211 212
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
213
		rdev_err(rdev, "no constraints\n");
214 215 216
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
217
		rdev_err(rdev, "operation not allowed\n");
218 219 220 221 222 223 224 225
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

226 227
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
228
			 *min_uA, *max_uA);
229
		return -EINVAL;
230
	}
231 232 233 234 235

	return 0;
}

/* operating mode constraint check */
236
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
237
{
238
	switch (*mode) {
239 240 241 242 243 244
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
245
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
246 247 248
		return -EINVAL;
	}

249
	if (!rdev->constraints) {
250
		rdev_err(rdev, "no constraints\n");
251 252 253
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
254
		rdev_err(rdev, "operation not allowed\n");
255 256
		return -EPERM;
	}
257 258 259 260 261 262 263 264

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
265
	}
266 267

	return -EINVAL;
268 269 270 271 272 273
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
274
		rdev_err(rdev, "no constraints\n");
275 276 277
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
278
		rdev_err(rdev, "operation not allowed\n");
279 280 281 282 283 284 285 286
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
287
	struct regulator_dev *rdev = dev_get_drvdata(dev);
288 289 290 291 292 293 294 295
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
296
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
297 298 299 300

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
301
	struct regulator_dev *rdev = dev_get_drvdata(dev);
302 303 304

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
305
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
306

307 308 309 310 311
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

312
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
313 314
}

D
David Brownell 已提交
315
static ssize_t regulator_print_opmode(char *buf, int mode)
316 317 318 319 320 321 322 323 324 325 326 327 328 329
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
330 331
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
332
{
333
	struct regulator_dev *rdev = dev_get_drvdata(dev);
334

D
David Brownell 已提交
335 336
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
337
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
338 339 340

static ssize_t regulator_print_state(char *buf, int state)
{
341 342 343 344 345 346 347 348
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
349 350 351 352
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
353 354 355 356 357
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
358

359
	return ret;
D
David Brownell 已提交
360
}
361
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
362

D
David Brownell 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

404 405 406
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
407
	struct regulator_dev *rdev = dev_get_drvdata(dev);
408 409 410 411 412 413

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
414
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
415 416 417 418

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
419
	struct regulator_dev *rdev = dev_get_drvdata(dev);
420 421 422 423 424 425

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
426
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
427 428 429 430

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
431
	struct regulator_dev *rdev = dev_get_drvdata(dev);
432 433 434 435 436 437

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
438
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
439 440 441 442

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
443
	struct regulator_dev *rdev = dev_get_drvdata(dev);
444 445 446 447 448 449

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
450
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
451 452 453 454

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
455
	struct regulator_dev *rdev = dev_get_drvdata(dev);
456 457 458 459 460
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
461
		uA += regulator->uA_load;
462 463 464
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
465
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
466 467 468 469

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
477
	struct regulator_dev *rdev = dev_get_drvdata(dev);
478 479 480 481 482 483 484 485 486 487 488 489 490

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
491
	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 493 494

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
495 496
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
497 498 499 500

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
501
	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 503 504

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
505 506
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
507 508 509 510

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
511
	struct regulator_dev *rdev = dev_get_drvdata(dev);
512 513 514

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
515 516
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
517 518 519 520

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
521
	struct regulator_dev *rdev = dev_get_drvdata(dev);
522

D
David Brownell 已提交
523 524
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
525
}
526 527
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
528 529 530 531

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
532
	struct regulator_dev *rdev = dev_get_drvdata(dev);
533

D
David Brownell 已提交
534 535
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
536
}
537 538
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
539 540 541 542

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
543
	struct regulator_dev *rdev = dev_get_drvdata(dev);
544

D
David Brownell 已提交
545 546
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
547
}
548 549
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
550 551 552 553

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
554
	struct regulator_dev *rdev = dev_get_drvdata(dev);
555

D
David Brownell 已提交
556 557
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
558
}
559 560
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
561 562 563 564

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
565
	struct regulator_dev *rdev = dev_get_drvdata(dev);
566

D
David Brownell 已提交
567 568
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
569
}
570 571
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
572 573 574 575

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
576
	struct regulator_dev *rdev = dev_get_drvdata(dev);
577

D
David Brownell 已提交
578 579
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
580
}
581 582 583
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

584

585 586 587 588
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
589
static struct device_attribute regulator_dev_attrs[] = {
590
	__ATTR(name, 0444, regulator_name_show, NULL),
591 592 593 594 595 596 597
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
598
	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
618 619 620
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
621
		return;
622 623

	/* get output voltage */
624
	output_uV = _regulator_get_voltage(rdev);
625 626 627 628
	if (output_uV <= 0)
		return;

	/* get input voltage */
629 630
	input_uV = 0;
	if (rdev->supply)
631
		input_uV = regulator_get_voltage(rdev->supply);
632
	if (input_uV <= 0)
633 634 635 636 637 638
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
639
		current_uA += sibling->uA_load;
640 641 642 643 644 645

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
646
	err = regulator_mode_constrain(rdev, &mode);
647 648 649 650 651 652 653 654
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
655 656

	/* If we have no suspend mode configration don't set anything;
657 658
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
659 660
	 */
	if (!rstate->enabled && !rstate->disabled) {
661 662
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
663
			rdev_warn(rdev, "No configuration\n");
664 665 666 667
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
668
		rdev_err(rdev, "invalid configuration\n");
669 670
		return -EINVAL;
	}
671

672
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
673
		ret = rdev->desc->ops->set_suspend_enable(rdev);
674
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
675
		ret = rdev->desc->ops->set_suspend_disable(rdev);
676 677 678
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

679
	if (ret < 0) {
680
		rdev_err(rdev, "failed to enabled/disable\n");
681 682 683 684 685 686
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
687
			rdev_err(rdev, "failed to set voltage\n");
688 689 690 691 692 693 694
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
695
			rdev_err(rdev, "failed to set mode\n");
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
726
	char buf[80] = "";
727 728
	int count = 0;
	int ret;
729

730
	if (constraints->min_uV && constraints->max_uV) {
731
		if (constraints->min_uV == constraints->max_uV)
732 733
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
734
		else
735 736 737 738 739 740 741 742 743 744 745 746
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

747 748 749 750
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

751
	if (constraints->min_uA && constraints->max_uA) {
752
		if (constraints->min_uA == constraints->max_uA)
753 754
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
755
		else
756 757 758 759 760 761 762 763 764
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
765
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
766
	}
767

768 769 770 771 772 773 774 775 776
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
777
	rdev_info(rdev, "%s\n", buf);
778 779 780 781 782

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
783 784
}

785
static int machine_constraints_voltage(struct regulator_dev *rdev,
786
	struct regulation_constraints *constraints)
787
{
788
	struct regulator_ops *ops = rdev->desc->ops;
789 790 791 792
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
793 794 795 796 797 798 799 800 801
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
802
	}
803

804 805 806 807 808 809 810 811 812 813 814
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

815 816
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
817
		if (count == 1 && !cmin) {
818
			cmin = 1;
819
			cmax = INT_MAX;
820 821
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
822 823
		}

824 825
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
826
			return 0;
827

828
		/* else require explicit machine-level constraints */
829
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
830
			rdev_err(rdev, "invalid voltage constraints\n");
831
			return -EINVAL;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
851
			rdev_err(rdev, "unsupportable voltage constraints\n");
852
			return -EINVAL;
853 854 855 856
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
857 858
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
859 860 861
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
862 863
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
864 865 866 867
			constraints->max_uV = max_uV;
		}
	}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
883
	const struct regulation_constraints *constraints)
884 885 886 887
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

888 889 890 891 892 893
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
894 895
	if (!rdev->constraints)
		return -ENOMEM;
896

897
	ret = machine_constraints_voltage(rdev, rdev->constraints);
898 899 900
	if (ret != 0)
		goto out;

901
	/* do we need to setup our suspend state */
902
	if (rdev->constraints->initial_state) {
903
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
904
		if (ret < 0) {
905
			rdev_err(rdev, "failed to set suspend state\n");
906 907 908
			goto out;
		}
	}
909

910
	if (rdev->constraints->initial_mode) {
911
		if (!ops->set_mode) {
912
			rdev_err(rdev, "no set_mode operation\n");
913 914 915 916
			ret = -EINVAL;
			goto out;
		}

917
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
918
		if (ret < 0) {
919
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
920 921 922 923
			goto out;
		}
	}

924 925 926
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
927 928
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
929 930
		ret = ops->enable(rdev);
		if (ret < 0) {
931
			rdev_err(rdev, "failed to enable\n");
932 933 934 935
			goto out;
		}
	}

936
	print_constraints(rdev);
937
	return 0;
938
out:
939 940
	kfree(rdev->constraints);
	rdev->constraints = NULL;
941 942 943 944 945
	return ret;
}

/**
 * set_supply - set regulator supply regulator
946 947
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
948 949 950 951 952 953
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
954
		      struct regulator_dev *supply_rdev)
955 956 957
{
	int err;

958 959 960
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
961 962
	if (rdev->supply == NULL) {
		err = -ENOMEM;
963
		return err;
964
	}
965 966

	return 0;
967 968 969
}

/**
970
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
971
 * @rdev:         regulator source
972
 * @consumer_dev_name: dev_name() string for device supply applies to
973
 * @supply:       symbolic name for supply
974 975 976 977 978 979 980
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
981 982
				      const char *consumer_dev_name,
				      const char *supply)
983 984
{
	struct regulator_map *node;
985
	int has_dev;
986 987 988 989

	if (supply == NULL)
		return -EINVAL;

990 991 992 993 994
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

995
	list_for_each_entry(node, &regulator_map_list, list) {
996 997 998 999
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1000
			continue;
1001 1002
		}

1003 1004 1005
		if (strcmp(node->supply, supply) != 0)
			continue;

1006 1007 1008 1009 1010 1011
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1012 1013 1014
		return -EBUSY;
	}

1015
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1016 1017 1018 1019 1020 1021
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1022 1023 1024 1025 1026 1027
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1028 1029
	}

1030 1031 1032 1033
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1034 1035 1036 1037 1038 1039 1040
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1041
			kfree(node->dev_name);
1042 1043 1044 1045 1046
			kfree(node);
		}
	}
}

1047
#define REG_STR_SIZE	64
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1066
		/* Add a link to the device sysfs entry */
1067 1068 1069
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1070
			goto overflow_err;
1071 1072 1073

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1074
			goto overflow_err;
1075 1076 1077 1078

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1079 1080
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1081
			/* non-fatal */
1082
		}
1083 1084 1085
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1086
			goto overflow_err;
1087 1088 1089 1090
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1091
	if (!regulator->debugfs) {
1092 1093 1094 1095 1096 1097 1098 1099
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1100
	}
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1111 1112 1113 1114 1115 1116 1117 1118 1119
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1120 1121 1122 1123 1124 1125 1126
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1127
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1128 1129
						  const char *supply,
						  int *ret)
1130 1131 1132
{
	struct regulator_dev *r;
	struct device_node *node;
1133 1134
	struct regulator_map *map;
	const char *devname = NULL;
1135 1136 1137 1138

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1139
		if (node) {
1140 1141 1142 1143
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1144 1145 1146 1147 1148 1149 1150 1151 1152
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1153 1154 1155
	}

	/* if not found, try doing it non-dt way */
1156 1157 1158
	if (dev)
		devname = dev_name(dev);

1159 1160 1161 1162
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1174 1175 1176
	return NULL;
}

1177 1178 1179
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1180 1181
{
	struct regulator_dev *rdev;
1182
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1183
	const char *devname = NULL;
1184
	int ret;
1185 1186

	if (id == NULL) {
1187
		pr_err("get() with no identifier\n");
1188 1189 1190
		return regulator;
	}

1191 1192 1193
	if (dev)
		devname = dev_name(dev);

1194 1195
	mutex_lock(&regulator_list_mutex);

1196
	rdev = regulator_dev_lookup(dev, id, &ret);
1197 1198 1199
	if (rdev)
		goto found;

1200 1201 1202 1203 1204
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1205 1206 1207 1208 1209 1210 1211 1212
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1213 1214
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1215 1216 1217 1218 1219
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1220 1221 1222 1223
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1234 1235 1236
	if (!try_module_get(rdev->owner))
		goto out;

1237 1238 1239 1240
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1241
		goto out;
1242 1243
	}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1255
out:
1256
	mutex_unlock(&regulator_list_mutex);
1257

1258 1259
	return regulator;
}
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1278 1279
EXPORT_SYMBOL_GPL(regulator_get);

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1359 1360
	debugfs_remove_recursive(regulator->debugfs);

1361 1362 1363 1364 1365 1366
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1367
	kfree(regulator->supply_name);
1368 1369 1370
	list_del(&regulator->list);
	kfree(regulator);

1371 1372 1373
	rdev->open_count--;
	rdev->exclusive = 0;

1374 1375 1376 1377 1378
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1401
	rc = devres_release(regulator->dev, devm_regulator_release,
1402
			    devm_regulator_match, regulator);
1403
	if (rc != 0)
1404
		WARN_ON(rc);
1405 1406 1407
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1408 1409 1410
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1411
	int ret, delay;
1412 1413

	/* check voltage and requested load before enabling */
1414 1415 1416
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1417

1418 1419 1420 1421 1422 1423 1424
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1425
			if (!rdev->desc->ops->enable)
1426
				return -EINVAL;
1427 1428

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1429
			 * dependent.  */
1430 1431 1432 1433
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1434
				rdev_warn(rdev, "enable_time() failed: %d\n",
1435
					   ret);
1436
				delay = 0;
1437
			}
1438

1439 1440
			trace_regulator_enable(rdev_get_name(rdev));

1441 1442 1443 1444 1445 1446 1447
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1448 1449
			trace_regulator_enable_delay(rdev_get_name(rdev));

1450
			if (delay >= 1000) {
1451
				mdelay(delay / 1000);
1452 1453
				udelay(delay % 1000);
			} else if (delay) {
1454
				udelay(delay);
1455
			}
1456

1457 1458
			trace_regulator_enable_complete(rdev_get_name(rdev));

1459
		} else if (ret < 0) {
1460
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1461 1462
			return ret;
		}
1463
		/* Fallthrough on positive return values - already enabled */
1464 1465
	}

1466 1467 1468
	rdev->use_count++;

	return 0;
1469 1470 1471 1472 1473 1474
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1475 1476 1477 1478
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1479
 * NOTE: the output value can be set by other drivers, boot loader or may be
1480
 * hardwired in the regulator.
1481 1482 1483
 */
int regulator_enable(struct regulator *regulator)
{
1484 1485
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1486

1487 1488 1489
	if (regulator->always_on)
		return 0;

1490 1491 1492 1493 1494 1495
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1496
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1497
	ret = _regulator_enable(rdev);
1498
	mutex_unlock(&rdev->mutex);
1499

1500
	if (ret != 0 && rdev->supply)
1501 1502
		regulator_disable(rdev->supply);

1503 1504 1505 1506 1507
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1508
static int _regulator_disable(struct regulator_dev *rdev)
1509 1510 1511
{
	int ret = 0;

D
David Brownell 已提交
1512
	if (WARN(rdev->use_count <= 0,
1513
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1514 1515
		return -EIO;

1516
	/* are we the last user and permitted to disable ? */
1517 1518
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1519 1520

		/* we are last user */
1521 1522
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1523 1524
			trace_regulator_disable(rdev_get_name(rdev));

1525 1526
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1527
				rdev_err(rdev, "failed to disable\n");
1528 1529
				return ret;
			}
1530

1531 1532
			trace_regulator_disable_complete(rdev_get_name(rdev));

1533 1534
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1547

1548 1549 1550 1551 1552 1553 1554
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1555 1556 1557
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1558
 *
1559
 * NOTE: this will only disable the regulator output if no other consumer
1560 1561
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1562 1563 1564
 */
int regulator_disable(struct regulator *regulator)
{
1565 1566
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1567

1568 1569 1570
	if (regulator->always_on)
		return 0;

1571
	mutex_lock(&rdev->mutex);
1572
	ret = _regulator_disable(rdev);
1573
	mutex_unlock(&rdev->mutex);
1574

1575 1576
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1577

1578 1579 1580 1581 1582
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1583
static int _regulator_force_disable(struct regulator_dev *rdev)
1584 1585 1586 1587 1588 1589 1590 1591
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1592
			rdev_err(rdev, "failed to force disable\n");
1593 1594 1595
			return ret;
		}
		/* notify other consumers that power has been forced off */
1596 1597
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1614
	struct regulator_dev *rdev = regulator->rdev;
1615 1616
	int ret;

1617
	mutex_lock(&rdev->mutex);
1618
	regulator->uA_load = 0;
1619
	ret = _regulator_force_disable(regulator->rdev);
1620
	mutex_unlock(&rdev->mutex);
1621

1622 1623 1624
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1625

1626 1627 1628 1629
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1677
	int ret;
1678

1679 1680 1681
	if (regulator->always_on)
		return 0;

1682 1683 1684 1685
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1686 1687 1688 1689 1690 1691
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1692 1693 1694
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

	return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask,
				  rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1750 1751
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1752
	/* If we don't know then assume that the regulator is always on */
1753
	if (!rdev->desc->ops->is_enabled)
1754
		return 1;
1755

1756
	return rdev->desc->ops->is_enabled(rdev);
1757 1758 1759 1760 1761 1762
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1763 1764 1765 1766 1767 1768 1769
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1770 1771 1772
 */
int regulator_is_enabled(struct regulator *regulator)
{
1773 1774
	int ret;

1775 1776 1777
	if (regulator->always_on)
		return 1;

1778 1779 1780 1781 1782
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1783 1784 1785
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{
	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/**
 * regulator_list_voltage_table - List voltages with table based mapping
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with table based mapping between voltages and
 * selectors can set volt_table in the regulator descriptor
 * and then use this function as their list_voltage() operation.
 */
int regulator_list_voltage_table(struct regulator_dev *rdev,
				 unsigned int selector)
{
	if (!rdev->desc->volt_table) {
		BUG_ON(!rdev->desc->volt_table);
		return -EINVAL;
	}

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);

1847 1848 1849 1850 1851 1852 1853
/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1854
 * zero if this selector code can't be used on this system, or a
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
1893
	struct regulator_dev *rdev = regulator->rdev;
1894 1895
	int i, voltages, ret;

1896 1897 1898 1899 1900 1901 1902 1903 1904
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
			return (min_uV >= ret && ret <= max_uV);
		else
			return ret;
	}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1919
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
				  rdev->desc->vsel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	int best_val = INT_MAX;
	int selector = 0;
	int i, ret;

	/* Find the smallest voltage that falls within the specified
	 * range.
	 */
	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
			best_val = ret;
			selector = i;
		}
	}

	if (best_val != INT_MAX)
		return selector;
	else
		return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int ret, voltage;

	if (!rdev->desc->uV_step) {
		BUG_ON(!rdev->desc->uV_step);
		return -EINVAL;
	}

2025
	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	if (ret < 0)
		return ret;

	/* Map back into a voltage to verify we're still in bounds */
	voltage = rdev->desc->ops->list_voltage(rdev, ret);
	if (voltage < min_uV || voltage > max_uV)
		return -EINVAL;

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);

2038 2039 2040 2041
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2042
	int delay = 0;
2043
	int best_val;
2044
	unsigned int selector;
2045
	int old_selector = -1;
2046 2047 2048

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2049 2050 2051
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2052 2053 2054 2055
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2056 2057
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2058 2059 2060 2061 2062 2063
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2064 2065 2066
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2067
	} else if (rdev->desc->ops->set_voltage_sel) {
2068
		if (rdev->desc->ops->map_voltage) {
2069 2070
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2071 2072 2073 2074 2075 2076 2077 2078 2079
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2080

2081 2082 2083
		if (ret >= 0) {
			selector = ret;
			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2084
		}
2085 2086 2087
	} else {
		ret = -EINVAL;
	}
2088

2089 2090 2091
	if (rdev->desc->ops->list_voltage)
		best_val = rdev->desc->ops->list_voltage(rdev, selector);
	else
2092
		best_val = _regulator_get_voltage(rdev);
2093

2094
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2095
	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2096
	    rdev->desc->ops->set_voltage_time_sel) {
2097

2098 2099 2100 2101 2102 2103
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2104
		}
2105

2106 2107 2108 2109 2110 2111 2112
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2113 2114
	}

2115
	if (ret == 0 && best_val >= 0)
2116
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2117
				     (void *)best_val);
2118

2119
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2120 2121 2122 2123

	return ret;
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2139
 * Regulator system constraints must be set for this regulator before
2140 2141 2142 2143 2144
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2145
	int ret = 0;
2146 2147 2148

	mutex_lock(&rdev->mutex);

2149 2150 2151 2152 2153 2154 2155
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2156
	/* sanity check */
2157 2158
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2169

2170 2171 2172 2173
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

2174
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2175

2176 2177 2178 2179 2180 2181
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2274 2275
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2276
	int sel, ret;
2277 2278 2279 2280 2281

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2282
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2283
	} else if (rdev->desc->ops->get_voltage) {
2284
		ret = rdev->desc->ops->get_voltage(rdev);
2285
	} else {
2286
		return -EINVAL;
2287
	}
2288

2289 2290
	if (ret < 0)
		return ret;
2291
	return ret - rdev->constraints->uV_offset;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2407
	int regulator_curr_mode;
2408 2409 2410 2411 2412 2413 2414 2415 2416

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2417 2418 2419 2420 2421 2422 2423 2424 2425
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2426
	/* constraints check */
2427
	ret = regulator_mode_constrain(rdev, &mode);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2503 2504 2505 2506
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2507 2508
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2509 2510
	if (ret < 0) {
		ret = 0;
2511
		goto out;
2512
	}
2513 2514 2515 2516

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2517 2518 2519 2520 2521 2522
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2523 2524 2525
	if (!rdev->desc->ops->set_mode)
		goto out;

2526
	/* get output voltage */
2527
	output_uV = _regulator_get_voltage(rdev);
2528
	if (output_uV <= 0) {
2529
		rdev_err(rdev, "invalid output voltage found\n");
2530 2531 2532 2533
		goto out;
	}

	/* get input voltage */
2534 2535
	input_uV = 0;
	if (rdev->supply)
2536
		input_uV = regulator_get_voltage(rdev->supply);
2537
	if (input_uV <= 0)
2538 2539
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2540
		rdev_err(rdev, "invalid input voltage found\n");
2541 2542 2543 2544 2545
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2546
		total_uA_load += consumer->uA_load;
2547 2548 2549 2550

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2551
	ret = regulator_mode_constrain(rdev, &mode);
2552
	if (ret < 0) {
2553 2554
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2555 2556 2557 2558
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2559
	if (ret < 0) {
2560
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2573
 * @nb: notifier block
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2588
 * @nb: notifier block
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2600 2601 2602
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2603 2604 2605 2606
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2607
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2638 2639
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2640 2641 2642 2643 2644 2645 2646 2647
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2648
	while (--i >= 0)
2649 2650 2651 2652 2653 2654
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2701 2702 2703 2704 2705 2706 2707
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2723
	LIST_HEAD(async_domain);
2724
	int i;
2725
	int ret = 0;
2726

2727 2728 2729 2730 2731 2732 2733
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2734 2735 2736 2737

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2738
	for (i = 0; i < num_consumers; i++) {
2739 2740
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2741
			goto err;
2742
		}
2743 2744 2745 2746 2747
	}

	return 0;

err:
2748 2749 2750
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2764 2765
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2766 2767 2768 2769 2770 2771
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
2772
	int ret, r;
2773

2774
	for (i = num_consumers - 1; i >= 0; --i) {
2775 2776 2777 2778 2779 2780 2781 2782
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2783
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2784 2785 2786 2787 2788 2789
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
2790 2791 2792 2793 2794

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2855
 * @rdev: regulator source
2856
 * @event: notifier block
2857
 * @data: callback-specific data.
2858 2859 2860
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2861
 * Note lock must be held by caller.
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2907 2908
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2928 2929 2930 2931 2932
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2949
	if (ops->set_voltage || ops->set_voltage_sel) {
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3009 3010 3011
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3012
	if (!rdev->debugfs) {
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

3023 3024
/**
 * regulator_register - register regulator
3025
 * @regulator_desc: regulator to register
3026
 * @config: runtime configuration for regulator
3027 3028 3029 3030
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
3031 3032
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3033
		   const struct regulator_config *config)
3034
{
3035
	const struct regulation_constraints *constraints = NULL;
3036
	const struct regulator_init_data *init_data;
3037 3038
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3039
	struct device *dev;
3040
	int ret, i;
3041
	const char *supply = NULL;
3042

3043
	if (regulator_desc == NULL || config == NULL)
3044 3045
		return ERR_PTR(-EINVAL);

3046
	dev = config->dev;
3047
	WARN_ON(!dev);
3048

3049 3050 3051
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3052 3053
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3054 3055
		return ERR_PTR(-EINVAL);

3056 3057 3058
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3059 3060
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3061 3062 3063 3064 3065 3066

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3067 3068 3069 3070
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3071

3072 3073
	init_data = config->init_data;

3074 3075 3076 3077 3078 3079 3080
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3081
	rdev->reg_data = config->driver_data;
3082 3083
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3084 3085 3086 3087
	if (config->regmap)
		rdev->regmap = config->regmap;
	else
		rdev->regmap = dev_get_regmap(dev, NULL);
3088 3089 3090
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3091
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3092

3093
	/* preform any regulator specific init */
3094
	if (init_data && init_data->regulator_init) {
3095
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3096 3097
		if (ret < 0)
			goto clean;
3098 3099 3100
	}

	/* register with sysfs */
3101
	rdev->dev.class = &regulator_class;
3102
	rdev->dev.of_node = config->of_node;
3103
	rdev->dev.parent = dev;
3104 3105
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3106
	ret = device_register(&rdev->dev);
3107 3108
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3109
		goto clean;
3110
	}
3111 3112 3113

	dev_set_drvdata(&rdev->dev, rdev);

3114
	/* set regulator constraints */
3115 3116 3117 3118
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3119 3120 3121
	if (ret < 0)
		goto scrub;

3122 3123 3124 3125 3126
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3127
	if (init_data && init_data->supply_regulator)
3128 3129 3130 3131 3132
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3133 3134
		struct regulator_dev *r;

3135
		r = regulator_dev_lookup(dev, supply, &ret);
3136

3137 3138
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
3139
			ret = -EPROBE_DEFER;
3140 3141 3142 3143 3144 3145
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3146 3147

		/* Enable supply if rail is enabled */
3148
		if (_regulator_is_enabled(rdev)) {
3149 3150 3151 3152
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3153 3154
	}

3155
	/* add consumers devices */
3156 3157 3158 3159
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3160
				init_data->consumer_supplies[i].supply);
3161 3162 3163 3164 3165
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3166
		}
3167
	}
3168 3169

	list_add(&rdev->list, &regulator_list);
3170 3171

	rdev_init_debugfs(rdev);
3172
out:
3173 3174
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3175

3176 3177 3178
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3179
scrub:
3180 3181
	if (rdev->supply)
		regulator_put(rdev->supply);
3182
	kfree(rdev->constraints);
D
David Brownell 已提交
3183
	device_unregister(&rdev->dev);
3184 3185 3186 3187
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3188 3189 3190 3191
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3192 3193 3194 3195 3196
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3197
 * @rdev: regulator to unregister
3198 3199 3200 3201 3202 3203 3204 3205
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3206 3207
	if (rdev->supply)
		regulator_put(rdev->supply);
3208
	mutex_lock(&regulator_list_mutex);
3209
	debugfs_remove_recursive(rdev->debugfs);
3210
	flush_work_sync(&rdev->disable_work.work);
3211
	WARN_ON(rdev->open_count);
3212
	unset_regulator_supplies(rdev);
3213
	list_del(&rdev->list);
3214
	kfree(rdev->constraints);
3215
	device_unregister(&rdev->dev);
3216 3217 3218 3219 3220
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3221
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3244
			rdev_err(rdev, "failed to prepare\n");
3245 3246 3247 3248 3249 3250 3251 3252 3253
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3280
			if (!_regulator_is_enabled(rdev))
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3328 3329
/**
 * rdev_get_drvdata - get rdev regulator driver data
3330
 * @rdev: regulator
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3367
 * @rdev: regulator
3368 3369 3370 3371 3372 3373 3374
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3417
#endif
3418 3419

static const struct file_operations supply_map_fops = {
3420
#ifdef CONFIG_DEBUG_FS
3421 3422 3423
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3424
};
3425

3426 3427
static int __init regulator_init(void)
{
3428 3429 3430 3431
	int ret;

	ret = class_register(&regulator_class);

3432
	debugfs_root = debugfs_create_dir("regulator", NULL);
3433
	if (!debugfs_root)
3434
		pr_warn("regulator: Failed to create debugfs directory\n");
3435

3436 3437
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3438

3439 3440 3441
	regulator_dummy_init();

	return ret;
3442 3443 3444 3445
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3464
		if (!ops->disable || (c && c->always_on))
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3484
			rdev_info(rdev, "disabling\n");
3485 3486
			ret = ops->disable(rdev);
			if (ret != 0) {
3487
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3488 3489 3490 3491 3492 3493 3494
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3495
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);