core.c 81.6 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26 27
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>
28 29 30
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
31
#include <linux/module.h>
32

33 34 35
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

36 37
#include "dummy.h"

M
Mark Brown 已提交
38 39
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 41 42 43 44 45 46 47 48
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

49 50 51
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
52
static bool has_full_constraints;
53
static bool board_wants_dummy_regulator;
54

55 56 57 58
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_root;
#endif

59
/*
60 61 62 63 64 65
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
66
	const char *dev_name;   /* The dev_name() for the consumer */
67
	const char *supply;
68
	struct regulator_dev *regulator;
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
85 86 87
#ifdef CONFIG_DEBUG_FS
	struct dentry *debugfs;
#endif
88 89 90
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
91
static int _regulator_disable(struct regulator_dev *rdev);
92 93 94 95 96
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
97 98
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
99 100 101
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
102

103 104 105 106 107 108 109 110 111 112
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
		dev_warn(dev, "%s property in node %s references invalid phandle",
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

162 163 164 165 166 167 168
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
169
		rdev_err(rdev, "no constraints\n");
170 171 172
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
173
		rdev_err(rdev, "operation not allowed\n");
174 175 176 177 178 179 180 181
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

182 183
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
184
			 *min_uV, *max_uV);
185
		return -EINVAL;
186
	}
187 188 189 190

	return 0;
}

191 192 193 194 195 196 197 198 199
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
200 201 202 203 204 205 206
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

207 208 209 210 211 212 213 214 215 216 217 218
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

219 220 221 222 223 224 225
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
226
		rdev_err(rdev, "no constraints\n");
227 228 229
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
230
		rdev_err(rdev, "operation not allowed\n");
231 232 233 234 235 236 237 238
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

239 240
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
241
			 *min_uA, *max_uA);
242
		return -EINVAL;
243
	}
244 245 246 247 248

	return 0;
}

/* operating mode constraint check */
249
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
250
{
251
	switch (*mode) {
252 253 254 255 256 257
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
258
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
259 260 261
		return -EINVAL;
	}

262
	if (!rdev->constraints) {
263
		rdev_err(rdev, "no constraints\n");
264 265 266
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
267
		rdev_err(rdev, "operation not allowed\n");
268 269
		return -EPERM;
	}
270 271 272 273 274 275 276 277

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
278
	}
279 280

	return -EINVAL;
281 282 283 284 285 286
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
287
		rdev_err(rdev, "no constraints\n");
288 289 290
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
291
		rdev_err(rdev, "operation not allowed\n");
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
312
	struct regulator_dev *rdev = dev_get_drvdata(dev);
313 314 315 316 317 318 319 320
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
321
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322 323 324 325

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
326
	struct regulator_dev *rdev = dev_get_drvdata(dev);
327 328 329

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
330
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331

332 333 334 335 336
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

337
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
338 339
}

D
David Brownell 已提交
340
static ssize_t regulator_print_opmode(char *buf, int mode)
341 342 343 344 345 346 347 348 349 350 351 352 353 354
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
355 356
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
357
{
358
	struct regulator_dev *rdev = dev_get_drvdata(dev);
359

D
David Brownell 已提交
360 361
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
362
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
363 364 365

static ssize_t regulator_print_state(char *buf, int state)
{
366 367 368 369 370 371 372 373
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
374 375 376 377
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
378 379 380 381 382
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
383

384
	return ret;
D
David Brownell 已提交
385
}
386
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
387

D
David Brownell 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

429 430 431
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
432
	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 434 435 436 437 438

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
439
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440 441 442 443

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
444
	struct regulator_dev *rdev = dev_get_drvdata(dev);
445 446 447 448 449 450

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
451
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452 453 454 455

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
456
	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 458 459 460 461 462

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
463
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464 465 466 467

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
468
	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 470 471 472 473 474

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
475
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476 477 478 479

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
480
	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 482 483 484 485
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
486
		uA += regulator->uA_load;
487 488 489
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
490
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491 492 493 494

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
495
	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 497 498 499 500 501
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
502
	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 504 505 506 507 508 509 510 511 512 513 514 515

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
516
	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 518 519

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
520 521
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
522 523 524 525

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
526
	struct regulator_dev *rdev = dev_get_drvdata(dev);
527 528 529

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
530 531
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
532 533 534 535

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 538 539

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
540 541
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
542 543 544 545

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
546
	struct regulator_dev *rdev = dev_get_drvdata(dev);
547

D
David Brownell 已提交
548 549
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
550
}
551 552
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
553 554 555 556

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
557
	struct regulator_dev *rdev = dev_get_drvdata(dev);
558

D
David Brownell 已提交
559 560
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
561
}
562 563
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
564 565 566 567

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
568
	struct regulator_dev *rdev = dev_get_drvdata(dev);
569

D
David Brownell 已提交
570 571
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
572
}
573 574
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
575 576 577 578

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
579
	struct regulator_dev *rdev = dev_get_drvdata(dev);
580

D
David Brownell 已提交
581 582
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
583
}
584 585
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
586 587 588 589

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
590
	struct regulator_dev *rdev = dev_get_drvdata(dev);
591

D
David Brownell 已提交
592 593
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
594
}
595 596
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
597 598 599 600

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
601
	struct regulator_dev *rdev = dev_get_drvdata(dev);
602

D
David Brownell 已提交
603 604
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
605
}
606 607 608
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

609

610 611 612 613
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
614
static struct device_attribute regulator_dev_attrs[] = {
615
	__ATTR(name, 0444, regulator_name_show, NULL),
616 617 618 619 620 621 622
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
623
	struct regulator_dev *rdev = dev_get_drvdata(dev);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
643 644 645
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
646
		return;
647 648

	/* get output voltage */
649
	output_uV = _regulator_get_voltage(rdev);
650 651 652 653
	if (output_uV <= 0)
		return;

	/* get input voltage */
654 655 656 657
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
658 659 660 661 662 663
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
664
		current_uA += sibling->uA_load;
665 666 667 668 669 670

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
671
	err = regulator_mode_constrain(rdev, &mode);
672 673 674 675 676 677 678 679
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
680 681 682 683 684 685 686 687 688 689 690
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
691
			rdev_warn(rdev, "No configuration\n");
692 693 694 695
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
696
		rdev_err(rdev, "invalid configuration\n");
697 698
		return -EINVAL;
	}
699

700
	if (!can_set_state) {
701
		rdev_err(rdev, "no way to set suspend state\n");
702
		return -EINVAL;
703
	}
704 705 706 707 708 709

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
710
		rdev_err(rdev, "failed to enabled/disable\n");
711 712 713 714 715 716
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
717
			rdev_err(rdev, "failed to set voltage\n");
718 719 720 721 722 723 724
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
725
			rdev_err(rdev, "failed to set mode\n");
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
756
	char buf[80] = "";
757 758
	int count = 0;
	int ret;
759

760
	if (constraints->min_uV && constraints->max_uV) {
761
		if (constraints->min_uV == constraints->max_uV)
762 763
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
764
		else
765 766 767 768 769 770 771 772 773 774 775 776
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

777 778 779 780
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

781
	if (constraints->min_uA && constraints->max_uA) {
782
		if (constraints->min_uA == constraints->max_uA)
783 784
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
785
		else
786 787 788 789 790 791 792 793 794
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
795
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
796
	}
797

798 799 800 801 802 803 804 805 806
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
807
	rdev_info(rdev, "%s\n", buf);
808 809 810 811 812

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
813 814
}

815
static int machine_constraints_voltage(struct regulator_dev *rdev,
816
	struct regulation_constraints *constraints)
817
{
818
	struct regulator_ops *ops = rdev->desc->ops;
819 820 821 822
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
823 824 825 826 827 828 829 830 831
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
832
	}
833

834 835 836 837 838 839 840 841 842 843 844
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

845 846
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
847
		if (count == 1 && !cmin) {
848
			cmin = 1;
849
			cmax = INT_MAX;
850 851
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
852 853
		}

854 855
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
856
			return 0;
857

858
		/* else require explicit machine-level constraints */
859
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
860
			rdev_err(rdev, "invalid voltage constraints\n");
861
			return -EINVAL;
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
881
			rdev_err(rdev, "unsupportable voltage constraints\n");
882
			return -EINVAL;
883 884 885 886
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
887 888
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
889 890 891
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
892 893
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
894 895 896 897
			constraints->max_uV = max_uV;
		}
	}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
913
	const struct regulation_constraints *constraints)
914 915 916 917
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

918 919 920 921 922 923
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
924 925
	if (!rdev->constraints)
		return -ENOMEM;
926

927
	ret = machine_constraints_voltage(rdev, rdev->constraints);
928 929 930
	if (ret != 0)
		goto out;

931
	/* do we need to setup our suspend state */
932
	if (rdev->constraints->initial_state) {
933
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
934
		if (ret < 0) {
935
			rdev_err(rdev, "failed to set suspend state\n");
936 937 938
			goto out;
		}
	}
939

940
	if (rdev->constraints->initial_mode) {
941
		if (!ops->set_mode) {
942
			rdev_err(rdev, "no set_mode operation\n");
943 944 945 946
			ret = -EINVAL;
			goto out;
		}

947
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
948
		if (ret < 0) {
949
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
950 951 952 953
			goto out;
		}
	}

954 955 956
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
957 958
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
959 960
		ret = ops->enable(rdev);
		if (ret < 0) {
961
			rdev_err(rdev, "failed to enable\n");
962 963 964 965
			goto out;
		}
	}

966
	print_constraints(rdev);
967
	return 0;
968
out:
969 970
	kfree(rdev->constraints);
	rdev->constraints = NULL;
971 972 973 974 975
	return ret;
}

/**
 * set_supply - set regulator supply regulator
976 977
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
978 979 980 981 982 983
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
984
		      struct regulator_dev *supply_rdev)
985 986 987
{
	int err;

988 989 990
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
991 992
	if (rdev->supply == NULL) {
		err = -ENOMEM;
993
		return err;
994
	}
995 996

	return 0;
997 998 999
}

/**
1000
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1001 1002
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
1003
 * @consumer_dev_name: dev_name() string for device supply applies to
1004
 * @supply:       symbolic name for supply
1005 1006 1007 1008 1009
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
1010 1011
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
1012 1013
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1014 1015
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
1016 1017
{
	struct regulator_map *node;
1018
	int has_dev;
1019

1020 1021 1022 1023 1024 1025
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

1026 1027 1028
	if (supply == NULL)
		return -EINVAL;

1029 1030 1031 1032 1033
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1034
	list_for_each_entry(node, &regulator_map_list, list) {
1035 1036 1037 1038
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1039
			continue;
1040 1041
		}

1042 1043 1044 1045
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1046 1047 1048 1049
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
1050 1051 1052
		return -EBUSY;
	}

1053
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1054 1055 1056 1057 1058 1059
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1060 1061 1062 1063 1064 1065
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1066 1067
	}

1068 1069 1070 1071
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1072 1073 1074 1075 1076 1077 1078
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1079
			kfree(node->dev_name);
1080 1081 1082 1083 1084
			kfree(node);
		}
	}
}

1085
#define REG_STR_SIZE	64
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1105 1106 1107
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1108 1109 1110 1111
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1112
		sysfs_attr_init(&regulator->dev_attr.attr);
1113 1114 1115 1116 1117 1118 1119 1120
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1121
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1138 1139
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1140 1141
			goto link_name_err;
		}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

#ifdef CONFIG_DEBUG_FS
	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
	if (IS_ERR_OR_NULL(regulator->debugfs)) {
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		regulator->debugfs = NULL;
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1161
	}
1162 1163
#endif

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1179 1180 1181 1182 1183 1184 1185
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
							 const char *supply)
{
	struct regulator_dev *r;
	struct device_node *node;

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
		if (node)
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
	}

	/* if not found, try doing it non-dt way */
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

	return NULL;
}

1210 1211 1212
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1213 1214 1215 1216
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1217
	const char *devname = NULL;
1218
	int ret;
1219 1220

	if (id == NULL) {
1221
		pr_err("get() with no identifier\n");
1222 1223 1224
		return regulator;
	}

1225 1226 1227
	if (dev)
		devname = dev_name(dev);

1228 1229
	mutex_lock(&regulator_list_mutex);

1230 1231 1232 1233
	rdev = regulator_dev_lookup(dev, id);
	if (rdev)
		goto found;

1234
	list_for_each_entry(map, &regulator_map_list, list) {
1235 1236 1237 1238 1239 1240
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1241
			rdev = map->regulator;
1242
			goto found;
1243
		}
1244
	}
1245

1246 1247 1248 1249 1250
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1251 1252 1253 1254 1255 1256 1257 1258
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1259 1260
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1261 1262 1263 1264 1265
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1266 1267 1268 1269
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1280 1281 1282
	if (!try_module_get(rdev->owner))
		goto out;

1283 1284 1285 1286
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1287
		goto out;
1288 1289
	}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1301
out:
1302
	mutex_unlock(&regulator_list_mutex);
1303

1304 1305
	return regulator;
}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1324 1325
EXPORT_SYMBOL_GPL(regulator_get);

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1371 1372 1373 1374
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(regulator->debugfs);
#endif

1375 1376 1377 1378 1379 1380
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1381
	kfree(regulator->supply_name);
1382 1383 1384
	list_del(&regulator->list);
	kfree(regulator);

1385 1386 1387
	rdev->open_count--;
	rdev->exclusive = 0;

1388 1389 1390 1391 1392
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1404 1405 1406
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1407
	int ret, delay;
1408 1409

	/* check voltage and requested load before enabling */
1410 1411 1412
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1413

1414 1415 1416 1417 1418 1419 1420
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1421
			if (!rdev->desc->ops->enable)
1422
				return -EINVAL;
1423 1424

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1425
			 * dependent.  */
1426 1427 1428 1429
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1430
				rdev_warn(rdev, "enable_time() failed: %d\n",
1431
					   ret);
1432
				delay = 0;
1433
			}
1434

1435 1436
			trace_regulator_enable(rdev_get_name(rdev));

1437 1438 1439 1440 1441 1442 1443
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1444 1445
			trace_regulator_enable_delay(rdev_get_name(rdev));

1446
			if (delay >= 1000) {
1447
				mdelay(delay / 1000);
1448 1449
				udelay(delay % 1000);
			} else if (delay) {
1450
				udelay(delay);
1451
			}
1452

1453 1454
			trace_regulator_enable_complete(rdev_get_name(rdev));

1455
		} else if (ret < 0) {
1456
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1457 1458
			return ret;
		}
1459
		/* Fallthrough on positive return values - already enabled */
1460 1461
	}

1462 1463 1464
	rdev->use_count++;

	return 0;
1465 1466 1467 1468 1469 1470
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1471 1472 1473 1474
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1475
 * NOTE: the output value can be set by other drivers, boot loader or may be
1476
 * hardwired in the regulator.
1477 1478 1479
 */
int regulator_enable(struct regulator *regulator)
{
1480 1481
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1482

1483 1484 1485 1486 1487 1488
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1489
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1490
	ret = _regulator_enable(rdev);
1491
	mutex_unlock(&rdev->mutex);
1492

1493
	if (ret != 0 && rdev->supply)
1494 1495
		regulator_disable(rdev->supply);

1496 1497 1498 1499 1500
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1501
static int _regulator_disable(struct regulator_dev *rdev)
1502 1503 1504
{
	int ret = 0;

D
David Brownell 已提交
1505
	if (WARN(rdev->use_count <= 0,
1506
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1507 1508
		return -EIO;

1509
	/* are we the last user and permitted to disable ? */
1510 1511
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1512 1513

		/* we are last user */
1514 1515
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1516 1517
			trace_regulator_disable(rdev_get_name(rdev));

1518 1519
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1520
				rdev_err(rdev, "failed to disable\n");
1521 1522
				return ret;
			}
1523

1524 1525
			trace_regulator_disable_complete(rdev_get_name(rdev));

1526 1527
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1540

1541 1542 1543 1544 1545 1546 1547
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1548 1549 1550
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1551
 *
1552
 * NOTE: this will only disable the regulator output if no other consumer
1553 1554
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1555 1556 1557
 */
int regulator_disable(struct regulator *regulator)
{
1558 1559
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1560

1561
	mutex_lock(&rdev->mutex);
1562
	ret = _regulator_disable(rdev);
1563
	mutex_unlock(&rdev->mutex);
1564

1565 1566
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1567

1568 1569 1570 1571 1572
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1573
static int _regulator_force_disable(struct regulator_dev *rdev)
1574 1575 1576 1577 1578 1579 1580 1581
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1582
			rdev_err(rdev, "failed to force disable\n");
1583 1584 1585
			return ret;
		}
		/* notify other consumers that power has been forced off */
1586 1587
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1604
	struct regulator_dev *rdev = regulator->rdev;
1605 1606
	int ret;

1607
	mutex_lock(&rdev->mutex);
1608
	regulator->uA_load = 0;
1609
	ret = _regulator_force_disable(regulator->rdev);
1610
	mutex_unlock(&rdev->mutex);
1611

1612 1613 1614
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1615

1616 1617 1618 1619
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1667
	int ret;
1668 1669 1670 1671 1672

	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1673 1674 1675 1676 1677 1678
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1679 1680 1681
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1682 1683
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1684
	/* If we don't know then assume that the regulator is always on */
1685
	if (!rdev->desc->ops->is_enabled)
1686
		return 1;
1687

1688
	return rdev->desc->ops->is_enabled(rdev);
1689 1690 1691 1692 1693 1694
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1695 1696 1697 1698 1699 1700 1701
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1702 1703 1704
 */
int regulator_is_enabled(struct regulator *regulator)
{
1705 1706 1707 1708 1709 1710 1711
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1712 1713 1714
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1738
 * zero if this selector code can't be used on this system, or a
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1793
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1794

1795 1796 1797 1798
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1799
	int delay = 0;
1800 1801 1802 1803
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1804 1805 1806
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		}

1852 1853 1854 1855 1856 1857
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
1858 1859 1860 1861
	} else {
		ret = -EINVAL;
	}

1862 1863 1864 1865 1866 1867 1868 1869
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

1870 1871 1872 1873
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

1874 1875 1876 1877 1878
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1894
 * Regulator system constraints must be set for this regulator before
1895 1896 1897 1898 1899
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
1900
	int ret = 0;
1901 1902 1903

	mutex_lock(&rdev->mutex);

1904 1905 1906 1907 1908 1909 1910
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

1911
	/* sanity check */
1912 1913
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1924

1925 1926 1927 1928
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1929
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1930

1931 1932 1933 1934 1935 1936
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2029 2030
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2031
	int sel, ret;
2032 2033 2034 2035 2036

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2037
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2038
	} else if (rdev->desc->ops->get_voltage) {
2039
		ret = rdev->desc->ops->get_voltage(rdev);
2040
	} else {
2041
		return -EINVAL;
2042
	}
2043

2044 2045
	if (ret < 0)
		return ret;
2046
	return ret - rdev->constraints->uV_offset;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2162
	int regulator_curr_mode;
2163 2164 2165 2166 2167 2168 2169 2170 2171

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2172 2173 2174 2175 2176 2177 2178 2179 2180
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2181
	/* constraints check */
2182
	ret = regulator_mode_constrain(rdev, &mode);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2258 2259 2260 2261
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2262 2263
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2264 2265
	if (ret < 0) {
		ret = 0;
2266
		goto out;
2267
	}
2268 2269 2270 2271

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2272 2273 2274 2275 2276 2277
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2278
	/* get output voltage */
2279
	output_uV = _regulator_get_voltage(rdev);
2280
	if (output_uV <= 0) {
2281
		rdev_err(rdev, "invalid output voltage found\n");
2282 2283 2284 2285
		goto out;
	}

	/* get input voltage */
2286 2287
	input_uV = 0;
	if (rdev->supply)
2288
		input_uV = regulator_get_voltage(rdev->supply);
2289
	if (input_uV <= 0)
2290 2291
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2292
		rdev_err(rdev, "invalid input voltage found\n");
2293 2294 2295 2296 2297
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2298
		total_uA_load += consumer->uA_load;
2299 2300 2301 2302

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2303
	ret = regulator_mode_constrain(rdev, &mode);
2304
	if (ret < 0) {
2305 2306
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2307 2308 2309 2310
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2311
	if (ret < 0) {
2312
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2325
 * @nb: notifier block
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2340
 * @nb: notifier block
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2352 2353 2354
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2390 2391
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2392 2393 2394 2395 2396 2397 2398 2399
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2400
	while (--i >= 0)
2401 2402 2403 2404 2405 2406
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2407 2408 2409 2410 2411 2412 2413
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2429
	LIST_HEAD(async_domain);
2430
	int i;
2431
	int ret = 0;
2432

2433 2434 2435 2436 2437 2438 2439
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2440
	for (i = 0; i < num_consumers; i++) {
2441 2442
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2443
			goto err;
2444
		}
2445 2446 2447 2448 2449
	}

	return 0;

err:
2450 2451 2452
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2466 2467
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2468 2469 2470 2471 2472 2473 2474 2475
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

2476
	for (i = num_consumers - 1; i >= 0; --i) {
2477 2478 2479 2480 2481 2482 2483 2484
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2485
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2486
	for (++i; i < num_consumers; ++i)
2487 2488 2489 2490 2491 2492
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2553
 * @rdev: regulator source
2554
 * @event: notifier block
2555
 * @data: callback-specific data.
2556 2557 2558
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2559
 * Note lock must be held by caller.
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2605 2606
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2626 2627 2628 2629 2630
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2647
	if (ops->set_voltage || ops->set_voltage_sel) {
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2711 2712 2713 2714
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
#ifdef CONFIG_DEBUG_FS
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2715
	if (IS_ERR_OR_NULL(rdev->debugfs)) {
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		rdev->debugfs = NULL;
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
#endif
}

2728 2729
/**
 * regulator_register - register regulator
2730 2731
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2732
 * @init_data: platform provided init data, passed through by driver
2733
 * @driver_data: private regulator data
2734 2735 2736 2737 2738
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2739
	struct device *dev, const struct regulator_init_data *init_data,
2740
	void *driver_data, struct device_node *of_node)
2741
{
2742
	const struct regulation_constraints *constraints = NULL;
2743 2744
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2745
	int ret, i;
2746
	const char *supply = NULL;
2747 2748 2749 2750 2751 2752 2753

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2754 2755
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2756 2757
		return ERR_PTR(-EINVAL);

2758 2759 2760
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2761 2762
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2763 2764 2765 2766 2767 2768

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2769 2770 2771 2772
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2773

2774 2775 2776 2777 2778 2779 2780
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2781
	rdev->reg_data = driver_data;
2782 2783 2784 2785 2786
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2787
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2788

2789
	/* preform any regulator specific init */
2790
	if (init_data && init_data->regulator_init) {
2791
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2792 2793
		if (ret < 0)
			goto clean;
2794 2795 2796
	}

	/* register with sysfs */
2797
	rdev->dev.class = &regulator_class;
2798
	rdev->dev.of_node = of_node;
2799
	rdev->dev.parent = dev;
2800 2801
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2802
	ret = device_register(&rdev->dev);
2803 2804
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2805
		goto clean;
2806
	}
2807 2808 2809

	dev_set_drvdata(&rdev->dev, rdev);

2810
	/* set regulator constraints */
2811 2812 2813 2814
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
2815 2816 2817
	if (ret < 0)
		goto scrub;

2818 2819 2820 2821 2822
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2823
	if (init_data && init_data->supply_regulator)
2824 2825 2826 2827 2828
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
2829 2830
		struct regulator_dev *r;

2831
		r = regulator_dev_lookup(dev, supply);
2832

2833 2834
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
2835
			ret = -ENODEV;
2836 2837 2838 2839 2840 2841
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
2842 2843 2844 2845 2846 2847 2848 2849

		/* Enable supply if rail is enabled */
		if (rdev->desc->ops->is_enabled &&
				rdev->desc->ops->is_enabled(rdev)) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
2850 2851
	}

2852
	/* add consumers devices */
2853 2854 2855 2856 2857
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev,
				init_data->consumer_supplies[i].dev_name,
2858
				init_data->consumer_supplies[i].supply);
2859 2860 2861 2862 2863
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
2864
		}
2865
	}
2866 2867

	list_add(&rdev->list, &regulator_list);
2868 2869

	rdev_init_debugfs(rdev);
2870
out:
2871 2872
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2873

2874 2875 2876
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2877
scrub:
2878
	kfree(rdev->constraints);
D
David Brownell 已提交
2879
	device_unregister(&rdev->dev);
2880 2881 2882 2883
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2884 2885 2886 2887
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2888 2889 2890 2891 2892
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2893
 * @rdev: regulator to unregister
2894 2895 2896 2897 2898 2899 2900 2901 2902
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2903 2904 2905
#ifdef CONFIG_DEBUG_FS
	debugfs_remove_recursive(rdev->debugfs);
#endif
2906
	flush_work_sync(&rdev->disable_work.work);
2907
	WARN_ON(rdev->open_count);
2908
	unset_regulator_supplies(rdev);
2909 2910
	list_del(&rdev->list);
	if (rdev->supply)
2911
		regulator_put(rdev->supply);
2912
	kfree(rdev->constraints);
2913
	device_unregister(&rdev->dev);
2914 2915 2916 2917 2918
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2919
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
2942
			rdev_err(rdev, "failed to prepare\n");
2943 2944 2945 2946 2947 2948 2949 2950 2951
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3026 3027
/**
 * rdev_get_drvdata - get rdev regulator driver data
3028
 * @rdev: regulator
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3065
 * @rdev: regulator
3066 3067 3068 3069 3070 3071 3072
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}

static const struct file_operations supply_map_fops = {
	.read = supply_map_read_file,
	.llseek = default_llseek,
};
#endif

3122 3123
static int __init regulator_init(void)
{
3124 3125 3126 3127
	int ret;

	ret = class_register(&regulator_class);

3128 3129
#ifdef CONFIG_DEBUG_FS
	debugfs_root = debugfs_create_dir("regulator", NULL);
3130
	if (IS_ERR_OR_NULL(debugfs_root)) {
3131 3132 3133
		pr_warn("regulator: Failed to create debugfs directory\n");
		debugfs_root = NULL;
	}
3134

3135 3136
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3137 3138
#endif

3139 3140 3141
	regulator_dummy_init();

	return ret;
3142 3143 3144 3145
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3164
		if (!ops->disable || (c && c->always_on))
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3184
			rdev_info(rdev, "disabling\n");
3185 3186
			ret = ops->disable(rdev);
			if (ret != 0) {
3187
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3188 3189 3190 3191 3192 3193 3194
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3195
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);