core.c 96.6 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static bool has_full_constraints;
55
static bool board_wants_dummy_regulator;
56

57 58
static struct dentry *debugfs_root;

59
/*
60 61 62 63 64 65
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
66
	const char *dev_name;   /* The dev_name() for the consumer */
67
	const char *supply;
68
	struct regulator_dev *regulator;
69 70 71 72 73 74 75 76 77 78
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
79
	unsigned int always_on:1;
80
	unsigned int bypass:1;
81 82 83 84 85 86
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
87
	struct dentry *debugfs;
88 89 90
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
91
static int _regulator_disable(struct regulator_dev *rdev);
92 93 94 95 96
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
97 98
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
99 100 101
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
102

103 104 105 106 107 108 109 110 111 112
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
133
		dev_dbg(dev, "Looking up %s property in node %s failed",
134 135 136 137 138 139
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

140 141 142 143 144 145 146 147 148 149 150
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

151 152 153 154 155 156 157
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
158
		rdev_err(rdev, "no constraints\n");
159 160 161
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162
		rdev_err(rdev, "operation not allowed\n");
163 164 165 166 167 168 169 170
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

171 172
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173
			 *min_uV, *max_uV);
174
		return -EINVAL;
175
	}
176 177 178 179

	return 0;
}

180 181 182 183 184 185 186 187 188
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 190 191 192 193 194 195
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

196 197 198 199 200 201 202 203 204 205 206 207
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

208 209 210 211 212 213 214
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
215
		rdev_err(rdev, "no constraints\n");
216 217 218
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219
		rdev_err(rdev, "operation not allowed\n");
220 221 222 223 224 225 226 227
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

228 229
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230
			 *min_uA, *max_uA);
231
		return -EINVAL;
232
	}
233 234 235 236 237

	return 0;
}

/* operating mode constraint check */
238
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239
{
240
	switch (*mode) {
241 242 243 244 245 246
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
247
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
248 249 250
		return -EINVAL;
	}

251
	if (!rdev->constraints) {
252
		rdev_err(rdev, "no constraints\n");
253 254 255
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256
		rdev_err(rdev, "operation not allowed\n");
257 258
		return -EPERM;
	}
259 260 261 262 263 264 265 266

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
267
	}
268 269

	return -EINVAL;
270 271 272 273 274 275
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
276
		rdev_err(rdev, "no constraints\n");
277 278 279
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280
		rdev_err(rdev, "operation not allowed\n");
281 282 283 284 285 286 287 288
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
289
	struct regulator_dev *rdev = dev_get_drvdata(dev);
290 291 292 293 294 295 296 297
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
298
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299 300 301 302

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
303
	struct regulator_dev *rdev = dev_get_drvdata(dev);
304 305 306

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
307
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308

309 310 311 312 313
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

314
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 316
}

D
David Brownell 已提交
317
static ssize_t regulator_print_opmode(char *buf, int mode)
318 319 320 321 322 323 324 325 326 327 328 329 330 331
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
332 333
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
334
{
335
	struct regulator_dev *rdev = dev_get_drvdata(dev);
336

D
David Brownell 已提交
337 338
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
339
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
340 341 342

static ssize_t regulator_print_state(char *buf, int state)
{
343 344 345 346 347 348 349 350
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352 353 354
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 356 357 358 359
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
360

361
	return ret;
D
David Brownell 已提交
362
}
363
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
364

D
David Brownell 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
398 399 400
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
401 402 403
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
404 405 406 407 408 409 410 411
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

412 413 414
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
415
	struct regulator_dev *rdev = dev_get_drvdata(dev);
416 417 418 419 420 421

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
422
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423 424 425 426

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
427
	struct regulator_dev *rdev = dev_get_drvdata(dev);
428 429 430 431 432 433

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
434
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435 436 437 438

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
439
	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 441 442 443 444 445

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
446
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447 448 449 450

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
451
	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 453 454 455 456 457

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
458
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459 460 461 462

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
463
	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 465 466 467 468
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
469
		uA += regulator->uA_load;
470 471 472
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
473
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474 475 476 477

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
478
	struct regulator_dev *rdev = dev_get_drvdata(dev);
479 480 481 482 483 484
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
485
	struct regulator_dev *rdev = dev_get_drvdata(dev);
486 487 488 489 490 491 492 493 494 495 496 497 498

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
499
	struct regulator_dev *rdev = dev_get_drvdata(dev);
500 501 502

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
503 504
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
505 506 507 508

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
509
	struct regulator_dev *rdev = dev_get_drvdata(dev);
510 511 512

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
513 514
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
515 516 517 518

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
519
	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 521 522

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
523 524
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
525 526 527 528

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
529
	struct regulator_dev *rdev = dev_get_drvdata(dev);
530

D
David Brownell 已提交
531 532
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
533
}
534 535
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541

D
David Brownell 已提交
542 543
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
544
}
545 546
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
547 548 549 550

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
551
	struct regulator_dev *rdev = dev_get_drvdata(dev);
552

D
David Brownell 已提交
553 554
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
555
}
556 557
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
558 559 560 561

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
562
	struct regulator_dev *rdev = dev_get_drvdata(dev);
563

D
David Brownell 已提交
564 565
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
566
}
567 568
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
569 570 571 572

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
573
	struct regulator_dev *rdev = dev_get_drvdata(dev);
574

D
David Brownell 已提交
575 576
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
577
}
578 579
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
580 581 582 583

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
584
	struct regulator_dev *rdev = dev_get_drvdata(dev);
585

D
David Brownell 已提交
586 587
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
588
}
589 590 591
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
613

614 615 616 617
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
618
static struct device_attribute regulator_dev_attrs[] = {
619
	__ATTR(name, 0444, regulator_name_show, NULL),
620 621 622 623 624 625 626
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
627
	struct regulator_dev *rdev = dev_get_drvdata(dev);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647 648 649
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
650
		return;
651 652

	/* get output voltage */
653
	output_uV = _regulator_get_voltage(rdev);
654 655 656 657
	if (output_uV <= 0)
		return;

	/* get input voltage */
658 659
	input_uV = 0;
	if (rdev->supply)
660
		input_uV = regulator_get_voltage(rdev->supply);
661
	if (input_uV <= 0)
662 663 664 665 666 667
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
668
		current_uA += sibling->uA_load;
669 670 671 672 673 674

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
675
	err = regulator_mode_constrain(rdev, &mode);
676 677 678 679 680 681 682 683
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
684 685

	/* If we have no suspend mode configration don't set anything;
686 687
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
688 689
	 */
	if (!rstate->enabled && !rstate->disabled) {
690 691
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
692
			rdev_warn(rdev, "No configuration\n");
693 694 695 696
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
697
		rdev_err(rdev, "invalid configuration\n");
698 699
		return -EINVAL;
	}
700

701
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702
		ret = rdev->desc->ops->set_suspend_enable(rdev);
703
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704
		ret = rdev->desc->ops->set_suspend_disable(rdev);
705 706 707
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

708
	if (ret < 0) {
709
		rdev_err(rdev, "failed to enabled/disable\n");
710 711 712 713 714 715
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
716
			rdev_err(rdev, "failed to set voltage\n");
717 718 719 720 721 722 723
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
724
			rdev_err(rdev, "failed to set mode\n");
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
755
	char buf[80] = "";
756 757
	int count = 0;
	int ret;
758

759
	if (constraints->min_uV && constraints->max_uV) {
760
		if (constraints->min_uV == constraints->max_uV)
761 762
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
763
		else
764 765 766 767 768 769 770 771 772 773 774 775
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

776 777 778 779
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

780
	if (constraints->min_uA && constraints->max_uA) {
781
		if (constraints->min_uA == constraints->max_uA)
782 783
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
784
		else
785 786 787 788 789 790 791 792 793
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
794
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
795
	}
796

797 798 799 800 801 802 803 804 805
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

806 807 808
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
809
	rdev_info(rdev, "%s\n", buf);
810 811 812 813 814

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815 816
}

817
static int machine_constraints_voltage(struct regulator_dev *rdev,
818
	struct regulation_constraints *constraints)
819
{
820
	struct regulator_ops *ops = rdev->desc->ops;
821 822 823 824
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
825 826 827 828 829 830 831 832 833
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
834
	}
835

836 837 838 839 840 841 842 843 844 845 846
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

847 848
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
849
		if (count == 1 && !cmin) {
850
			cmin = 1;
851
			cmax = INT_MAX;
852 853
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
854 855
		}

856 857
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
858
			return 0;
859

860
		/* else require explicit machine-level constraints */
861
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862
			rdev_err(rdev, "invalid voltage constraints\n");
863
			return -EINVAL;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
883
			rdev_err(rdev, "unsupportable voltage constraints\n");
884
			return -EINVAL;
885 886 887 888
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
889 890
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
891 892 893
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
894 895
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
896 897 898 899
			constraints->max_uV = max_uV;
		}
	}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
915
	const struct regulation_constraints *constraints)
916 917 918 919
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

920 921 922 923 924 925
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
926 927
	if (!rdev->constraints)
		return -ENOMEM;
928

929
	ret = machine_constraints_voltage(rdev, rdev->constraints);
930 931 932
	if (ret != 0)
		goto out;

933
	/* do we need to setup our suspend state */
934
	if (rdev->constraints->initial_state) {
935
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936
		if (ret < 0) {
937
			rdev_err(rdev, "failed to set suspend state\n");
938 939 940
			goto out;
		}
	}
941

942
	if (rdev->constraints->initial_mode) {
943
		if (!ops->set_mode) {
944
			rdev_err(rdev, "no set_mode operation\n");
945 946 947 948
			ret = -EINVAL;
			goto out;
		}

949
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950
		if (ret < 0) {
951
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952 953 954 955
			goto out;
		}
	}

956 957 958
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
959 960
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
961 962
		ret = ops->enable(rdev);
		if (ret < 0) {
963
			rdev_err(rdev, "failed to enable\n");
964 965 966 967
			goto out;
		}
	}

968 969 970 971 972 973 974 975
	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

976
	print_constraints(rdev);
977
	return 0;
978
out:
979 980
	kfree(rdev->constraints);
	rdev->constraints = NULL;
981 982 983 984 985
	return ret;
}

/**
 * set_supply - set regulator supply regulator
986 987
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
988 989 990 991 992 993
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
994
		      struct regulator_dev *supply_rdev)
995 996 997
{
	int err;

998 999 1000
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001 1002
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1003
		return err;
1004
	}
1005
	supply_rdev->open_count++;
1006 1007

	return 0;
1008 1009 1010
}

/**
1011
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012
 * @rdev:         regulator source
1013
 * @consumer_dev_name: dev_name() string for device supply applies to
1014
 * @supply:       symbolic name for supply
1015 1016 1017 1018 1019 1020 1021
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1022 1023
				      const char *consumer_dev_name,
				      const char *supply)
1024 1025
{
	struct regulator_map *node;
1026
	int has_dev;
1027 1028 1029 1030

	if (supply == NULL)
		return -EINVAL;

1031 1032 1033 1034 1035
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1036
	list_for_each_entry(node, &regulator_map_list, list) {
1037 1038 1039 1040
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1041
			continue;
1042 1043
		}

1044 1045 1046
		if (strcmp(node->supply, supply) != 0)
			continue;

1047 1048 1049 1050 1051 1052
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1053 1054 1055
		return -EBUSY;
	}

1056
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057 1058 1059 1060 1061 1062
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1063 1064 1065 1066 1067 1068
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1069 1070
	}

1071 1072 1073 1074
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1075 1076 1077 1078 1079 1080 1081
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1082
			kfree(node->dev_name);
1083 1084 1085 1086 1087
			kfree(node);
		}
	}
}

1088
#define REG_STR_SIZE	64
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1107 1108
		regulator->dev = dev;

1109
		/* Add a link to the device sysfs entry */
1110 1111 1112
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1113
			goto overflow_err;
1114 1115 1116

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1117
			goto overflow_err;
1118 1119 1120 1121

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1122 1123
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1124
			/* non-fatal */
1125
		}
1126 1127 1128
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1129
			goto overflow_err;
1130 1131 1132 1133
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1134
	if (!regulator->debugfs) {
1135 1136 1137 1138 1139 1140 1141 1142
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1143
	}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1154 1155 1156 1157 1158 1159 1160 1161 1162
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1163 1164 1165
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1166
		return rdev->desc->enable_time;
1167 1168 1169
	return rdev->desc->ops->enable_time(rdev);
}

1170
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171 1172
						  const char *supply,
						  int *ret)
1173 1174 1175
{
	struct regulator_dev *r;
	struct device_node *node;
1176 1177
	struct regulator_map *map;
	const char *devname = NULL;
1178 1179 1180 1181

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1182
		if (node) {
1183 1184 1185 1186
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1187 1188 1189 1190 1191 1192 1193 1194 1195
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1196 1197 1198
	}

	/* if not found, try doing it non-dt way */
1199 1200 1201
	if (dev)
		devname = dev_name(dev);

1202 1203 1204 1205
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1217 1218 1219
	return NULL;
}

1220 1221 1222
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1223 1224
{
	struct regulator_dev *rdev;
1225
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226
	const char *devname = NULL;
1227
	int ret;
1228 1229

	if (id == NULL) {
1230
		pr_err("get() with no identifier\n");
1231 1232 1233
		return regulator;
	}

1234 1235 1236
	if (dev)
		devname = dev_name(dev);

1237 1238
	mutex_lock(&regulator_list_mutex);

1239
	rdev = regulator_dev_lookup(dev, id, &ret);
1240 1241 1242
	if (rdev)
		goto found;

1243 1244 1245 1246 1247
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1248 1249 1250 1251 1252 1253 1254 1255
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1256 1257
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1258 1259 1260 1261 1262
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1263 1264 1265 1266
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1277 1278 1279
	if (!try_module_get(rdev->owner))
		goto out;

1280 1281 1282 1283
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1284
		goto out;
1285 1286
	}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1298
out:
1299
	mutex_unlock(&regulator_list_mutex);
1300

1301 1302
	return regulator;
}
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1321 1322
EXPORT_SYMBOL_GPL(regulator_get);

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1384 1385
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1386 1387 1388 1389 1390 1391 1392 1393
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1394 1395
	debugfs_remove_recursive(regulator->debugfs);

1396
	/* remove any sysfs entries */
1397
	if (regulator->dev)
1398
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1399
	kfree(regulator->supply_name);
1400 1401 1402
	list_del(&regulator->list);
	kfree(regulator);

1403 1404 1405
	rdev->open_count--;
	rdev->exclusive = 0;

1406
	module_put(rdev->owner);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1421 1422 1423 1424
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1447
	rc = devres_release(regulator->dev, devm_regulator_release,
1448
			    devm_regulator_match, regulator);
1449
	if (rc != 0)
1450
		WARN_ON(rc);
1451 1452 1453
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1469 1470 1471 1472 1473
	if (rdev->ena_gpio) {
		gpio_set_value_cansleep(rdev->ena_gpio,
					!rdev->ena_gpio_invert);
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1498 1499 1500
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1501
	int ret;
1502 1503

	/* check voltage and requested load before enabling */
1504 1505 1506
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1507

1508 1509 1510 1511 1512 1513 1514
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1515
			ret = _regulator_do_enable(rdev);
1516 1517 1518
			if (ret < 0)
				return ret;

1519
		} else if (ret < 0) {
1520
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521 1522
			return ret;
		}
1523
		/* Fallthrough on positive return values - already enabled */
1524 1525
	}

1526 1527 1528
	rdev->use_count++;

	return 0;
1529 1530 1531 1532 1533 1534
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1535 1536 1537 1538
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1539
 * NOTE: the output value can be set by other drivers, boot loader or may be
1540
 * hardwired in the regulator.
1541 1542 1543
 */
int regulator_enable(struct regulator *regulator)
{
1544 1545
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1546

1547 1548 1549
	if (regulator->always_on)
		return 0;

1550 1551 1552 1553 1554 1555
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1556
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1557
	ret = _regulator_enable(rdev);
1558
	mutex_unlock(&rdev->mutex);
1559

1560
	if (ret != 0 && rdev->supply)
1561 1562
		regulator_disable(rdev->supply);

1563 1564 1565 1566
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

	if (rdev->ena_gpio) {
		gpio_set_value_cansleep(rdev->ena_gpio,
					rdev->ena_gpio_invert);
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1591
/* locks held by regulator_disable() */
1592
static int _regulator_disable(struct regulator_dev *rdev)
1593 1594 1595
{
	int ret = 0;

D
David Brownell 已提交
1596
	if (WARN(rdev->use_count <= 0,
1597
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1598 1599
		return -EIO;

1600
	/* are we the last user and permitted to disable ? */
1601 1602
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1603 1604

		/* we are last user */
1605 1606
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1607
			if (ret < 0) {
1608
				rdev_err(rdev, "failed to disable\n");
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1623

1624 1625 1626 1627 1628 1629 1630
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1631 1632 1633
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1634
 *
1635
 * NOTE: this will only disable the regulator output if no other consumer
1636 1637
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1638 1639 1640
 */
int regulator_disable(struct regulator *regulator)
{
1641 1642
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1643

1644 1645 1646
	if (regulator->always_on)
		return 0;

1647
	mutex_lock(&rdev->mutex);
1648
	ret = _regulator_disable(rdev);
1649
	mutex_unlock(&rdev->mutex);
1650

1651 1652
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1653

1654 1655 1656 1657 1658
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1659
static int _regulator_force_disable(struct regulator_dev *rdev)
1660 1661 1662 1663 1664 1665 1666 1667
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1668
			rdev_err(rdev, "failed to force disable\n");
1669 1670 1671
			return ret;
		}
		/* notify other consumers that power has been forced off */
1672 1673
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1690
	struct regulator_dev *rdev = regulator->rdev;
1691 1692
	int ret;

1693
	mutex_lock(&rdev->mutex);
1694
	regulator->uA_load = 0;
1695
	ret = _regulator_force_disable(regulator->rdev);
1696
	mutex_unlock(&rdev->mutex);
1697

1698 1699 1700
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1701

1702 1703 1704 1705
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1753
	int ret;
1754

1755 1756 1757
	if (regulator->always_on)
		return 0;

1758 1759 1760
	if (!ms)
		return regulator_disable(regulator);

1761 1762 1763 1764
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1765 1766 1767 1768 1769 1770
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1771 1772 1773
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

	return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask,
				  rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1829 1830
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1831 1832 1833 1834
	/* A GPIO control always takes precedence */
	if (rdev->ena_gpio)
		return rdev->ena_gpio_state;

1835
	/* If we don't know then assume that the regulator is always on */
1836
	if (!rdev->desc->ops->is_enabled)
1837
		return 1;
1838

1839
	return rdev->desc->ops->is_enabled(rdev);
1840 1841 1842 1843 1844 1845
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1846 1847 1848 1849 1850 1851 1852
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1853 1854 1855
 */
int regulator_is_enabled(struct regulator *regulator)
{
1856 1857
	int ret;

1858 1859 1860
	if (regulator->always_on)
		return 1;

1861 1862 1863 1864 1865
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1866 1867 1868
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{
	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
/**
 * regulator_list_voltage_table - List voltages with table based mapping
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with table based mapping between voltages and
 * selectors can set volt_table in the regulator descriptor
 * and then use this function as their list_voltage() operation.
 */
int regulator_list_voltage_table(struct regulator_dev *rdev,
				 unsigned int selector)
{
	if (!rdev->desc->volt_table) {
		BUG_ON(!rdev->desc->volt_table);
		return -EINVAL;
	}

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);

1930 1931 1932 1933 1934 1935 1936
/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1937
 * zero if this selector code can't be used on this system, or a
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
1976
	struct regulator_dev *rdev = regulator->rdev;
1977 1978
	int i, voltages, ret;

1979 1980 1981 1982
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
1983
			return (min_uV <= ret && ret <= max_uV);
1984 1985 1986 1987
		else
			return ret;
	}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2002
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
				  rdev->desc->vsel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	int best_val = INT_MAX;
	int selector = 0;
	int i, ret;

	/* Find the smallest voltage that falls within the specified
	 * range.
	 */
	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
			best_val = ret;
			selector = i;
		}
	}

	if (best_val != INT_MAX)
		return selector;
	else
		return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int ret, voltage;

2103 2104 2105 2106 2107 2108 2109 2110
	/* Allow uV_step to be 0 for fixed voltage */
	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
			return 0;
		else
			return -EINVAL;
	}

2111 2112 2113 2114 2115
	if (!rdev->desc->uV_step) {
		BUG_ON(!rdev->desc->uV_step);
		return -EINVAL;
	}

2116 2117 2118
	if (min_uV < rdev->desc->min_uV)
		min_uV = rdev->desc->min_uV;

2119
	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (ret < 0)
		return ret;

	/* Map back into a voltage to verify we're still in bounds */
	voltage = rdev->desc->ops->list_voltage(rdev, ret);
	if (voltage < min_uV || voltage > max_uV)
		return -EINVAL;

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);

2132 2133 2134 2135
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2136
	int delay = 0;
2137
	int best_val = 0;
2138
	unsigned int selector;
2139
	int old_selector = -1;
2140 2141 2142

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2143 2144 2145
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2146 2147 2148 2149
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2150 2151
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2152 2153 2154 2155 2156 2157
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2158 2159 2160
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2161 2162 2163 2164 2165 2166 2167 2168 2169

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2170
	} else if (rdev->desc->ops->set_voltage_sel) {
2171
		if (rdev->desc->ops->map_voltage) {
2172 2173
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2174 2175 2176 2177 2178 2179 2180 2181 2182
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2183

2184
		if (ret >= 0) {
2185 2186 2187 2188 2189 2190 2191 2192
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
				ret = rdev->desc->ops->set_voltage_sel(rdev,
								       ret);
			} else {
				ret = -EINVAL;
			}
2193
		}
2194 2195 2196
	} else {
		ret = -EINVAL;
	}
2197

2198
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2199
	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2200
	    rdev->desc->ops->set_voltage_time_sel) {
2201

2202 2203 2204 2205 2206 2207
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2208
		}
2209

2210 2211 2212 2213 2214 2215 2216
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2217 2218
	}

2219 2220 2221
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2222
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2223 2224
				     (void *)data);
	}
2225

2226
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2227 2228 2229 2230

	return ret;
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2246
 * Regulator system constraints must be set for this regulator before
2247 2248 2249 2250 2251
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2252
	int ret = 0;
2253 2254 2255

	mutex_lock(&rdev->mutex);

2256 2257 2258 2259 2260 2261 2262
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2263
	/* sanity check */
2264 2265
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2276

2277 2278 2279 2280
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

2281
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2282

2283 2284 2285 2286 2287 2288
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2334
/**
2335 2336
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2337 2338 2339 2340 2341 2342
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2343
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2344
 * set_voltage_time_sel() operation.
2345 2346 2347 2348 2349
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2350
	unsigned int ramp_delay = 0;
2351
	int old_volt, new_volt;
2352 2353 2354 2355 2356 2357 2358

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2359
		rdev_warn(rdev, "ramp_delay not set\n");
2360
		return 0;
2361
	}
2362

2363 2364 2365
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2366

2367 2368 2369 2370
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2371
}
2372
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2421 2422
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2423
	int sel, ret;
2424 2425 2426 2427 2428

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2429
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2430
	} else if (rdev->desc->ops->get_voltage) {
2431
		ret = rdev->desc->ops->get_voltage(rdev);
2432 2433
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2434
	} else {
2435
		return -EINVAL;
2436
	}
2437

2438 2439
	if (ret < 0)
		return ret;
2440
	return ret - rdev->constraints->uV_offset;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2556
	int regulator_curr_mode;
2557 2558 2559 2560 2561 2562 2563 2564 2565

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2566 2567 2568 2569 2570 2571 2572 2573 2574
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2575
	/* constraints check */
2576
	ret = regulator_mode_constrain(rdev, &mode);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2647
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2648 2649
	unsigned int mode;

2650 2651 2652
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2653 2654
	mutex_lock(&rdev->mutex);

2655 2656 2657 2658
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2659 2660
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2661 2662
	if (ret < 0) {
		ret = 0;
2663
		goto out;
2664
	}
2665 2666 2667 2668

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2669 2670 2671 2672 2673 2674
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2675 2676 2677
	if (!rdev->desc->ops->set_mode)
		goto out;

2678
	/* get output voltage */
2679
	output_uV = _regulator_get_voltage(rdev);
2680
	if (output_uV <= 0) {
2681
		rdev_err(rdev, "invalid output voltage found\n");
2682 2683 2684
		goto out;
	}

2685
	/* No supply? Use constraint voltage */
2686
	if (input_uV <= 0)
2687 2688
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2689
		rdev_err(rdev, "invalid input voltage found\n");
2690 2691 2692 2693 2694
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2695
		total_uA_load += consumer->uA_load;
2696 2697 2698 2699

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2700
	ret = regulator_mode_constrain(rdev, &mode);
2701
	if (ret < 0) {
2702 2703
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2704 2705 2706 2707
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2708
	if (ret < 0) {
2709
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2710 2711 2712 2713 2714 2715 2716 2717 2718
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
/**
 * regulator_set_bypass_regmap - Default set_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: state to set.
 */
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
{
	unsigned int val;

	if (enable)
		val = rdev->desc->bypass_mask;
	else
		val = 0;

	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
				  rdev->desc->bypass_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);

/**
 * regulator_get_bypass_regmap - Default get_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: current state.
 */
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
	if (ret != 0)
		return ret;

	*enable = val & rdev->desc->bypass_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
 * @allow: enable or disable bypass mode
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2813 2814 2815
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2816
 * @nb: notifier block
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2831
 * @nb: notifier block
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2843 2844 2845
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2846 2847 2848 2849
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2850
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2881 2882
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2883 2884 2885 2886 2887 2888 2889 2890
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2891
	while (--i >= 0)
2892 2893 2894 2895 2896 2897
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2944 2945 2946 2947 2948 2949 2950
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2966
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2967
	int i;
2968
	int ret = 0;
2969

2970 2971 2972 2973 2974 2975 2976
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2977 2978 2979 2980

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2981
	for (i = 0; i < num_consumers; i++) {
2982 2983
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2984
			goto err;
2985
		}
2986 2987 2988 2989 2990
	}

	return 0;

err:
2991 2992 2993
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3007 3008
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3009 3010 3011 3012 3013 3014
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3015
	int ret, r;
3016

3017
	for (i = num_consumers - 1; i >= 0; --i) {
3018 3019 3020 3021 3022 3023 3024 3025
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3026
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3027 3028 3029 3030 3031 3032
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3033 3034 3035 3036 3037

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3098
 * @rdev: regulator source
3099
 * @event: notifier block
3100
 * @data: callback-specific data.
3101 3102 3103
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3104
 * Note lock must be held by caller.
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3131
	case REGULATOR_MODE_STANDBY:
3132 3133
		return REGULATOR_STATUS_STANDBY;
	default:
3134
		return REGULATOR_STATUS_UNDEFINED;
3135 3136 3137 3138
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3150
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3151 3152
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3172 3173 3174 3175 3176
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3177 3178 3179 3180 3181
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3198
	if (ops->set_voltage || ops->set_voltage_sel) {
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3258 3259 3260
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3261
	if (!rdev->debugfs) {
3262 3263 3264 3265 3266 3267 3268 3269
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3270 3271
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3272 3273
}

3274 3275
/**
 * regulator_register - register regulator
3276
 * @regulator_desc: regulator to register
3277
 * @config: runtime configuration for regulator
3278 3279 3280 3281
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
3282 3283
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3284
		   const struct regulator_config *config)
3285
{
3286
	const struct regulation_constraints *constraints = NULL;
3287
	const struct regulator_init_data *init_data;
3288 3289
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3290
	struct device *dev;
3291
	int ret, i;
3292
	const char *supply = NULL;
3293

3294
	if (regulator_desc == NULL || config == NULL)
3295 3296
		return ERR_PTR(-EINVAL);

3297
	dev = config->dev;
3298
	WARN_ON(!dev);
3299

3300 3301 3302
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3303 3304
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3305 3306
		return ERR_PTR(-EINVAL);

3307 3308 3309
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3310 3311
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3312 3313 3314 3315 3316 3317

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3318 3319 3320 3321
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3322

3323 3324
	init_data = config->init_data;

3325 3326 3327 3328 3329 3330 3331
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3332
	rdev->reg_data = config->driver_data;
3333 3334
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3335 3336
	if (config->regmap)
		rdev->regmap = config->regmap;
3337
	else if (dev_get_regmap(dev, NULL))
3338
		rdev->regmap = dev_get_regmap(dev, NULL);
3339 3340
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3341 3342 3343
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3344
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3345

3346
	/* preform any regulator specific init */
3347
	if (init_data && init_data->regulator_init) {
3348
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3349 3350
		if (ret < 0)
			goto clean;
3351 3352 3353
	}

	/* register with sysfs */
3354
	rdev->dev.class = &regulator_class;
3355
	rdev->dev.of_node = config->of_node;
3356
	rdev->dev.parent = dev;
3357 3358
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3359
	ret = device_register(&rdev->dev);
3360 3361
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3362
		goto clean;
3363
	}
3364 3365 3366

	dev_set_drvdata(&rdev->dev, rdev);

3367
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3368 3369 3370 3371 3372 3373
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3374
			goto wash;
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		}

		rdev->ena_gpio = config->ena_gpio;
		rdev->ena_gpio_invert = config->ena_gpio_invert;

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

		if (rdev->ena_gpio_invert)
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3387
	/* set regulator constraints */
3388 3389 3390 3391
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3392 3393 3394
	if (ret < 0)
		goto scrub;

3395 3396 3397 3398 3399
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3400
	if (init_data && init_data->supply_regulator)
3401 3402 3403 3404 3405
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3406 3407
		struct regulator_dev *r;

3408
		r = regulator_dev_lookup(dev, supply, &ret);
3409

3410 3411
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
3412
			ret = -EPROBE_DEFER;
3413 3414 3415 3416 3417 3418
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3419 3420

		/* Enable supply if rail is enabled */
3421
		if (_regulator_is_enabled(rdev)) {
3422 3423 3424 3425
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3426 3427
	}

3428
	/* add consumers devices */
3429 3430 3431 3432
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3433
				init_data->consumer_supplies[i].supply);
3434 3435 3436 3437 3438
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3439
		}
3440
	}
3441 3442

	list_add(&rdev->list, &regulator_list);
3443 3444

	rdev_init_debugfs(rdev);
3445
out:
3446 3447
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3448

3449 3450 3451
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3452
scrub:
3453
	if (rdev->supply)
3454
		_regulator_put(rdev->supply);
3455 3456
	if (rdev->ena_gpio)
		gpio_free(rdev->ena_gpio);
3457
	kfree(rdev->constraints);
3458
wash:
D
David Brownell 已提交
3459
	device_unregister(&rdev->dev);
3460 3461 3462 3463
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3464 3465 3466 3467
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3468 3469 3470 3471 3472
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3473
 * @rdev: regulator to unregister
3474 3475 3476 3477 3478 3479 3480 3481
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3482 3483
	if (rdev->supply)
		regulator_put(rdev->supply);
3484
	mutex_lock(&regulator_list_mutex);
3485
	debugfs_remove_recursive(rdev->debugfs);
3486
	flush_work(&rdev->disable_work.work);
3487
	WARN_ON(rdev->open_count);
3488
	unset_regulator_supplies(rdev);
3489
	list_del(&rdev->list);
3490
	kfree(rdev->constraints);
3491 3492
	if (rdev->ena_gpio)
		gpio_free(rdev->ena_gpio);
3493
	device_unregister(&rdev->dev);
3494 3495 3496 3497 3498
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3499
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3522
			rdev_err(rdev, "failed to prepare\n");
3523 3524 3525 3526 3527 3528 3529 3530 3531
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3558
			if (!_regulator_is_enabled(rdev))
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3606 3607
/**
 * rdev_get_drvdata - get rdev regulator driver data
3608
 * @rdev: regulator
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3645
 * @rdev: regulator
3646 3647 3648 3649 3650 3651 3652
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3695
#endif
3696 3697

static const struct file_operations supply_map_fops = {
3698
#ifdef CONFIG_DEBUG_FS
3699 3700 3701
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3702
};
3703

3704 3705
static int __init regulator_init(void)
{
3706 3707 3708 3709
	int ret;

	ret = class_register(&regulator_class);

3710
	debugfs_root = debugfs_create_dir("regulator", NULL);
3711
	if (!debugfs_root)
3712
		pr_warn("regulator: Failed to create debugfs directory\n");
3713

3714 3715
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3716

3717 3718 3719
	regulator_dummy_init();

	return ret;
3720 3721 3722 3723
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3724 3725 3726 3727 3728 3729 3730 3731

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3732 3733 3734 3735 3736 3737 3738 3739 3740
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3751
		if (!ops->disable || (c && c->always_on))
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3771
			rdev_info(rdev, "disabling\n");
3772 3773
			ret = ops->disable(rdev);
			if (ret != 0) {
3774
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3775 3776 3777 3778 3779 3780 3781
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3782
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);