core.c 86.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/of.h>
27
#include <linux/regmap.h>
28
#include <linux/regulator/of_regulator.h>
29 30 31
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
32
#include <linux/module.h>
33

34 35 36
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

37 38
#include "dummy.h"

M
Mark Brown 已提交
39 40
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 42 43 44 45 46 47 48 49
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

50 51 52
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
53
static bool has_full_constraints;
54
static bool board_wants_dummy_regulator;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
84
	struct dentry *debugfs;
85 86 87
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
88
static int _regulator_disable(struct regulator_dev *rdev);
89 90 91 92 93
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
94 95
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
96 97 98
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
99

100 101 102 103 104 105 106 107 108 109
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
152
		dev_dbg(dev, "Looking up %s property in node %s failed",
153 154 155 156 157 158
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

159 160 161 162 163 164 165
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
166
		rdev_err(rdev, "no constraints\n");
167 168 169
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
170
		rdev_err(rdev, "operation not allowed\n");
171 172 173 174 175 176 177 178
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

179 180
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
181
			 *min_uV, *max_uV);
182
		return -EINVAL;
183
	}
184 185 186 187

	return 0;
}

188 189 190 191 192 193 194 195 196
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
197 198 199 200 201 202 203
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

204 205 206 207 208 209 210 211 212 213 214 215
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

216 217 218 219 220 221 222
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
223
		rdev_err(rdev, "no constraints\n");
224 225 226
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
227
		rdev_err(rdev, "operation not allowed\n");
228 229 230 231 232 233 234 235
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

236 237
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
238
			 *min_uA, *max_uA);
239
		return -EINVAL;
240
	}
241 242 243 244 245

	return 0;
}

/* operating mode constraint check */
246
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
247
{
248
	switch (*mode) {
249 250 251 252 253 254
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
255
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
256 257 258
		return -EINVAL;
	}

259
	if (!rdev->constraints) {
260
		rdev_err(rdev, "no constraints\n");
261 262 263
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
264
		rdev_err(rdev, "operation not allowed\n");
265 266
		return -EPERM;
	}
267 268 269 270 271 272 273 274

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
275
	}
276 277

	return -EINVAL;
278 279 280 281 282 283
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
284
		rdev_err(rdev, "no constraints\n");
285 286 287
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
288
		rdev_err(rdev, "operation not allowed\n");
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
309
	struct regulator_dev *rdev = dev_get_drvdata(dev);
310 311 312 313 314 315 316 317
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
318
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
319 320 321 322

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
323
	struct regulator_dev *rdev = dev_get_drvdata(dev);
324 325 326

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
327
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
328

329 330 331 332 333
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

334
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
335 336
}

D
David Brownell 已提交
337
static ssize_t regulator_print_opmode(char *buf, int mode)
338 339 340 341 342 343 344 345 346 347 348 349 350 351
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
352 353
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
354
{
355
	struct regulator_dev *rdev = dev_get_drvdata(dev);
356

D
David Brownell 已提交
357 358
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
359
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
360 361 362

static ssize_t regulator_print_state(char *buf, int state)
{
363 364 365 366 367 368 369 370
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
371 372 373 374
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
375 376 377 378 379
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
380

381
	return ret;
D
David Brownell 已提交
382
}
383
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
384

D
David Brownell 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

426 427 428
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
429
	struct regulator_dev *rdev = dev_get_drvdata(dev);
430 431 432 433 434 435

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
436
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
437 438 439 440

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
441
	struct regulator_dev *rdev = dev_get_drvdata(dev);
442 443 444 445 446 447

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
448
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
449 450 451 452

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
453
	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 455 456 457 458 459

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
460
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
461 462 463 464

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
465
	struct regulator_dev *rdev = dev_get_drvdata(dev);
466 467 468 469 470 471

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
472
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
473 474 475 476

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
477
	struct regulator_dev *rdev = dev_get_drvdata(dev);
478 479 480 481 482
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
483
		uA += regulator->uA_load;
484 485 486
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
487
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
488 489 490 491

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
492
	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 494 495 496 497 498
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
499
	struct regulator_dev *rdev = dev_get_drvdata(dev);
500 501 502 503 504 505 506 507 508 509 510 511 512

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
513
	struct regulator_dev *rdev = dev_get_drvdata(dev);
514 515 516

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
517 518
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
519 520 521 522

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
523
	struct regulator_dev *rdev = dev_get_drvdata(dev);
524 525 526

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
527 528
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
529 530 531 532

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
533
	struct regulator_dev *rdev = dev_get_drvdata(dev);
534 535 536

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
537 538
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
539 540 541 542

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
543
	struct regulator_dev *rdev = dev_get_drvdata(dev);
544

D
David Brownell 已提交
545 546
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
547
}
548 549
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
550 551 552 553

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
554
	struct regulator_dev *rdev = dev_get_drvdata(dev);
555

D
David Brownell 已提交
556 557
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
558
}
559 560
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
561 562 563 564

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
565
	struct regulator_dev *rdev = dev_get_drvdata(dev);
566

D
David Brownell 已提交
567 568
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
569
}
570 571
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
572 573 574 575

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
576
	struct regulator_dev *rdev = dev_get_drvdata(dev);
577

D
David Brownell 已提交
578 579
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
580
}
581 582
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
583 584 585 586

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588

D
David Brownell 已提交
589 590
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
591
}
592 593
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
594 595 596 597

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
598
	struct regulator_dev *rdev = dev_get_drvdata(dev);
599

D
David Brownell 已提交
600 601
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
602
}
603 604 605
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

606

607 608 609 610
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
611
static struct device_attribute regulator_dev_attrs[] = {
612
	__ATTR(name, 0444, regulator_name_show, NULL),
613 614 615 616 617 618 619
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
620
	struct regulator_dev *rdev = dev_get_drvdata(dev);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
640 641 642
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
643
		return;
644 645

	/* get output voltage */
646
	output_uV = _regulator_get_voltage(rdev);
647 648 649 650
	if (output_uV <= 0)
		return;

	/* get input voltage */
651 652 653 654
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
655 656 657 658 659 660
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
661
		current_uA += sibling->uA_load;
662 663 664 665 666 667

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
668
	err = regulator_mode_constrain(rdev, &mode);
669 670 671 672 673 674 675 676
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
677 678 679 680 681 682 683 684 685 686 687
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
688
			rdev_warn(rdev, "No configuration\n");
689 690 691 692
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
693
		rdev_err(rdev, "invalid configuration\n");
694 695
		return -EINVAL;
	}
696

697
	if (!can_set_state) {
698
		rdev_err(rdev, "no way to set suspend state\n");
699
		return -EINVAL;
700
	}
701 702 703 704 705 706

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
707
		rdev_err(rdev, "failed to enabled/disable\n");
708 709 710 711 712 713
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
714
			rdev_err(rdev, "failed to set voltage\n");
715 716 717 718 719 720 721
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
722
			rdev_err(rdev, "failed to set mode\n");
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
753
	char buf[80] = "";
754 755
	int count = 0;
	int ret;
756

757
	if (constraints->min_uV && constraints->max_uV) {
758
		if (constraints->min_uV == constraints->max_uV)
759 760
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
761
		else
762 763 764 765 766 767 768 769 770 771 772 773
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

774 775 776 777
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

778
	if (constraints->min_uA && constraints->max_uA) {
779
		if (constraints->min_uA == constraints->max_uA)
780 781
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
782
		else
783 784 785 786 787 788 789 790 791
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
792
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
793
	}
794

795 796 797 798 799 800 801 802 803
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

M
Mark Brown 已提交
804
	rdev_info(rdev, "%s\n", buf);
805 806 807 808 809

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
810 811
}

812
static int machine_constraints_voltage(struct regulator_dev *rdev,
813
	struct regulation_constraints *constraints)
814
{
815
	struct regulator_ops *ops = rdev->desc->ops;
816 817 818 819
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
820 821 822 823 824 825 826 827 828
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
829
	}
830

831 832 833 834 835 836 837 838 839 840 841
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

842 843
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
844
		if (count == 1 && !cmin) {
845
			cmin = 1;
846
			cmax = INT_MAX;
847 848
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
849 850
		}

851 852
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
853
			return 0;
854

855
		/* else require explicit machine-level constraints */
856
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857
			rdev_err(rdev, "invalid voltage constraints\n");
858
			return -EINVAL;
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
878
			rdev_err(rdev, "unsupportable voltage constraints\n");
879
			return -EINVAL;
880 881 882 883
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
884 885
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
886 887 888
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
889 890
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
891 892 893 894
			constraints->max_uV = max_uV;
		}
	}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
910
	const struct regulation_constraints *constraints)
911 912 913 914
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

915 916 917 918 919 920
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
921 922
	if (!rdev->constraints)
		return -ENOMEM;
923

924
	ret = machine_constraints_voltage(rdev, rdev->constraints);
925 926 927
	if (ret != 0)
		goto out;

928
	/* do we need to setup our suspend state */
929
	if (rdev->constraints->initial_state) {
930
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931
		if (ret < 0) {
932
			rdev_err(rdev, "failed to set suspend state\n");
933 934 935
			goto out;
		}
	}
936

937
	if (rdev->constraints->initial_mode) {
938
		if (!ops->set_mode) {
939
			rdev_err(rdev, "no set_mode operation\n");
940 941 942 943
			ret = -EINVAL;
			goto out;
		}

944
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945
		if (ret < 0) {
946
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947 948 949 950
			goto out;
		}
	}

951 952 953
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
954 955
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
956 957
		ret = ops->enable(rdev);
		if (ret < 0) {
958
			rdev_err(rdev, "failed to enable\n");
959 960 961 962
			goto out;
		}
	}

963
	print_constraints(rdev);
964
	return 0;
965
out:
966 967
	kfree(rdev->constraints);
	rdev->constraints = NULL;
968 969 970 971 972
	return ret;
}

/**
 * set_supply - set regulator supply regulator
973 974
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
975 976 977 978 979 980
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
981
		      struct regulator_dev *supply_rdev)
982 983 984
{
	int err;

985 986 987
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988 989
	if (rdev->supply == NULL) {
		err = -ENOMEM;
990
		return err;
991
	}
992 993

	return 0;
994 995 996
}

/**
997
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
998
 * @rdev:         regulator source
999
 * @consumer_dev_name: dev_name() string for device supply applies to
1000
 * @supply:       symbolic name for supply
1001 1002 1003 1004 1005 1006 1007
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1008 1009
				      const char *consumer_dev_name,
				      const char *supply)
1010 1011
{
	struct regulator_map *node;
1012
	int has_dev;
1013 1014 1015 1016

	if (supply == NULL)
		return -EINVAL;

1017 1018 1019 1020 1021
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1022
	list_for_each_entry(node, &regulator_map_list, list) {
1023 1024 1025 1026
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1027
			continue;
1028 1029
		}

1030 1031 1032
		if (strcmp(node->supply, supply) != 0)
			continue;

1033 1034 1035 1036 1037 1038
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1039 1040 1041
		return -EBUSY;
	}

1042
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1043 1044 1045 1046 1047 1048
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1049 1050 1051 1052 1053 1054
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1055 1056
	}

1057 1058 1059 1060
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1061 1062 1063 1064 1065 1066 1067
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1068
			kfree(node->dev_name);
1069 1070 1071 1072 1073
			kfree(node);
		}
	}
}

1074
#define REG_STR_SIZE	64
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
1094 1095 1096
		size = scnprintf(buf, REG_STR_SIZE,
				 "microamps_requested_%s-%s",
				 dev_name(dev), supply_name);
1097 1098 1099 1100
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1101
		sysfs_attr_init(&regulator->dev_attr.attr);
1102 1103 1104 1105 1106 1107 1108 1109
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1110
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1127 1128
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1129 1130
			goto link_name_err;
		}
1131 1132 1133 1134 1135 1136 1137 1138
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1139
	if (!regulator->debugfs) {
1140 1141 1142 1143 1144 1145 1146 1147
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1148
	}
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1165 1166 1167 1168 1169 1170 1171
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
							 const char *supply)
{
	struct regulator_dev *r;
	struct device_node *node;

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
		if (node)
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
	}

	/* if not found, try doing it non-dt way */
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

	return NULL;
}

1196 1197 1198
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1199 1200 1201
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
1202
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1203
	const char *devname = NULL;
1204
	int ret;
1205 1206

	if (id == NULL) {
1207
		pr_err("get() with no identifier\n");
1208 1209 1210
		return regulator;
	}

1211 1212 1213
	if (dev)
		devname = dev_name(dev);

1214 1215
	mutex_lock(&regulator_list_mutex);

1216 1217 1218 1219
	rdev = regulator_dev_lookup(dev, id);
	if (rdev)
		goto found;

1220
	list_for_each_entry(map, &regulator_map_list, list) {
1221 1222 1223 1224 1225 1226
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1227
			rdev = map->regulator;
1228
			goto found;
1229
		}
1230
	}
1231

1232 1233 1234 1235 1236
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1237 1238 1239 1240 1241 1242 1243 1244
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1245 1246
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1247 1248 1249 1250 1251
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1252 1253 1254 1255
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1266 1267 1268
	if (!try_module_get(rdev->owner))
		goto out;

1269 1270 1271 1272
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1273
		goto out;
1274 1275
	}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1287
out:
1288
	mutex_unlock(&regulator_list_mutex);
1289

1290 1291
	return regulator;
}
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1310 1311
EXPORT_SYMBOL_GPL(regulator_get);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1391 1392
	debugfs_remove_recursive(regulator->debugfs);

1393 1394 1395 1396 1397 1398
	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
1399
	kfree(regulator->supply_name);
1400 1401 1402
	list_del(&regulator->list);
	kfree(regulator);

1403 1404 1405
	rdev->open_count--;
	rdev->exclusive = 0;

1406 1407 1408 1409 1410
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

	rc = devres_destroy(regulator->dev, devm_regulator_release,
			    devm_regulator_match, regulator);
	WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1450 1451 1452
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1453
	int ret, delay;
1454 1455

	/* check voltage and requested load before enabling */
1456 1457 1458
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1459

1460 1461 1462 1463 1464 1465 1466
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1467
			if (!rdev->desc->ops->enable)
1468
				return -EINVAL;
1469 1470

			/* Query before enabling in case configuration
L
Lucas De Marchi 已提交
1471
			 * dependent.  */
1472 1473 1474 1475
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1476
				rdev_warn(rdev, "enable_time() failed: %d\n",
1477
					   ret);
1478
				delay = 0;
1479
			}
1480

1481 1482
			trace_regulator_enable(rdev_get_name(rdev));

1483 1484 1485 1486 1487 1488 1489
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1490 1491
			trace_regulator_enable_delay(rdev_get_name(rdev));

1492
			if (delay >= 1000) {
1493
				mdelay(delay / 1000);
1494 1495
				udelay(delay % 1000);
			} else if (delay) {
1496
				udelay(delay);
1497
			}
1498

1499 1500
			trace_regulator_enable_complete(rdev_get_name(rdev));

1501
		} else if (ret < 0) {
1502
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1503 1504
			return ret;
		}
1505
		/* Fallthrough on positive return values - already enabled */
1506 1507
	}

1508 1509 1510
	rdev->use_count++;

	return 0;
1511 1512 1513 1514 1515 1516
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1517 1518 1519 1520
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1521
 * NOTE: the output value can be set by other drivers, boot loader or may be
1522
 * hardwired in the regulator.
1523 1524 1525
 */
int regulator_enable(struct regulator *regulator)
{
1526 1527
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1528

1529 1530 1531 1532 1533 1534
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1535
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1536
	ret = _regulator_enable(rdev);
1537
	mutex_unlock(&rdev->mutex);
1538

1539
	if (ret != 0 && rdev->supply)
1540 1541
		regulator_disable(rdev->supply);

1542 1543 1544 1545 1546
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1547
static int _regulator_disable(struct regulator_dev *rdev)
1548 1549 1550
{
	int ret = 0;

D
David Brownell 已提交
1551
	if (WARN(rdev->use_count <= 0,
1552
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1553 1554
		return -EIO;

1555
	/* are we the last user and permitted to disable ? */
1556 1557
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1558 1559

		/* we are last user */
1560 1561
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1562 1563
			trace_regulator_disable(rdev_get_name(rdev));

1564 1565
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1566
				rdev_err(rdev, "failed to disable\n");
1567 1568
				return ret;
			}
1569

1570 1571
			trace_regulator_disable_complete(rdev_get_name(rdev));

1572 1573
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1586

1587 1588 1589 1590 1591 1592 1593
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1594 1595 1596
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1597
 *
1598
 * NOTE: this will only disable the regulator output if no other consumer
1599 1600
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1601 1602 1603
 */
int regulator_disable(struct regulator *regulator)
{
1604 1605
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1606

1607
	mutex_lock(&rdev->mutex);
1608
	ret = _regulator_disable(rdev);
1609
	mutex_unlock(&rdev->mutex);
1610

1611 1612
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1613

1614 1615 1616 1617 1618
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1619
static int _regulator_force_disable(struct regulator_dev *rdev)
1620 1621 1622 1623 1624 1625 1626 1627
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1628
			rdev_err(rdev, "failed to force disable\n");
1629 1630 1631
			return ret;
		}
		/* notify other consumers that power has been forced off */
1632 1633
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1650
	struct regulator_dev *rdev = regulator->rdev;
1651 1652
	int ret;

1653
	mutex_lock(&rdev->mutex);
1654
	regulator->uA_load = 0;
1655
	ret = _regulator_force_disable(regulator->rdev);
1656
	mutex_unlock(&rdev->mutex);
1657

1658 1659 1660
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1661

1662 1663 1664 1665
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1713
	int ret;
1714 1715 1716 1717 1718

	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1719 1720 1721 1722 1723 1724
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1725 1726 1727
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

	return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask,
				  rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1783 1784
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1785
	/* If we don't know then assume that the regulator is always on */
1786
	if (!rdev->desc->ops->is_enabled)
1787
		return 1;
1788

1789
	return rdev->desc->ops->is_enabled(rdev);
1790 1791 1792 1793 1794 1795
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1796 1797 1798 1799 1800 1801 1802
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1803 1804 1805
 */
int regulator_is_enabled(struct regulator *regulator)
{
1806 1807 1808 1809 1810 1811 1812
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1813 1814 1815
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1839
 * zero if this selector code can't be used on this system, or a
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1894
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
				  rdev->desc->vsel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

1940 1941 1942 1943
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
1944
	int delay = 0;
1945 1946 1947 1948
	unsigned int selector;

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1949 1950 1951
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

1952 1953 1954 1955 1956 1957 1958 1959 1960
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);

		if (rdev->desc->ops->list_voltage)
			selector = rdev->desc->ops->list_voltage(rdev,
								 selector);
		else
			selector = -1;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	} else if (rdev->desc->ops->set_voltage_sel) {
		int best_val = INT_MAX;
		int i;

		selector = 0;

		/* Find the smallest voltage that falls within the specified
		 * range.
		 */
		for (i = 0; i < rdev->desc->n_voltages; i++) {
			ret = rdev->desc->ops->list_voltage(rdev, i);
			if (ret < 0)
				continue;

			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
				best_val = ret;
				selector = i;
			}
		}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		/*
		 * If we can't obtain the old selector there is not enough
		 * info to call set_voltage_time_sel().
		 */
		if (rdev->desc->ops->set_voltage_time_sel &&
		    rdev->desc->ops->get_voltage_sel) {
			unsigned int old_selector = 0;

			ret = rdev->desc->ops->get_voltage_sel(rdev);
			if (ret < 0)
				return ret;
			old_selector = ret;
1993
			ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1994
						old_selector, selector);
1995 1996 1997 1998
			if (ret < 0)
				rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
			else
				delay = ret;
1999 2000
		}

2001 2002 2003 2004 2005 2006
		if (best_val != INT_MAX) {
			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
			selector = best_val;
		} else {
			ret = -EINVAL;
		}
2007 2008 2009 2010
	} else {
		ret = -EINVAL;
	}

2011 2012 2013 2014 2015 2016 2017 2018
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

2019 2020 2021 2022
	if (ret == 0)
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
				     NULL);

2023 2024 2025 2026 2027
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

	return ret;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2043
 * Regulator system constraints must be set for this regulator before
2044 2045 2046 2047 2048
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2049
	int ret = 0;
2050 2051 2052

	mutex_lock(&rdev->mutex);

2053 2054 2055 2056 2057 2058 2059
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2060
	/* sanity check */
2061 2062
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2073

2074 2075 2076 2077
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

2078
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2079

2080 2081 2082 2083 2084 2085
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2178 2179
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2180
	int sel, ret;
2181 2182 2183 2184 2185

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2186
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2187
	} else if (rdev->desc->ops->get_voltage) {
2188
		ret = rdev->desc->ops->get_voltage(rdev);
2189
	} else {
2190
		return -EINVAL;
2191
	}
2192

2193 2194
	if (ret < 0)
		return ret;
2195
	return ret - rdev->constraints->uV_offset;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2311
	int regulator_curr_mode;
2312 2313 2314 2315 2316 2317 2318 2319 2320

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2321 2322 2323 2324 2325 2326 2327 2328 2329
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2330
	/* constraints check */
2331
	ret = regulator_mode_constrain(rdev, &mode);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

2407 2408 2409 2410
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2411 2412
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2413 2414
	if (ret < 0) {
		ret = 0;
2415
		goto out;
2416
	}
2417 2418 2419 2420

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2421 2422 2423 2424 2425 2426
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2427
	/* get output voltage */
2428
	output_uV = _regulator_get_voltage(rdev);
2429
	if (output_uV <= 0) {
2430
		rdev_err(rdev, "invalid output voltage found\n");
2431 2432 2433 2434
		goto out;
	}

	/* get input voltage */
2435 2436
	input_uV = 0;
	if (rdev->supply)
2437
		input_uV = regulator_get_voltage(rdev->supply);
2438
	if (input_uV <= 0)
2439 2440
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2441
		rdev_err(rdev, "invalid input voltage found\n");
2442 2443 2444 2445 2446
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2447
		total_uA_load += consumer->uA_load;
2448 2449 2450 2451

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2452
	ret = regulator_mode_constrain(rdev, &mode);
2453
	if (ret < 0) {
2454 2455
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2456 2457 2458 2459
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2460
	if (ret < 0) {
2461
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2474
 * @nb: notifier block
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2489
 * @nb: notifier block
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2501 2502 2503
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2539 2540
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2541 2542 2543 2544 2545 2546 2547 2548
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2549
	while (--i >= 0)
2550 2551 2552 2553 2554 2555
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2602 2603 2604 2605 2606 2607 2608
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2624
	LIST_HEAD(async_domain);
2625
	int i;
2626
	int ret = 0;
2627

2628 2629 2630 2631 2632 2633 2634
	for (i = 0; i < num_consumers; i++)
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2635
	for (i = 0; i < num_consumers; i++) {
2636 2637
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2638
			goto err;
2639
		}
2640 2641 2642 2643 2644
	}

	return 0;

err:
2645 2646 2647
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2661 2662
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2663 2664 2665 2666 2667 2668 2669 2670
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

2671
	for (i = num_consumers - 1; i >= 0; --i) {
2672 2673 2674 2675 2676 2677 2678 2679
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2680
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2681
	for (++i; i < num_consumers; ++i)
2682 2683 2684 2685 2686 2687
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2748
 * @rdev: regulator source
2749
 * @event: notifier block
2750
 * @data: callback-specific data.
2751 2752 2753
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2754
 * Note lock must be held by caller.
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2800 2801
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2821 2822 2823 2824 2825
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
2842
	if (ops->set_voltage || ops->set_voltage_sel) {
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2906 2907 2908
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2909
	if (!rdev->debugfs) {
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

2920 2921
/**
 * regulator_register - register regulator
2922
 * @regulator_desc: regulator to register
2923
 * @config: runtime configuration for regulator
2924 2925 2926 2927
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
2928 2929
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
2930
		   const struct regulator_config *config)
2931
{
2932
	const struct regulation_constraints *constraints = NULL;
2933
	const struct regulator_init_data *init_data;
2934 2935
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2936
	struct device *dev;
2937
	int ret, i;
2938
	const char *supply = NULL;
2939

2940
	if (regulator_desc == NULL || config == NULL)
2941 2942
		return ERR_PTR(-EINVAL);

2943 2944
	dev = config->dev;

2945 2946 2947
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2948 2949
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2950 2951
		return ERR_PTR(-EINVAL);

2952 2953 2954
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
2955 2956
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
2957 2958 2959 2960 2961 2962

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2963 2964 2965 2966
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
2967

2968 2969
	init_data = config->init_data;

2970 2971 2972 2973 2974 2975 2976
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2977
	rdev->reg_data = config->driver_data;
2978 2979
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
2980
	rdev->regmap = config->regmap;
2981 2982 2983
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2984
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2985

2986
	/* preform any regulator specific init */
2987
	if (init_data && init_data->regulator_init) {
2988
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2989 2990
		if (ret < 0)
			goto clean;
2991 2992 2993
	}

	/* register with sysfs */
2994
	rdev->dev.class = &regulator_class;
2995
	rdev->dev.of_node = config->of_node;
2996
	rdev->dev.parent = dev;
2997 2998
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2999
	ret = device_register(&rdev->dev);
3000 3001
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3002
		goto clean;
3003
	}
3004 3005 3006

	dev_set_drvdata(&rdev->dev, rdev);

3007
	/* set regulator constraints */
3008 3009 3010 3011
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3012 3013 3014
	if (ret < 0)
		goto scrub;

3015 3016 3017 3018 3019
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3020
	if (init_data && init_data->supply_regulator)
3021 3022 3023 3024 3025
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3026 3027
		struct regulator_dev *r;

3028
		r = regulator_dev_lookup(dev, supply);
3029

3030 3031
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
3032
			ret = -EPROBE_DEFER;
3033 3034 3035 3036 3037 3038
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3039 3040 3041 3042 3043 3044 3045 3046

		/* Enable supply if rail is enabled */
		if (rdev->desc->ops->is_enabled &&
				rdev->desc->ops->is_enabled(rdev)) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3047 3048
	}

3049
	/* add consumers devices */
3050 3051 3052 3053
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3054
				init_data->consumer_supplies[i].supply);
3055 3056 3057 3058 3059
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3060
		}
3061
	}
3062 3063

	list_add(&rdev->list, &regulator_list);
3064 3065

	rdev_init_debugfs(rdev);
3066
out:
3067 3068
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3069

3070 3071 3072
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3073
scrub:
3074
	kfree(rdev->constraints);
D
David Brownell 已提交
3075
	device_unregister(&rdev->dev);
3076 3077 3078 3079
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3080 3081 3082 3083
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3084 3085 3086 3087 3088
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3089
 * @rdev: regulator to unregister
3090 3091 3092 3093 3094 3095 3096 3097
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3098 3099
	if (rdev->supply)
		regulator_put(rdev->supply);
3100
	mutex_lock(&regulator_list_mutex);
3101
	debugfs_remove_recursive(rdev->debugfs);
3102
	flush_work_sync(&rdev->disable_work.work);
3103
	WARN_ON(rdev->open_count);
3104
	unset_regulator_supplies(rdev);
3105
	list_del(&rdev->list);
3106
	kfree(rdev->constraints);
3107
	device_unregister(&rdev->dev);
3108 3109 3110 3111 3112
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3113
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3136
			rdev_err(rdev, "failed to prepare\n");
3137 3138 3139 3140 3141 3142 3143 3144 3145
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
			if (ops->is_enabled && !ops->is_enabled(rdev))
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3220 3221
/**
 * rdev_get_drvdata - get rdev regulator driver data
3222
 * @rdev: regulator
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3259
 * @rdev: regulator
3260 3261 3262 3263 3264 3265 3266
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3309
#endif
3310 3311

static const struct file_operations supply_map_fops = {
3312
#ifdef CONFIG_DEBUG_FS
3313 3314 3315
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3316
};
3317

3318 3319
static int __init regulator_init(void)
{
3320 3321 3322 3323
	int ret;

	ret = class_register(&regulator_class);

3324
	debugfs_root = debugfs_create_dir("regulator", NULL);
3325
	if (!debugfs_root)
3326
		pr_warn("regulator: Failed to create debugfs directory\n");
3327

3328 3329
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3330

3331 3332 3333
	regulator_dummy_init();

	return ret;
3334 3335 3336 3337
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3356
		if (!ops->disable || (c && c->always_on))
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3376
			rdev_info(rdev, "disabling\n");
3377 3378
			ret = ops->disable(rdev);
			if (ret != 0) {
3379
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3380 3381 3382 3383 3384 3385 3386
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3387
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);