core.c 98.5 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static bool has_full_constraints;
55
static bool board_wants_dummy_regulator;
56

57 58
static struct dentry *debugfs_root;

59
/*
60 61 62 63 64 65
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
66
	const char *dev_name;   /* The dev_name() for the consumer */
67
	const char *supply;
68
	struct regulator_dev *regulator;
69 70 71 72 73 74 75 76 77 78
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
79
	unsigned int always_on:1;
80
	unsigned int bypass:1;
81 82 83 84 85 86
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
87
	struct dentry *debugfs;
88 89 90
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
91
static int _regulator_disable(struct regulator_dev *rdev);
92 93 94 95 96
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
97 98
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
99 100 101
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
102

103 104 105 106 107 108 109 110 111 112
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
133
		dev_dbg(dev, "Looking up %s property in node %s failed",
134 135 136 137 138 139
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

140 141 142 143 144 145 146 147 148 149 150
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

151 152 153 154 155 156 157
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
158
		rdev_err(rdev, "no constraints\n");
159 160 161
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162
		rdev_err(rdev, "operation not allowed\n");
163 164 165 166 167 168 169 170
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

171 172
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173
			 *min_uV, *max_uV);
174
		return -EINVAL;
175
	}
176 177 178 179

	return 0;
}

180 181 182 183 184 185 186 187 188
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 190 191 192 193 194 195
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

196 197 198 199 200 201
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

202
	if (*min_uV > *max_uV) {
203 204
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
205
		return -EINVAL;
206
	}
207 208 209 210

	return 0;
}

211 212 213 214 215 216 217
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
218
		rdev_err(rdev, "no constraints\n");
219 220 221
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222
		rdev_err(rdev, "operation not allowed\n");
223 224 225 226 227 228 229 230
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

231 232
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233
			 *min_uA, *max_uA);
234
		return -EINVAL;
235
	}
236 237 238 239 240

	return 0;
}

/* operating mode constraint check */
241
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242
{
243
	switch (*mode) {
244 245 246 247 248 249
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
250
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
251 252 253
		return -EINVAL;
	}

254
	if (!rdev->constraints) {
255
		rdev_err(rdev, "no constraints\n");
256 257 258
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259
		rdev_err(rdev, "operation not allowed\n");
260 261
		return -EPERM;
	}
262 263 264 265 266 267 268 269

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
270
	}
271 272

	return -EINVAL;
273 274 275 276 277 278
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
279
		rdev_err(rdev, "no constraints\n");
280 281 282
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283
		rdev_err(rdev, "operation not allowed\n");
284 285 286 287 288 289 290 291
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
292
	struct regulator_dev *rdev = dev_get_drvdata(dev);
293 294 295 296 297 298 299 300
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
301
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302 303 304 305

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
306
	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 308 309

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
310
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311

312 313 314 315 316
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

317
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 319
}

D
David Brownell 已提交
320
static ssize_t regulator_print_opmode(char *buf, int mode)
321 322 323 324 325 326 327 328 329 330 331 332 333 334
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
335 336
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
337
{
338
	struct regulator_dev *rdev = dev_get_drvdata(dev);
339

D
David Brownell 已提交
340 341
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
342
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
343 344 345

static ssize_t regulator_print_state(char *buf, int state)
{
346 347 348 349 350 351 352 353
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
354 355 356 357
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
358 359 360 361 362
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
363

364
	return ret;
D
David Brownell 已提交
365
}
366
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
367

D
David Brownell 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
401 402 403
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
404 405 406
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
407 408 409 410 411 412 413 414
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

415 416 417
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
418
	struct regulator_dev *rdev = dev_get_drvdata(dev);
419 420 421 422 423 424

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
425
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426 427 428 429

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
430
	struct regulator_dev *rdev = dev_get_drvdata(dev);
431 432 433 434 435 436

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
437
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438 439 440 441

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
442
	struct regulator_dev *rdev = dev_get_drvdata(dev);
443 444 445 446 447 448

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
449
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450 451 452 453

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
454
	struct regulator_dev *rdev = dev_get_drvdata(dev);
455 456 457 458 459 460

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
461
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462 463 464 465

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
466
	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 468 469 470 471
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
472
		uA += regulator->uA_load;
473 474 475
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
476
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477 478 479 480

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
481
	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 483 484 485 486 487
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
488
	struct regulator_dev *rdev = dev_get_drvdata(dev);
489 490 491 492 493 494 495 496 497 498 499 500 501

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
502
	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 504 505

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
506 507
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
508 509 510 511

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
512
	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 514 515

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
516 517
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
518 519 520 521

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
522
	struct regulator_dev *rdev = dev_get_drvdata(dev);
523 524 525

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
526 527
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
528 529 530 531

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
532
	struct regulator_dev *rdev = dev_get_drvdata(dev);
533

D
David Brownell 已提交
534 535
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
536
}
537 538
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
539 540 541 542

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
543
	struct regulator_dev *rdev = dev_get_drvdata(dev);
544

D
David Brownell 已提交
545 546
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
547
}
548 549
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
550 551 552 553

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
554
	struct regulator_dev *rdev = dev_get_drvdata(dev);
555

D
David Brownell 已提交
556 557
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
558
}
559 560
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
561 562 563 564

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
565
	struct regulator_dev *rdev = dev_get_drvdata(dev);
566

D
David Brownell 已提交
567 568
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
569
}
570 571
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
572 573 574 575

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
576
	struct regulator_dev *rdev = dev_get_drvdata(dev);
577

D
David Brownell 已提交
578 579
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
580
}
581 582
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
583 584 585 586

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588

D
David Brownell 已提交
589 590
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
591
}
592 593 594
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
616

617 618 619 620
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
621
static struct device_attribute regulator_dev_attrs[] = {
622
	__ATTR(name, 0444, regulator_name_show, NULL),
623 624 625 626 627 628 629
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
630
	struct regulator_dev *rdev = dev_get_drvdata(dev);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650 651 652
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
653
		return;
654 655

	/* get output voltage */
656
	output_uV = _regulator_get_voltage(rdev);
657 658 659 660
	if (output_uV <= 0)
		return;

	/* get input voltage */
661 662
	input_uV = 0;
	if (rdev->supply)
663
		input_uV = regulator_get_voltage(rdev->supply);
664
	if (input_uV <= 0)
665 666 667 668 669 670
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
671
		current_uA += sibling->uA_load;
672 673 674 675 676 677

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
678
	err = regulator_mode_constrain(rdev, &mode);
679 680 681 682 683 684 685 686
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
687 688

	/* If we have no suspend mode configration don't set anything;
689 690
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
691 692
	 */
	if (!rstate->enabled && !rstate->disabled) {
693 694
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
695
			rdev_warn(rdev, "No configuration\n");
696 697 698 699
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
700
		rdev_err(rdev, "invalid configuration\n");
701 702
		return -EINVAL;
	}
703

704
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705
		ret = rdev->desc->ops->set_suspend_enable(rdev);
706
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707
		ret = rdev->desc->ops->set_suspend_disable(rdev);
708 709 710
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

711
	if (ret < 0) {
712
		rdev_err(rdev, "failed to enabled/disable\n");
713 714 715 716 717 718
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
719
			rdev_err(rdev, "failed to set voltage\n");
720 721 722 723 724 725 726
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
727
			rdev_err(rdev, "failed to set mode\n");
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
758
	char buf[80] = "";
759 760
	int count = 0;
	int ret;
761

762
	if (constraints->min_uV && constraints->max_uV) {
763
		if (constraints->min_uV == constraints->max_uV)
764 765
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
766
		else
767 768 769 770 771 772 773 774 775 776 777 778
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

779 780 781 782
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

783
	if (constraints->min_uA && constraints->max_uA) {
784
		if (constraints->min_uA == constraints->max_uA)
785 786
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
787
		else
788 789 790 791 792 793 794 795 796
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
797
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798
	}
799

800 801 802 803 804 805 806 807 808
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

809 810 811
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
812
	rdev_info(rdev, "%s\n", buf);
813 814 815 816 817

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 819
}

820
static int machine_constraints_voltage(struct regulator_dev *rdev,
821
	struct regulation_constraints *constraints)
822
{
823
	struct regulator_ops *ops = rdev->desc->ops;
824 825 826 827
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
828 829 830 831 832 833 834 835 836
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
837
	}
838

839 840 841 842 843 844 845 846 847 848 849
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

850 851
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
852
		if (count == 1 && !cmin) {
853
			cmin = 1;
854
			cmax = INT_MAX;
855 856
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
857 858
		}

859 860
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
861
			return 0;
862

863
		/* else require explicit machine-level constraints */
864
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865
			rdev_err(rdev, "invalid voltage constraints\n");
866
			return -EINVAL;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
886 887 888
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
889
			return -EINVAL;
890 891 892 893
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
894 895
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
896 897 898
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
899 900
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
901 902 903 904
			constraints->max_uV = max_uV;
		}
	}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
920
	const struct regulation_constraints *constraints)
921 922 923 924
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

925 926 927 928 929 930
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
931 932
	if (!rdev->constraints)
		return -ENOMEM;
933

934
	ret = machine_constraints_voltage(rdev, rdev->constraints);
935 936 937
	if (ret != 0)
		goto out;

938
	/* do we need to setup our suspend state */
939
	if (rdev->constraints->initial_state) {
940
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941
		if (ret < 0) {
942
			rdev_err(rdev, "failed to set suspend state\n");
943 944 945
			goto out;
		}
	}
946

947
	if (rdev->constraints->initial_mode) {
948
		if (!ops->set_mode) {
949
			rdev_err(rdev, "no set_mode operation\n");
950 951 952 953
			ret = -EINVAL;
			goto out;
		}

954
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955
		if (ret < 0) {
956
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957 958 959 960
			goto out;
		}
	}

961 962 963
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
964 965
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
966 967
		ret = ops->enable(rdev);
		if (ret < 0) {
968
			rdev_err(rdev, "failed to enable\n");
969 970 971 972
			goto out;
		}
	}

973 974 975 976 977 978 979 980
	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

981
	print_constraints(rdev);
982
	return 0;
983
out:
984 985
	kfree(rdev->constraints);
	rdev->constraints = NULL;
986 987 988 989 990
	return ret;
}

/**
 * set_supply - set regulator supply regulator
991 992
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
993 994 995 996 997 998
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
999
		      struct regulator_dev *supply_rdev)
1000 1001 1002
{
	int err;

1003 1004 1005
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006 1007
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1008
		return err;
1009
	}
1010
	supply_rdev->open_count++;
1011 1012

	return 0;
1013 1014 1015
}

/**
1016
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017
 * @rdev:         regulator source
1018
 * @consumer_dev_name: dev_name() string for device supply applies to
1019
 * @supply:       symbolic name for supply
1020 1021 1022 1023 1024 1025 1026
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1027 1028
				      const char *consumer_dev_name,
				      const char *supply)
1029 1030
{
	struct regulator_map *node;
1031
	int has_dev;
1032 1033 1034 1035

	if (supply == NULL)
		return -EINVAL;

1036 1037 1038 1039 1040
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1041
	list_for_each_entry(node, &regulator_map_list, list) {
1042 1043 1044 1045
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1046
			continue;
1047 1048
		}

1049 1050 1051
		if (strcmp(node->supply, supply) != 0)
			continue;

1052 1053 1054 1055 1056 1057
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1058 1059 1060
		return -EBUSY;
	}

1061
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062 1063 1064 1065 1066 1067
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1068 1069 1070 1071 1072 1073
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1074 1075
	}

1076 1077 1078 1079
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1080 1081 1082 1083 1084 1085 1086
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1087
			kfree(node->dev_name);
1088 1089 1090 1091 1092
			kfree(node);
		}
	}
}

1093
#define REG_STR_SIZE	64
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1112 1113
		regulator->dev = dev;

1114
		/* Add a link to the device sysfs entry */
1115 1116 1117
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1118
			goto overflow_err;
1119 1120 1121

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1122
			goto overflow_err;
1123 1124 1125 1126

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1127 1128
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1129
			/* non-fatal */
1130
		}
1131 1132 1133
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1134
			goto overflow_err;
1135 1136 1137 1138
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1139
	if (!regulator->debugfs) {
1140 1141 1142 1143 1144 1145 1146 1147
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1148
	}
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1159 1160 1161 1162 1163 1164 1165 1166 1167
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1168 1169 1170
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1171
		return rdev->desc->enable_time;
1172 1173 1174
	return rdev->desc->ops->enable_time(rdev);
}

1175
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176 1177
						  const char *supply,
						  int *ret)
1178 1179 1180
{
	struct regulator_dev *r;
	struct device_node *node;
1181 1182
	struct regulator_map *map;
	const char *devname = NULL;
1183 1184 1185 1186

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1187
		if (node) {
1188 1189 1190 1191
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1192 1193 1194 1195 1196 1197 1198 1199 1200
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1201 1202 1203
	}

	/* if not found, try doing it non-dt way */
1204 1205 1206
	if (dev)
		devname = dev_name(dev);

1207 1208 1209 1210
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1222 1223 1224
	return NULL;
}

1225 1226 1227
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1228 1229
{
	struct regulator_dev *rdev;
1230
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231
	const char *devname = NULL;
1232
	int ret;
1233 1234

	if (id == NULL) {
1235
		pr_err("get() with no identifier\n");
1236 1237 1238
		return regulator;
	}

1239 1240 1241
	if (dev)
		devname = dev_name(dev);

1242 1243
	mutex_lock(&regulator_list_mutex);

1244
	rdev = regulator_dev_lookup(dev, id, &ret);
1245 1246 1247
	if (rdev)
		goto found;

1248 1249 1250 1251 1252
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1253 1254 1255 1256 1257 1258 1259 1260
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1261 1262
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1263 1264 1265 1266 1267
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1268 1269 1270 1271
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1282 1283 1284
	if (!try_module_get(rdev->owner))
		goto out;

1285 1286 1287 1288
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1289
		goto out;
1290 1291
	}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1303
out:
1304
	mutex_unlock(&regulator_list_mutex);
1305

1306 1307
	return regulator;
}
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1326 1327
EXPORT_SYMBOL_GPL(regulator_get);

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1389 1390
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1391 1392 1393 1394 1395 1396 1397 1398
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1399 1400
	debugfs_remove_recursive(regulator->debugfs);

1401
	/* remove any sysfs entries */
1402
	if (regulator->dev)
1403
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404
	kfree(regulator->supply_name);
1405 1406 1407
	list_del(&regulator->list);
	kfree(regulator);

1408 1409 1410
	rdev->open_count--;
	rdev->exclusive = 0;

1411
	module_put(rdev->owner);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1426 1427 1428 1429
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1452
	rc = devres_release(regulator->dev, devm_regulator_release,
1453
			    devm_regulator_match, regulator);
1454
	if (rc != 0)
1455
		WARN_ON(rc);
1456 1457 1458
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1474 1475 1476 1477 1478
	if (rdev->ena_gpio) {
		gpio_set_value_cansleep(rdev->ena_gpio,
					!rdev->ena_gpio_invert);
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1503 1504 1505
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1506
	int ret;
1507 1508

	/* check voltage and requested load before enabling */
1509 1510 1511
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1512

1513 1514 1515 1516 1517 1518 1519
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1520
			ret = _regulator_do_enable(rdev);
1521 1522 1523
			if (ret < 0)
				return ret;

1524
		} else if (ret < 0) {
1525
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526 1527
			return ret;
		}
1528
		/* Fallthrough on positive return values - already enabled */
1529 1530
	}

1531 1532 1533
	rdev->use_count++;

	return 0;
1534 1535 1536 1537 1538 1539
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1540 1541 1542 1543
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1544
 * NOTE: the output value can be set by other drivers, boot loader or may be
1545
 * hardwired in the regulator.
1546 1547 1548
 */
int regulator_enable(struct regulator *regulator)
{
1549 1550
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1551

1552 1553 1554
	if (regulator->always_on)
		return 0;

1555 1556 1557 1558 1559 1560
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1561
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1562
	ret = _regulator_enable(rdev);
1563
	mutex_unlock(&rdev->mutex);
1564

1565
	if (ret != 0 && rdev->supply)
1566 1567
		regulator_disable(rdev->supply);

1568 1569 1570 1571
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

	if (rdev->ena_gpio) {
		gpio_set_value_cansleep(rdev->ena_gpio,
					rdev->ena_gpio_invert);
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1596
/* locks held by regulator_disable() */
1597
static int _regulator_disable(struct regulator_dev *rdev)
1598 1599 1600
{
	int ret = 0;

D
David Brownell 已提交
1601
	if (WARN(rdev->use_count <= 0,
1602
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1603 1604
		return -EIO;

1605
	/* are we the last user and permitted to disable ? */
1606 1607
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1608 1609

		/* we are last user */
1610 1611
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1612
			if (ret < 0) {
1613
				rdev_err(rdev, "failed to disable\n");
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1628

1629 1630 1631 1632 1633 1634 1635
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1636 1637 1638
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1639
 *
1640
 * NOTE: this will only disable the regulator output if no other consumer
1641 1642
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1643 1644 1645
 */
int regulator_disable(struct regulator *regulator)
{
1646 1647
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1648

1649 1650 1651
	if (regulator->always_on)
		return 0;

1652
	mutex_lock(&rdev->mutex);
1653
	ret = _regulator_disable(rdev);
1654
	mutex_unlock(&rdev->mutex);
1655

1656 1657
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1658

1659 1660 1661 1662 1663
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1664
static int _regulator_force_disable(struct regulator_dev *rdev)
1665 1666 1667 1668 1669 1670 1671 1672
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1673
			rdev_err(rdev, "failed to force disable\n");
1674 1675 1676
			return ret;
		}
		/* notify other consumers that power has been forced off */
1677 1678
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1695
	struct regulator_dev *rdev = regulator->rdev;
1696 1697
	int ret;

1698
	mutex_lock(&rdev->mutex);
1699
	regulator->uA_load = 0;
1700
	ret = _regulator_force_disable(regulator->rdev);
1701
	mutex_unlock(&rdev->mutex);
1702

1703 1704 1705
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1706

1707 1708 1709 1710
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1758
	int ret;
1759

1760 1761 1762
	if (regulator->always_on)
		return 0;

1763 1764 1765
	if (!ms)
		return regulator_disable(regulator);

1766 1767 1768 1769
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1770 1771 1772 1773 1774 1775
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1776 1777 1778
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

	return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask,
				  rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1834 1835
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1836 1837 1838 1839
	/* A GPIO control always takes precedence */
	if (rdev->ena_gpio)
		return rdev->ena_gpio_state;

1840
	/* If we don't know then assume that the regulator is always on */
1841
	if (!rdev->desc->ops->is_enabled)
1842
		return 1;
1843

1844
	return rdev->desc->ops->is_enabled(rdev);
1845 1846 1847 1848 1849 1850
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1851 1852 1853 1854 1855 1856 1857
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1858 1859 1860
 */
int regulator_is_enabled(struct regulator *regulator)
{
1861 1862
	int ret;

1863 1864 1865
	if (regulator->always_on)
		return 1;

1866 1867 1868 1869 1870
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1871 1872 1873
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
 * can change its voltage, false otherwise. Usefull for detecting fixed
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
1888 1889 1890 1891 1892 1893 1894 1895 1896
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
1897 1898 1899 1900 1901

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{
	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
1933 1934 1935 1936
	if (selector < rdev->desc->linear_min_sel)
		return 0;

	selector -= rdev->desc->linear_min_sel;
1937 1938 1939 1940 1941

	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/**
 * regulator_list_voltage_table - List voltages with table based mapping
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with table based mapping between voltages and
 * selectors can set volt_table in the regulator descriptor
 * and then use this function as their list_voltage() operation.
 */
int regulator_list_voltage_table(struct regulator_dev *rdev,
				 unsigned int selector)
{
	if (!rdev->desc->volt_table) {
		BUG_ON(!rdev->desc->volt_table);
		return -EINVAL;
	}

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);

1967 1968 1969 1970 1971 1972 1973
/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1974
 * zero if this selector code can't be used on this system, or a
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2013
	struct regulator_dev *rdev = regulator->rdev;
2014 2015
	int i, voltages, ret;

2016 2017 2018 2019
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2020
			return (min_uV <= ret && ret <= max_uV);
2021 2022 2023 2024
		else
			return ret;
	}

2025 2026 2027 2028 2029
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2044
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
2083 2084
	int ret;

2085 2086
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

2087
	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2088
				  rdev->desc->vsel_mask, sel);
2089 2090 2091 2092 2093 2094 2095 2096
	if (ret)
		return ret;

	if (rdev->desc->apply_bit)
		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
					 rdev->desc->apply_bit,
					 rdev->desc->apply_bit);
	return ret;
2097 2098 2099
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	int best_val = INT_MAX;
	int selector = 0;
	int i, ret;

	/* Find the smallest voltage that falls within the specified
	 * range.
	 */
	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
			best_val = ret;
			selector = i;
		}
	}

	if (best_val != INT_MAX)
		return selector;
	else
		return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int ret, voltage;

2155 2156 2157 2158 2159 2160 2161 2162
	/* Allow uV_step to be 0 for fixed voltage */
	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
			return 0;
		else
			return -EINVAL;
	}

2163 2164 2165 2166 2167
	if (!rdev->desc->uV_step) {
		BUG_ON(!rdev->desc->uV_step);
		return -EINVAL;
	}

2168 2169 2170
	if (min_uV < rdev->desc->min_uV)
		min_uV = rdev->desc->min_uV;

2171
	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2172 2173 2174
	if (ret < 0)
		return ret;

2175 2176
	ret += rdev->desc->linear_min_sel;

2177 2178 2179 2180 2181 2182 2183 2184 2185
	/* Map back into a voltage to verify we're still in bounds */
	voltage = rdev->desc->ops->list_voltage(rdev, ret);
	if (voltage < min_uV || voltage > max_uV)
		return -EINVAL;

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);

2186 2187 2188 2189
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2190
	int delay = 0;
2191
	int best_val = 0;
2192
	unsigned int selector;
2193
	int old_selector = -1;
2194 2195 2196

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2197 2198 2199
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2200 2201 2202 2203
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2204 2205
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2206 2207 2208 2209 2210 2211
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2212 2213 2214
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2215 2216 2217 2218 2219 2220 2221 2222 2223

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2224
	} else if (rdev->desc->ops->set_voltage_sel) {
2225
		if (rdev->desc->ops->map_voltage) {
2226 2227
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2228 2229 2230 2231 2232 2233 2234 2235 2236
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2237

2238
		if (ret >= 0) {
2239 2240 2241
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2242 2243 2244 2245 2246
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2247 2248 2249
			} else {
				ret = -EINVAL;
			}
2250
		}
2251 2252 2253
	} else {
		ret = -EINVAL;
	}
2254

2255
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2256
	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2257
	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2258

2259 2260 2261 2262 2263 2264
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2265
		}
2266

2267 2268 2269 2270 2271 2272 2273
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2274 2275
	}

2276 2277 2278
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2279
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2280 2281
				     (void *)data);
	}
2282

2283
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2284 2285 2286 2287

	return ret;
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2303
 * Regulator system constraints must be set for this regulator before
2304 2305 2306 2307 2308
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2309
	int ret = 0;
2310
	int old_min_uV, old_max_uV;
2311 2312 2313

	mutex_lock(&rdev->mutex);

2314 2315 2316 2317 2318 2319 2320
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2321
	/* sanity check */
2322 2323
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2324 2325 2326 2327 2328 2329 2330 2331
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2332 2333 2334 2335
	
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2336 2337
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2338

2339 2340
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2341
		goto out2;
2342

2343
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2344 2345 2346
	if (ret < 0)
		goto out2;
	
2347 2348 2349
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2350 2351 2352 2353
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2354 2355 2356 2357
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2403
/**
2404 2405
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2406 2407 2408 2409 2410 2411
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2412
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2413
 * set_voltage_time_sel() operation.
2414 2415 2416 2417 2418
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2419
	unsigned int ramp_delay = 0;
2420
	int old_volt, new_volt;
2421 2422 2423 2424 2425 2426 2427

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2428
		rdev_warn(rdev, "ramp_delay not set\n");
2429
		return 0;
2430
	}
2431

2432 2433 2434
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2435

2436 2437 2438 2439
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2440
}
2441
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2490 2491
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2492
	int sel, ret;
2493 2494 2495 2496 2497

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2498
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2499
	} else if (rdev->desc->ops->get_voltage) {
2500
		ret = rdev->desc->ops->get_voltage(rdev);
2501 2502
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2503
	} else {
2504
		return -EINVAL;
2505
	}
2506

2507 2508
	if (ret < 0)
		return ret;
2509
	return ret - rdev->constraints->uV_offset;
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2625
	int regulator_curr_mode;
2626 2627 2628 2629 2630 2631 2632 2633 2634

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2635 2636 2637 2638 2639 2640 2641 2642 2643
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2644
	/* constraints check */
2645
	ret = regulator_mode_constrain(rdev, &mode);
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2716
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2717 2718
	unsigned int mode;

2719 2720 2721
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2722 2723
	mutex_lock(&rdev->mutex);

2724 2725 2726 2727
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2728 2729
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2730 2731
	if (ret < 0) {
		ret = 0;
2732
		goto out;
2733
	}
2734 2735 2736 2737

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2738 2739 2740 2741 2742 2743
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2744 2745 2746
	if (!rdev->desc->ops->set_mode)
		goto out;

2747
	/* get output voltage */
2748
	output_uV = _regulator_get_voltage(rdev);
2749
	if (output_uV <= 0) {
2750
		rdev_err(rdev, "invalid output voltage found\n");
2751 2752 2753
		goto out;
	}

2754
	/* No supply? Use constraint voltage */
2755
	if (input_uV <= 0)
2756 2757
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2758
		rdev_err(rdev, "invalid input voltage found\n");
2759 2760 2761 2762 2763
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2764
		total_uA_load += consumer->uA_load;
2765 2766 2767 2768

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2769
	ret = regulator_mode_constrain(rdev, &mode);
2770
	if (ret < 0) {
2771 2772
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2773 2774 2775 2776
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2777
	if (ret < 0) {
2778
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2779 2780 2781 2782 2783 2784 2785 2786 2787
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
/**
 * regulator_set_bypass_regmap - Default set_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: state to set.
 */
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
{
	unsigned int val;

	if (enable)
		val = rdev->desc->bypass_mask;
	else
		val = 0;

	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
				  rdev->desc->bypass_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);

/**
 * regulator_get_bypass_regmap - Default get_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: current state.
 */
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
	if (ret != 0)
		return ret;

	*enable = val & rdev->desc->bypass_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);

2829 2830 2831 2832
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
2833
 * @enable: enable or disable bypass mode
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2882 2883 2884
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2885
 * @nb: notifier block
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2900
 * @nb: notifier block
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2912 2913 2914
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2915 2916 2917 2918
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2919
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2950 2951
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2952 2953 2954 2955 2956 2957 2958 2959
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2960
	while (--i >= 0)
2961 2962 2963 2964 2965 2966
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

3013 3014 3015 3016 3017 3018 3019
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3035
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3036
	int i;
3037
	int ret = 0;
3038

3039 3040 3041 3042 3043 3044 3045
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3046 3047 3048 3049

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3050
	for (i = 0; i < num_consumers; i++) {
3051 3052
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3053
			goto err;
3054
		}
3055 3056 3057 3058 3059
	}

	return 0;

err:
3060 3061 3062
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3076 3077
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3078 3079 3080 3081 3082 3083
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3084
	int ret, r;
3085

3086
	for (i = num_consumers - 1; i >= 0; --i) {
3087 3088 3089 3090 3091 3092 3093 3094
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3095
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3096 3097 3098 3099 3100 3101
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3102 3103 3104 3105 3106

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3167
 * @rdev: regulator source
3168
 * @event: notifier block
3169
 * @data: callback-specific data.
3170 3171 3172
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3173
 * Note lock must be held by caller.
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3200
	case REGULATOR_MODE_STANDBY:
3201 3202
		return REGULATOR_STATUS_STANDBY;
	default:
3203
		return REGULATOR_STATUS_UNDEFINED;
3204 3205 3206 3207
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3219
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3220 3221
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3236
	if (rdev->ena_gpio || ops->is_enabled) {
3237 3238 3239 3240
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3241 3242 3243 3244 3245
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3246 3247 3248 3249 3250
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3267
	if (ops->set_voltage || ops->set_voltage_sel) {
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3327 3328 3329
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3330
	if (!rdev->debugfs) {
3331 3332 3333 3334 3335 3336 3337 3338
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3339 3340
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3341 3342
}

3343 3344
/**
 * regulator_register - register regulator
3345
 * @regulator_desc: regulator to register
3346
 * @config: runtime configuration for regulator
3347 3348
 *
 * Called by regulator drivers to register a regulator.
3349 3350
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3351
 */
3352 3353
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3354
		   const struct regulator_config *config)
3355
{
3356
	const struct regulation_constraints *constraints = NULL;
3357
	const struct regulator_init_data *init_data;
3358 3359
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3360
	struct device *dev;
3361
	int ret, i;
3362
	const char *supply = NULL;
3363

3364
	if (regulator_desc == NULL || config == NULL)
3365 3366
		return ERR_PTR(-EINVAL);

3367
	dev = config->dev;
3368
	WARN_ON(!dev);
3369

3370 3371 3372
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3373 3374
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3375 3376
		return ERR_PTR(-EINVAL);

3377 3378 3379
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3380 3381
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3382 3383 3384 3385 3386 3387

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3388 3389 3390 3391
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3392

3393 3394
	init_data = config->init_data;

3395 3396 3397 3398 3399 3400 3401
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3402
	rdev->reg_data = config->driver_data;
3403 3404
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3405 3406
	if (config->regmap)
		rdev->regmap = config->regmap;
3407
	else if (dev_get_regmap(dev, NULL))
3408
		rdev->regmap = dev_get_regmap(dev, NULL);
3409 3410
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3411 3412 3413
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3414
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3415

3416
	/* preform any regulator specific init */
3417
	if (init_data && init_data->regulator_init) {
3418
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3419 3420
		if (ret < 0)
			goto clean;
3421 3422 3423
	}

	/* register with sysfs */
3424
	rdev->dev.class = &regulator_class;
3425
	rdev->dev.of_node = config->of_node;
3426
	rdev->dev.parent = dev;
3427 3428
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3429
	ret = device_register(&rdev->dev);
3430 3431
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3432
		goto clean;
3433
	}
3434 3435 3436

	dev_set_drvdata(&rdev->dev, rdev);

3437
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3438 3439 3440 3441 3442 3443
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3444
			goto wash;
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
		}

		rdev->ena_gpio = config->ena_gpio;
		rdev->ena_gpio_invert = config->ena_gpio_invert;

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

		if (rdev->ena_gpio_invert)
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3457
	/* set regulator constraints */
3458 3459 3460 3461
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3462 3463 3464
	if (ret < 0)
		goto scrub;

3465 3466 3467 3468 3469
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3470
	if (init_data && init_data->supply_regulator)
3471 3472 3473 3474 3475
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3476 3477
		struct regulator_dev *r;

3478
		r = regulator_dev_lookup(dev, supply, &ret);
3479

3480 3481
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
3482
			ret = -EPROBE_DEFER;
3483 3484 3485 3486 3487 3488
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3489 3490

		/* Enable supply if rail is enabled */
3491
		if (_regulator_is_enabled(rdev)) {
3492 3493 3494 3495
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3496 3497
	}

3498
	/* add consumers devices */
3499 3500 3501 3502
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3503
				init_data->consumer_supplies[i].supply);
3504 3505 3506 3507 3508
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3509
		}
3510
	}
3511 3512

	list_add(&rdev->list, &regulator_list);
3513 3514

	rdev_init_debugfs(rdev);
3515
out:
3516 3517
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3518

3519 3520 3521
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3522
scrub:
3523
	if (rdev->supply)
3524
		_regulator_put(rdev->supply);
3525 3526
	if (rdev->ena_gpio)
		gpio_free(rdev->ena_gpio);
3527
	kfree(rdev->constraints);
3528
wash:
D
David Brownell 已提交
3529
	device_unregister(&rdev->dev);
3530 3531 3532 3533
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3534 3535 3536 3537
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3538 3539 3540 3541 3542
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3543
 * @rdev: regulator to unregister
3544 3545 3546 3547 3548 3549 3550 3551
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3552 3553
	if (rdev->supply)
		regulator_put(rdev->supply);
3554
	mutex_lock(&regulator_list_mutex);
3555
	debugfs_remove_recursive(rdev->debugfs);
3556
	flush_work(&rdev->disable_work.work);
3557
	WARN_ON(rdev->open_count);
3558
	unset_regulator_supplies(rdev);
3559
	list_del(&rdev->list);
3560
	kfree(rdev->constraints);
3561 3562
	if (rdev->ena_gpio)
		gpio_free(rdev->ena_gpio);
3563
	device_unregister(&rdev->dev);
3564 3565 3566 3567 3568
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3569
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3592
			rdev_err(rdev, "failed to prepare\n");
3593 3594 3595 3596 3597 3598 3599 3600 3601
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3628
			if (!_regulator_is_enabled(rdev))
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3676 3677
/**
 * rdev_get_drvdata - get rdev regulator driver data
3678
 * @rdev: regulator
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3715
 * @rdev: regulator
3716 3717 3718 3719 3720 3721 3722
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3765
#endif
3766 3767

static const struct file_operations supply_map_fops = {
3768
#ifdef CONFIG_DEBUG_FS
3769 3770 3771
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3772
};
3773

3774 3775
static int __init regulator_init(void)
{
3776 3777 3778 3779
	int ret;

	ret = class_register(&regulator_class);

3780
	debugfs_root = debugfs_create_dir("regulator", NULL);
3781
	if (!debugfs_root)
3782
		pr_warn("regulator: Failed to create debugfs directory\n");
3783

3784 3785
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3786

3787 3788 3789
	regulator_dummy_init();

	return ret;
3790 3791 3792 3793
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3794 3795 3796 3797 3798 3799 3800 3801

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3802 3803 3804 3805 3806 3807 3808 3809 3810
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3821
		if (!ops->disable || (c && c->always_on))
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3841
			rdev_info(rdev, "disabling\n");
3842 3843
			ret = ops->disable(rdev);
			if (ret != 0) {
3844
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3845 3846 3847 3848 3849 3850 3851
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3852
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);