ohci.c 80.3 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/compiler.h>
23
#include <linux/delay.h>
S
Stefan Richter 已提交
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/dma-mapping.h>
26
#include <linux/firewire.h>
S
Stefan Richter 已提交
27
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
28
#include <linux/gfp.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
40
#include <linux/spinlock.h>
S
Stefan Richter 已提交
41
#include <linux/string.h>
A
Andrew Morton 已提交
42

S
Stefan Richter 已提交
43
#include <asm/byteorder.h>
S
Stefan Richter 已提交
44
#include <asm/page.h>
45
#include <asm/system.h>
46

47 48 49 50
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

51 52
#include "core.h"
#include "ohci.h"
53

54 55 56 57 58 59 60 61 62 63 64 65 66
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
67 68 69 70 71 72 73 74 75 76

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

77 78 79 80
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
81

82
struct ar_buffer {
83
	struct descriptor descriptor;
84 85 86
	struct ar_buffer *next;
	__le32 data[0];
};
87

88 89 90 91 92
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
93
	u32 regs;
94 95 96
	struct tasklet_struct tasklet;
};

97 98 99 100 101
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
102 103 104 105 106 107 108 109 110 111 112 113 114

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

115
struct context {
S
Stefan Richter 已提交
116
	struct fw_ohci *ohci;
117
	u32 regs;
118
	int total_allocation;
S
Stefan Richter 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
144 145 146

	descriptor_callback_t callback;

S
Stefan Richter 已提交
147
	struct tasklet_struct tasklet;
148 149
};

150 151 152 153 154 155
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
156 157 158

struct iso_context {
	struct fw_iso_context base;
159
	struct context context;
160
	int excess_bytes;
161 162
	void *header;
	size_t header_length;
163 164 165 166 167 168 169 170
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
171
	int node_id;
172
	int generation;
173
	int request_generation;	/* for timestamping incoming requests */
174
	unsigned quirks;
175
	unsigned int pri_req_max;
176
	u32 bus_time;
177
	bool is_root;
178
	bool csr_state_setclear_abdicate;
179

180 181 182 183
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
184 185
	spinlock_t lock;

186 187
	struct mutex phy_reg_mutex;

188 189
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
190 191
	struct context at_request_ctx;
	struct context at_response_ctx;
192 193 194

	u32 it_context_mask;
	struct iso_context *it_context_list;
195
	u64 ir_context_channels;
196 197
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
198 199 200 201 202 203 204 205 206 207 208 209

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
210 211
};

A
Adrian Bunk 已提交
212
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 214 215 216
{
	return container_of(card, struct fw_ohci, card);
}

217 218 219 220 221 222
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
223 224 225 226 227 228

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

229
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
230 231 232 233 234 235 236
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
237
#define OHCI_TCODE_PHY_PACKET		0x0e
238
#define OHCI_VERSION_1_1		0x010010
239

240 241
static char ohci_driver_name[] = KBUILD_MODNAME;

242
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
243 244
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

245 246 247
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
248
#define QUIRK_NO_1394A			8
249
#define QUIRK_NO_MSI			16
250 251 252 253 254

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
255
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
256 257
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
258 259
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
260
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
261 262 263 264 265
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

266 267 268 269 270 271 272
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
273
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
274
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
275 276
	")");

277
#define OHCI_PARAM_DEBUG_AT_AR		1
278
#define OHCI_PARAM_DEBUG_SELFIDS	2
279 280
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
281

282 283
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

284 285 286 287
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
288 289 290
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
291 292 293 294
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
295 296 297 298 299 300
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
301 302
		return;

303
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
304 305 306 307 308 309 310 311 312
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
313
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
314
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
315 316 317 318 319 320
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
321 322
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
323
		    OHCI1394_regAccessFail | OHCI1394_busReset)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

341
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
342 343 344 345
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

346 347
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
348 349 350

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
351 352 353 354 355 356
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
357
		else
358 359 360 361
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

409
	if (evt == OHCI1394_evt_bus_reset) {
410 411
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
412 413 414
		return;
	}

415
	if (header[0] == ~header[1]) {
416 417
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
436
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
437 438
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
439 440 441 442 443 444
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
445 446
		break;
	default:
447 448 449 450 451 452
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
453 454 455 456 457
	}
}

#else

458 459 460 461
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
462 463 464

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
465
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
466 467 468 469
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
470
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
471 472 473 474
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
475
static inline void flush_writes(const struct fw_ohci *ohci)
476 477 478 479 480
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

481
static int read_phy_reg(struct fw_ohci *ohci, int addr)
482
{
483
	u32 val;
484
	int i;
485 486

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
487
	for (i = 0; i < 3 + 100; i++) {
488 489 490 491
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

492 493 494 495 496 497
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
498
	}
499
	fw_error("failed to read phy reg\n");
500

501 502
	return -EBUSY;
}
503

504 505 506 507 508 509
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
510
	for (i = 0; i < 3 + 100; i++) {
511 512 513 514
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

515 516
		if (i >= 3)
			msleep(1);
517 518 519 520
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
521 522
}

523 524
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
525
{
526
	int ret = read_phy_reg(ohci, addr);
527 528
	if (ret < 0)
		return ret;
529

530 531 532 533 534 535 536
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

537
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
538 539
}

540
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541
{
542
	int ret;
543

544
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
545 546
	if (ret < 0)
		return ret;
547

548
	return read_phy_reg(ohci, addr);
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

576
static int ar_context_add_page(struct ar_context *ctx)
577
{
578 579
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
580
	dma_addr_t uninitialized_var(ab_bus);
581 582
	size_t offset;

583
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
584 585 586
	if (ab == NULL)
		return -ENOMEM;

587
	ab->next = NULL;
588
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
589 590 591
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
592 593 594 595 596 597
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

598
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
599 600 601
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

602
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
603
	flush_writes(ctx->ohci);
604 605

	return 0;
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

623 624
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
625
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
626 627 628 629
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

630
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
631 632
{
	struct fw_ohci *ohci = ctx->ohci;
633 634
	struct fw_packet p;
	u32 status, length, tcode;
635
	int evt;
636

637 638 639
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
640 641 642 643 644

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
645
		p.header[3] = (__force __u32) buffer[3];
646
		p.header_length = 16;
647
		p.payload_length = 0;
648 649 650
		break;

	case TCODE_READ_BLOCK_REQUEST :
651
		p.header[3] = cond_le32_to_cpu(buffer[3]);
652 653 654 655 656
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
657 658 659
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
660
		p.header[3] = cond_le32_to_cpu(buffer[3]);
661
		p.header_length = 16;
662
		p.payload_length = p.header[3] >> 16;
663 664 665 666
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
667
	case OHCI_TCODE_PHY_PACKET:
668
		p.header_length = 12;
669
		p.payload_length = 0;
670
		break;
671 672 673 674 675

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
676
	}
677

678 679 680 681
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
682
	status = cond_le32_to_cpu(buffer[length]);
683
	evt    = (status >> 16) & 0x1f;
684

685
	p.ack        = evt - 16;
686 687 688
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
689

690
	log_ar_at_event('R', p.speed, p.header, evt);
691

692 693
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
694 695 696 697 698
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
699
	 * request.
700 701 702 703
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
704
	 */
705
	if (evt == OHCI1394_evt_bus_reset) {
706
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
707 708
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
709
		fw_core_handle_request(&ohci->card, &p);
710
	} else {
711
		fw_core_handle_response(&ohci->card, &p);
712
	}
713

714 715
	return buffer + length + 1;
}
716

717 718 719 720 721 722 723 724 725 726 727 728 729
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
730 731
		dma_addr_t start_bus;
		void *start;
732

733 734
		/*
		 * This descriptor is finished and we may have a
735
		 * packet split across this and the next buffer. We
736 737
		 * reuse the page for reassembling the split packet.
		 */
738 739

		offset = offsetof(struct ar_buffer, data);
740 741
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
742 743 744 745 746 747 748 749 750 751 752 753 754 755

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

756
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
757
				  start, start_bus);
758 759 760 761 762 763 764 765 766
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
767 768
}

769 770
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
771
{
772
	struct ar_buffer ab;
773

774 775 776
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
777 778
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

779 780 781 782 783
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

784 785 786 787 788 789 790 791 792 793
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
794
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
795 796

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
797
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
798
	flush_writes(ctx->ohci);
799
}
S
Stefan Richter 已提交
800

801
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
802 803 804 805 806 807 808 809 810 811 812 813 814
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

815 816 817 818 819 820
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
821
	struct descriptor_buffer *desc;
822

823 824 825
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
826
	while (last->branch_address != 0) {
827
		struct descriptor_buffer *old_desc = desc;
828 829
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
830 831 832 833 834 835 836 837 838
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
839
		last = find_branch_descriptor(d, z);
840 841 842 843

		if (!ctx->callback(ctx, d, last))
			break;

844 845 846 847 848 849 850 851 852 853
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
854 855 856
	}
}

857 858 859 860
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
861
static int context_add_buffer(struct context *ctx)
862 863
{
	struct descriptor_buffer *desc;
864
	dma_addr_t uninitialized_var(bus_addr);
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

890 891
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
892 893 894
{
	ctx->ohci = ohci;
	ctx->regs = regs;
895 896 897 898
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
899 900
		return -ENOMEM;

901 902 903
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

904 905 906
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

907 908
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
909
	 * branch address and looks like it's been sent.  That way we
910
	 * have a descriptor to append DMA programs to.
911
	 */
912 913 914 915 916 917
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
918 919 920 921

	return 0;
}

922
static void context_release(struct context *ctx)
923 924
{
	struct fw_card *card = &ctx->ohci->card;
925
	struct descriptor_buffer *desc, *tmp;
926

927 928 929 930
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
931 932
}

933
/* Must be called with ohci->lock held */
934 935
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
936
{
937 938 939 940 941 942 943 944 945
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
946

947 948 949 950 951 952 953 954 955 956
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
957

958
	d = desc->buffer + desc->used / sizeof(*d);
959
	memset(d, 0, z * sizeof(*d));
960
	*d_bus = desc->buffer_bus + desc->used;
961 962 963 964

	return d;
}

965
static void context_run(struct context *ctx, u32 extra)
966 967 968
{
	struct fw_ohci *ohci = ctx->ohci;

969
	reg_write(ohci, COMMAND_PTR(ctx->regs),
970
		  le32_to_cpu(ctx->last->branch_address));
971 972
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
973 974 975 976 977 978 979
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
980
	struct descriptor_buffer *desc = ctx->buffer_tail;
981

982
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
983

984 985 986
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
987

988
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
989 990 991 992 993 994
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
995
	int i;
996

997
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
998
	flush_writes(ctx->ohci);
999

1000
	for (i = 0; i < 10; i++) {
1001
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1002
		if ((reg & CONTEXT_ACTIVE) == 0)
1003
			return;
1004

1005
		mdelay(1);
1006
	}
1007
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1008
}
1009

1010 1011 1012
struct driver_data {
	struct fw_packet *packet;
};
1013

1014 1015
/*
 * This function apppends a packet to the DMA queue for transmission.
1016
 * Must always be called with the ochi->lock held to ensure proper
1017 1018
 * generation handling and locking around packet queue manipulation.
 */
1019 1020
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1021 1022
{
	struct fw_ohci *ohci = ctx->ohci;
1023
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1024 1025 1026
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1027
	int z, tcode;
1028
	u32 reg;
1029

1030 1031 1032 1033
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1034 1035
	}

1036
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1037 1038
	d[0].res_count = cpu_to_le16(packet->timestamp);

1039 1040
	/*
	 * The DMA format for asyncronous link packets is different
1041 1042
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1043 1044
	 * which we need to prepend an extra quadlet.
	 */
1045 1046

	header = (__le32 *) &d[1];
1047 1048 1049
	switch (packet->header_length) {
	case 16:
	case 12:
1050 1051 1052 1053 1054
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1055 1056 1057

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1058
			header[3] = cpu_to_le32(packet->header[3]);
1059
		else
1060 1061 1062
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1063 1064 1065
		break;

	case 8:
1066 1067 1068 1069 1070
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1084 1085
	}

1086 1087
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1088
	packet->driver_data = driver_data;
1089

1090 1091 1092 1093
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1094
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1095 1096 1097
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1098 1099
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1100 1101 1102 1103 1104

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1105
	} else {
1106 1107
		last = &d[0];
		z = 2;
1108 1109
	}

1110 1111 1112
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1127
		if (packet->payload_mapped)
1128 1129
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1130 1131 1132 1133 1134
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1135

1136
	/* If the context isn't already running, start it up. */
1137
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1138
	if ((reg & CONTEXT_RUN) == 0)
1139 1140 1141
		context_run(ctx, 0);

	return 0;
1142 1143
}

1144 1145 1146
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1147
{
1148
	struct driver_data *driver_data;
1149
	struct fw_packet *packet;
1150
	struct fw_ohci *ohci = context->ohci;
1151 1152
	int evt;

1153 1154 1155
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1156

1157 1158 1159 1160 1161
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1162

1163
	if (packet->payload_mapped)
1164
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1165 1166
				 packet->payload_length, DMA_TO_DEVICE);

1167 1168
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1169

1170 1171
	log_ar_at_event('T', packet->speed, packet->header, evt);

1172 1173 1174 1175 1176
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1177

1178
	case OHCI1394_evt_flushed:
1179 1180 1181 1182
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1183 1184
		packet->ack = RCODE_GENERATION;
		break;
1185

1186
	case OHCI1394_evt_missing_ack:
1187 1188 1189 1190
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1191 1192
		packet->ack = RCODE_NO_ACK;
		break;
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1203

1204 1205 1206 1207
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1208

1209
	packet->callback(packet, &ohci->card, packet->ack);
1210

1211
	return 1;
1212 1213
}

1214 1215 1216 1217 1218
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1219

1220 1221
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1222 1223 1224 1225
{
	struct fw_packet response;
	int tcode, length, i;

1226
	tcode = HEADER_GET_TCODE(packet->header[0]);
1227
	if (TCODE_IS_BLOCK_PACKET(tcode))
1228
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1247 1248
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1249 1250 1251 1252 1253 1254
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1255 1256
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1257
	payload = packet->payload;
1258
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1284
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1285 1286 1287 1288
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1289
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1290 1291 1292 1293
{
	u64 offset;
	u32 csr;

1294 1295 1296 1297
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1298 1299 1300

	offset =
		((unsigned long long)
1301
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1322 1323 1324 1325 1326

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1327
}
1328

1329
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1330 1331
{
	unsigned long flags;
1332
	int ret;
1333 1334 1335

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1336
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1337
	    ctx->ohci->generation == packet->generation) {
1338 1339 1340
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1341
	}
1342

1343
	ret = at_context_queue_packet(ctx, packet);
1344 1345
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1346
	if (ret < 0)
1347
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1348

1349 1350
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1423 1424 1425
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1426
	int self_id_count, i, j, reg;
1427 1428
	int generation, new_generation;
	unsigned long flags;
1429 1430
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1431
	bool is_new_root;
1432 1433 1434

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1435
		fw_notify("node ID not valid, new bus reset in progress\n");
1436 1437
		return;
	}
1438 1439 1440 1441 1442 1443
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1444

1445 1446 1447 1448 1449 1450
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1451 1452 1453 1454 1455
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1456 1457
	/*
	 * The count in the SelfIDCount register is the number of
1458 1459
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1460 1461
	 * bit extra to get the actual number of self IDs.
	 */
1462 1463
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1464 1465 1466
		fw_notify("inconsistent self IDs\n");
		return;
	}
1467
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1468
	rmb();
1469 1470

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1471 1472 1473 1474
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1475 1476
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1477
	}
1478
	rmb();
1479

1480 1481
	/*
	 * Check the consistency of the self IDs we just read.  The
1482 1483 1484 1485 1486 1487 1488 1489 1490
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1491 1492
	 * of self IDs.
	 */
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1505 1506
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1507 1508
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1509
	if (ohci->quirks & QUIRK_RESET_PACKET)
1510 1511
		ohci->request_generation = generation;

1512 1513
	/*
	 * This next bit is unrelated to the AT context stuff but we
1514 1515 1516 1517
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1518 1519
	 * next_config_rom pointer so a new udpate can take place.
	 */
1520 1521

	if (ohci->next_config_rom != NULL) {
1522 1523 1524 1525
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1526 1527 1528 1529
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1530 1531
		/*
		 * Restore config_rom image and manually update
1532 1533
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1534 1535
		 * do that last.
		 */
1536 1537
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1538 1539 1540
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1541 1542
	}

1543 1544 1545 1546 1547
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1548 1549
	spin_unlock_irqrestore(&ohci->lock, flags);

1550 1551 1552 1553
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1554 1555
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1556

1557
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1558 1559 1560
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1561 1562 1563 1564 1565
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1566
	u32 event, iso_event;
1567 1568 1569 1570
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1571
	if (!event || !~event)
1572 1573
		return IRQ_NONE;

1574 1575
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1576
	log_irqs(event);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1593
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1594 1595 1596 1597
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1598
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1599 1600 1601
		iso_event &= ~(1 << i);
	}

1602
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1603 1604 1605 1606
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1607
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1608 1609 1610
		iso_event &= ~(1 << i);
	}

1611 1612 1613 1614
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1615 1616 1617
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1618 1619 1620 1621 1622 1623 1624
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1636 1637 1638 1639 1640 1641
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
	}

1642 1643 1644
	return IRQ_HANDLED;
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1661 1662 1663 1664 1665 1666 1667 1668 1669
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1670 1671 1672
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1673
	int ret, clear, set, offset;
1674 1675 1676 1677 1678 1679 1680 1681

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1682 1683 1684 1685 1686 1687 1688 1689
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1704
	ret = update_phy_reg(ohci, 5, clear, set);
1705 1706
	if (ret < 0)
		return ret;
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1721 1722
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1723 1724 1725
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1726
	u32 lps, seconds, version, irqs;
1727
	int i, ret;
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1739 1740
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1741 1742 1743 1744 1745
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1757 1758 1759 1760

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1761
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1762 1763
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1764 1765 1766 1767 1768 1769 1770 1771
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1772 1773
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
1774

1775 1776 1777 1778
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

1779 1780 1781 1782
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
1783
		card->broadcast_channel_auto_allocated = true;
1784 1785
	}

1786 1787 1788 1789
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
1790
	card->priority_budget_implemented = ohci->pri_req_max != 0;
1791

1792 1793 1794 1795 1796 1797 1798
	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1799 1800 1801
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1802

1803
	/* Activate link_on bit and contender bit in our self ID packets.*/
1804 1805 1806
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1807

1808 1809
	/*
	 * When the link is not yet enabled, the atomic config rom
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1827 1828 1829 1830 1831 1832 1833
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1834

1835
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1836 1837 1838 1839 1840 1841 1842 1843
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1844

1845
	ohci->next_header = ohci->next_config_rom[0];
1846 1847
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1848 1849
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1850 1851 1852 1853
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1854 1855
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1856
	if (request_irq(dev->irq, irq_handler,
1857 1858 1859 1860
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1861 1862 1863 1864 1865
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1866 1867 1868 1869 1870 1871
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
1872
		OHCI1394_cycle64Seconds |
1873 1874 1875 1876 1877 1878
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1879 1880 1881 1882 1883
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1884 1885
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
1886 1887 1888 1889

	return 0;
}

1890
static int ohci_set_config_rom(struct fw_card *card,
1891
			       const __be32 *config_rom, size_t length)
1892 1893 1894
{
	struct fw_ohci *ohci;
	unsigned long flags;
1895
	int ret = -EBUSY;
1896
	__be32 *next_config_rom;
1897
	dma_addr_t uninitialized_var(next_config_rom_bus);
1898 1899 1900

	ohci = fw_ohci(card);

1901 1902
	/*
	 * When the OHCI controller is enabled, the config rom update
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1940
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1941 1942 1943 1944 1945 1946

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1947
		ret = 0;
1948 1949 1950 1951
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1952 1953
	/*
	 * Now initiate a bus reset to have the changes take
1954 1955 1956
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1957 1958
	 * takes effect.
	 */
1959
	if (ret == 0)
1960
		fw_schedule_bus_reset(&ohci->card, true, true);
1961 1962 1963
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1964

1965
	return ret;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1982 1983 1984
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1985 1986
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1987
	int ret = -ENOENT;
1988

1989
	tasklet_disable(&ctx->tasklet);
1990

1991 1992
	if (packet->ack != 0)
		goto out;
1993

1994
	if (packet->payload_mapped)
1995 1996 1997
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1998
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1999 2000 2001
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2002
	ret = 0;
2003 2004
 out:
	tasklet_enable(&ctx->tasklet);
2005

2006
	return ret;
2007 2008
}

2009 2010
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2011
{
2012 2013 2014
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2015 2016
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2017
	int n, ret = 0;
2018

2019 2020 2021 2022
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2023 2024 2025 2026

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2027
		ret = -ESTALE;
2028 2029 2030
		goto out;
	}

2031 2032 2033 2034
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2035 2036 2037 2038 2039 2040 2041

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2042 2043
	flush_writes(ohci);
 out:
2044
	spin_unlock_irqrestore(&ohci->lock, flags);
2045 2046

	return ret;
2047
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2048
}
S
Stefan Richter 已提交
2049

2050
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2051 2052
{
	struct fw_ohci *ohci = fw_ohci(card);
2053 2054
	unsigned long flags;
	u32 value;
2055 2056

	switch (csr_offset) {
2057 2058 2059 2060 2061
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2062
			value = CSR_STATE_BIT_CMSTR;
2063
		else
2064 2065 2066 2067 2068
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;

		return value;
2069

2070 2071 2072
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2073 2074 2075
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2087 2088 2089 2090
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2091 2092 2093 2094
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2095 2096 2097 2098 2099 2100
	default:
		WARN_ON(1);
		return 0;
	}
}

2101
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2102 2103
{
	struct fw_ohci *ohci = fw_ohci(card);
2104
	unsigned long flags;
2105 2106

	switch (csr_offset) {
2107 2108 2109 2110 2111 2112
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2113 2114
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2115 2116 2117 2118 2119 2120 2121 2122
		break;

	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2123 2124
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2125 2126
		break;

2127 2128 2129 2130 2131
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2132 2133 2134 2135 2136 2137 2138
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2139 2140 2141 2142 2143 2144
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2145 2146 2147 2148 2149 2150 2151
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2152 2153 2154 2155 2156
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2157 2158 2159 2160 2161 2162
	default:
		WARN_ON(1);
		break;
	}
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2185 2186 2187 2188 2189 2190
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2191
	struct descriptor *pd;
2192
	__le32 *ir_header;
2193
	void *p;
2194

2195 2196 2197 2198 2199
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
2200 2201 2202
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2203 2204
	p = last + 1;
	copy_iso_headers(ctx, p);
2205

2206 2207
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2218 2219 2220
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2221
{
2222 2223
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2224 2225
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2226

2227 2228 2229 2230 2231
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2232 2233
		return 0;

2234 2235 2236 2237 2238 2239 2240 2241 2242
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2243
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2244 2245 2246 2247
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2248
	return 1;
2249 2250
}

2251
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2252
				int type, int channel, size_t header_size)
2253 2254 2255
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2256
	descriptor_callback_t callback;
2257
	u64 *channels, dont_care = ~0ULL;
2258
	u32 *mask, regs;
2259
	unsigned long flags;
2260
	int index, ret = -ENOMEM;
2261 2262

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2263
		channels = &dont_care;
2264 2265
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2266
		callback = handle_it_packet;
2267
	} else {
2268
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2269 2270
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2271
		callback = handle_ir_packet_per_buffer;
2272 2273 2274
	}

	spin_lock_irqsave(&ohci->lock, flags);
2275 2276 2277
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2278
		*mask &= ~(1 << index);
2279
	}
2280 2281 2282 2283 2284
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2285 2286 2287 2288 2289
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2290
	ctx = &list[index];
2291
	memset(ctx, 0, sizeof(*ctx));
2292 2293 2294 2295 2296
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2297 2298
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2299
		goto out_with_header;
2300 2301

	return &ctx->base;
2302 2303 2304 2305 2306 2307 2308 2309

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2310
	return ERR_PTR(ret);
2311 2312
}

2313 2314
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2315
{
S
Stefan Richter 已提交
2316
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2317
	struct fw_ohci *ohci = ctx->context.ohci;
2318
	u32 control, match;
2319 2320
	int index;

2321 2322
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2323 2324 2325
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2326
				(cycle & 0x7fff) << 16;
2327

2328 2329
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2330
		context_run(&ctx->context, match);
2331 2332
	} else {
		index = ctx - ohci->ir_context_list;
2333
		control = IR_CONTEXT_ISOCH_HEADER;
2334 2335 2336 2337 2338
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2339

2340 2341
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2342
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2343
		context_run(&ctx->context, control);
2344
	}
2345 2346 2347 2348

	return 0;
}

2349 2350 2351
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2352
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2368 2369 2370
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2371
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2372 2373 2374
	unsigned long flags;
	int index;

2375 2376
	ohci_stop_iso(base);
	context_release(&ctx->context);
2377
	free_page((unsigned long)ctx->header);
2378

2379 2380 2381 2382 2383 2384 2385 2386
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2387
		ohci->ir_context_channels |= 1ULL << base->channel;
2388 2389 2390 2391 2392
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2393 2394 2395 2396
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2397
{
S
Stefan Richter 已提交
2398
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2399
	struct descriptor *d, *last, *pd;
2400 2401
	struct fw_iso_packet *p;
	__le32 *header;
2402
	dma_addr_t d_bus, page_bus;
2403 2404
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2405
	int page, end_page, i, length, offset;
2406 2407

	p = packet;
2408
	payload_index = payload;
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2427
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2428

2429 2430 2431
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2432 2433

	if (!p->skip) {
2434
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2435
		d[0].req_count = cpu_to_le16(8);
2436 2437 2438 2439 2440 2441 2442 2443
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2444 2445

		header = (__le32 *) &d[1];
2446 2447 2448 2449 2450
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2451
		header[1] =
2452
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2453 2454 2455 2456 2457
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2458
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2471 2472 2473

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2474 2475 2476 2477 2478

		payload_index += length;
	}

	if (p->interrupt)
2479
		irq = DESCRIPTOR_IRQ_ALWAYS;
2480
	else
2481
		irq = DESCRIPTOR_NO_IRQ;
2482

2483
	last = z == 2 ? d : d + z - 1;
2484 2485 2486
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2487
				     irq);
2488

2489
	context_append(&ctx->context, d, z, header_z);
2490 2491 2492

	return 0;
}
S
Stefan Richter 已提交
2493

2494 2495 2496 2497
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2498 2499
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2500
	struct descriptor *d, *pd;
2501
	struct fw_iso_packet *p = packet;
2502 2503
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2504 2505
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2506 2507

	/*
2508 2509
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2510 2511
	 */
	packet_count = p->header_length / ctx->base.header_size;
2512
	header_size  = max(ctx->base.header_size, (size_t)8);
2513 2514 2515 2516 2517

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2518
	payload_per_buffer = p->payload_length / packet_count;
2519 2520 2521

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2522
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2523
		d = context_get_descriptors(&ctx->context,
2524
				z + header_z, &d_bus);
2525 2526 2527
		if (d == NULL)
			return -ENOMEM;

2528 2529 2530 2531
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2532 2533
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2534
		d->transfer_status = 0;
2535 2536
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2537
		rest = payload_per_buffer;
2538
		pd = d;
2539
		for (j = 1; j < z; j++) {
2540
			pd++;
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2560 2561 2562
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2563
		if (p->interrupt && i == packet_count - 1)
2564 2565 2566 2567 2568 2569 2570 2571
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2572 2573 2574 2575
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2576
{
2577
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2578
	unsigned long flags;
2579
	int ret;
2580

2581
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2582
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2583
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2584
	else
2585 2586
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2587 2588
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2589
	return ret;
2590 2591
}

2592
static const struct fw_card_driver ohci_driver = {
2593
	.enable			= ohci_enable,
2594
	.read_phy_reg		= ohci_read_phy_reg,
2595 2596 2597 2598
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2599
	.cancel_packet		= ohci_cancel_packet,
2600
	.enable_phys_dma	= ohci_enable_phys_dma,
2601 2602
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
2603 2604 2605 2606

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2607
	.start_iso		= ohci_start_iso,
2608
	.stop_iso		= ohci_stop_iso,
2609 2610
};

2611
#ifdef CONFIG_PPC_PMAC
2612
static void pmac_ohci_on(struct pci_dev *dev)
2613
{
2614 2615 2616 2617 2618 2619 2620 2621
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2622 2623
}

2624
static void pmac_ohci_off(struct pci_dev *dev)
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2636 2637
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2638 2639
#endif /* CONFIG_PPC_PMAC */

2640 2641
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2642 2643
{
	struct fw_ohci *ohci;
2644
	u32 bus_options, max_receive, link_speed, version, link_enh;
2645
	u64 guid;
2646
	int i, err, n_ir, n_it;
2647 2648
	size_t size;

2649
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2650
	if (ohci == NULL) {
2651 2652
		err = -ENOMEM;
		goto fail;
2653 2654 2655 2656
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2657
	pmac_ohci_on(dev);
2658

2659 2660
	err = pci_enable_device(dev);
	if (err) {
2661
		fw_error("Failed to enable OHCI hardware\n");
2662
		goto fail_free;
2663 2664 2665 2666 2667 2668 2669
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
2670
	mutex_init(&ohci->phy_reg_mutex);
2671 2672 2673 2674

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2675 2676
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2677
		fw_error("MMIO resource unavailable\n");
2678
		goto fail_disable;
2679 2680 2681 2682 2683
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2684 2685
		err = -ENXIO;
		goto fail_iomem;
2686 2687
	}

2688 2689 2690 2691 2692 2693 2694
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2695 2696
	if (param_quirks)
		ohci->quirks = param_quirks;
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2715 2716 2717 2718 2719 2720
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2721
	context_init(&ohci->at_request_ctx, ohci,
2722
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2723

2724
	context_init(&ohci->at_response_ctx, ohci,
2725
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2726 2727

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2728 2729
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2730
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2731 2732
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2733
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2734 2735

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2736
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2737
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2738 2739
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2740
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2741 2742

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2743
		err = -ENOMEM;
2744
		goto fail_contexts;
2745 2746 2747 2748 2749 2750 2751 2752
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2753
		err = -ENOMEM;
2754
		goto fail_contexts;
2755 2756 2757 2758 2759 2760 2761 2762
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2763
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2764
	if (err)
2765
		goto fail_self_id;
2766

2767 2768 2769 2770 2771
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2772

2773
	return 0;
2774 2775 2776 2777

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2778
 fail_contexts:
2779
	kfree(ohci->ir_context_list);
2780 2781 2782 2783 2784
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2785 2786 2787 2788 2789
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2790 2791
 fail_free:
	kfree(&ohci->card);
2792
	pmac_ohci_off(dev);
2793 2794 2795
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2796 2797

	return err;
2798 2799 2800 2801 2802 2803 2804
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2805 2806
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2807 2808
	fw_core_remove_card(&ohci->card);

2809 2810 2811 2812
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2813 2814 2815

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2816 2817 2818 2819 2820 2821 2822

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2823 2824
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2825 2826 2827 2828
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2829 2830
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
2831
	pci_disable_msi(dev);
2832 2833 2834
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2835
	kfree(&ohci->card);
2836
	pmac_ohci_off(dev);
2837

2838 2839 2840
	fw_notify("Removed fw-ohci device.\n");
}

2841
#ifdef CONFIG_PM
2842
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2843
{
2844
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2845 2846 2847
	int err;

	software_reset(ohci);
2848
	free_irq(dev->irq, ohci);
2849
	pci_disable_msi(dev);
2850
	err = pci_save_state(dev);
2851
	if (err) {
2852
		fw_error("pci_save_state failed\n");
2853 2854
		return err;
	}
2855
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2856 2857
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2858
	pmac_ohci_off(dev);
2859

2860 2861 2862
	return 0;
}

2863
static int pci_resume(struct pci_dev *dev)
2864
{
2865
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2866 2867
	int err;

2868
	pmac_ohci_on(dev);
2869 2870 2871
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2872
	if (err) {
2873
		fw_error("pci_enable_device failed\n");
2874 2875 2876
		return err;
	}

2877
	return ohci_enable(&ohci->card, NULL, 0);
2878 2879 2880
}
#endif

2881
static const struct pci_device_id pci_table[] = {
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2893 2894 2895 2896
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2897 2898 2899 2900 2901 2902
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2903 2904 2905 2906 2907
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);