rcutree.c 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40 41 42 43 44 45 46 47 48
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54
#include "rcutree.h"
55 56 57
#include <trace/events/rcu.h>

#include "rcu.h"
58

59 60
/* Data structures. */

61
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62

63
#define RCU_STATE_INITIALIZER(structname) { \
64
	.level = { &structname##_state.node[0] }, \
65 66 67 68
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
69 70
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71
	}, \
72
	.signaled = RCU_GP_IDLE, \
73 74
	.gpnum = -300, \
	.completed = -300, \
75 76
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 78
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
79
	.name = #structname, \
80 81
}

82
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88 89
static struct rcu_state *rcu_state;

90 91 92 93 94 95 96 97 98
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
99 100 101
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

116 117
#ifdef CONFIG_RCU_BOOST

118 119 120 121 122
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126
DEFINE_PER_CPU(char, rcu_cpu_has_work);
127

128 129
#endif /* #ifdef CONFIG_RCU_BOOST */

130
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 132
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133 134 135

#define RCU_KTHREAD_PRIO 1	/* RT priority for per-CPU kthreads. */

136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

148 149 150 151 152 153 154 155 156 157
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

158
/*
159
 * Note a quiescent state.  Because we do not need to know
160
 * how many quiescent states passed, just if there was at least
161
 * one since the start of the grace period, this just sets a flag.
162
 * The caller must have disabled preemption.
163
 */
164
void rcu_sched_qs(int cpu)
165
{
166
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167

168
	rdp->passed_quiesce_gpnum = rdp->gpnum;
169
	barrier();
170
	if (rdp->passed_quiesce == 0)
171
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172
	rdp->passed_quiesce = 1;
173 174
}

175
void rcu_bh_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
178

179
	rdp->passed_quiesce_gpnum = rdp->gpnum;
180
	barrier();
181
	if (rdp->passed_quiesce == 0)
182
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183
	rdp->passed_quiesce = 1;
184
}
185

186 187 188
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
189
 * The caller must have disabled preemption.
190 191 192
 */
void rcu_note_context_switch(int cpu)
{
193
	trace_rcu_utilization("Start context switch");
194 195
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
196
	trace_rcu_utilization("End context switch");
197
}
198
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
199

200
#ifdef CONFIG_NO_HZ
201 202
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
203
	.dynticks = ATOMIC_INIT(1),
204
};
205 206
#endif /* #ifdef CONFIG_NO_HZ */

207
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
208 209 210
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

211 212 213 214
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

215
int rcu_cpu_stall_suppress __read_mostly;
216
module_param(rcu_cpu_stall_suppress, int, 0644);
217

218
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
219
static int rcu_pending(int cpu);
220 221

/*
222
 * Return the number of RCU-sched batches processed thus far for debug & stats.
223
 */
224
long rcu_batches_completed_sched(void)
225
{
226
	return rcu_sched_state.completed;
227
}
228
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
229 230 231 232 233 234 235 236 237 238

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

239 240 241 242 243 244 245 246 247
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

273 274 275 276 277 278 279 280 281
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
297
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
328
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
329 330 331 332
		rdp->offline_fqs++;
		return 1;
	}

P
Paul E. McKenney 已提交
333 334
	/* If preemptible RCU, no point in sending reschedule IPI. */
	if (rdp->preemptible)
335 336
		return 0;

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
365 366 367 368
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
369
	trace_rcu_dyntick("Start");
370 371 372 373 374
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	local_irq_restore(flags);
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
391 392 393 394 395 396 397 398 399
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
400
	trace_rcu_dyntick("End");
401 402 403 404 405 406 407 408 409 410 411 412 413 414
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

415 416
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
417
		return;
418 419 420 421 422 423
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
424 425 426 427 428 429 430 431 432 433 434 435 436
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

437 438
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
439
		return;
440 441 442 443 444
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
445 446 447 448 449 450 451 452 453 454
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
455
	rcu_exit_nohz();
456 457 458 459 460 461 462 463 464 465 466
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
467
	rcu_enter_nohz();
468 469 470 471 472 473 474
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
475
 * is in dynticks idle mode, which is an extended quiescent state.
476 477 478
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
479 480
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
481 482 483 484 485 486 487 488 489 490
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
491 492
	unsigned int curr;
	unsigned int snap;
493

494 495
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
496 497 498 499 500 501 502 503 504

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
505
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
506
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

535
int rcu_cpu_stall_suppress __read_mostly;
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
552
	raw_spin_lock_irqsave(&rnp->lock, flags);
553
	delta = jiffies - rsp->jiffies_stall;
554
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
555
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
556 557 558
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
559 560 561 562 563 564

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
565
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
566

567 568 569 570 571
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
572 573
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
574
	rcu_for_each_leaf_node(rsp, rnp) {
575
		raw_spin_lock_irqsave(&rnp->lock, flags);
576
		rcu_print_task_stall(rnp);
577
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
578
		if (rnp->qsmask == 0)
579
			continue;
580 581 582
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
583
	}
584
	printk("} (detected by %d, t=%ld jiffies)\n",
585
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
586 587
	if (!trigger_all_cpu_backtrace())
		dump_stack();
588

589 590 591 592
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

593 594 595 596 597 598 599 600
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

601 602 603 604 605
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
606 607
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
608 609
	if (!trigger_all_cpu_backtrace())
		dump_stack();
610

P
Paul E. McKenney 已提交
611
	raw_spin_lock_irqsave(&rnp->lock, flags);
612
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
613 614
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
615
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
616

617 618 619 620 621
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
622 623
	unsigned long j;
	unsigned long js;
624 625
	struct rcu_node *rnp;

626
	if (rcu_cpu_stall_suppress)
627
		return;
628 629
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
630
	rnp = rdp->mynode;
631
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
632 633 634 635

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

636 637
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
638

639
		/* They had a few time units to dump stack, so complain. */
640 641 642 643
		print_other_cpu_stall(rsp);
	}
}

644 645
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
646
	rcu_cpu_stall_suppress = 1;
647 648 649
	return NOTIFY_DONE;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

666 667 668 669 670 671 672 673 674
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

675 676 677
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
678 679 680
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
681
 */
682 683 684
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
685 686 687 688 689
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
690
		rdp->gpnum = rnp->gpnum;
691
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
692 693
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
694
			rdp->passed_quiesce = 0;
695 696
		} else
			rdp->qs_pending = 0;
697 698 699
	}
}

700 701
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
702 703 704 705 706 707
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
708
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
709 710 711 712
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
713
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
755
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
756

757 758
		/*
		 * If we were in an extended quiescent state, we may have
759
		 * missed some grace periods that others CPUs handled on
760
		 * our behalf. Catch up with this state to avoid noting
761 762 763
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
764
		 */
765
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
766 767
			rdp->gpnum = rdp->completed;

768
		/*
769 770
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
771
		 */
772
		if ((rnp->qsmask & rdp->grpmask) == 0)
773
			rdp->qs_pending = 0;
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
791
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
792 793 794 795
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
796
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
823 824 825

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
826 827
}

828 829 830 831 832 833 834 835 836 837
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
838
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
839 840
	struct rcu_node *rnp = rcu_get_root(rsp);

841
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
842 843
		if (cpu_needs_another_gp(rsp, rdp))
			rsp->fqs_need_gp = 1;
844
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
845
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
846 847
			return;
		}
P
Paul E. McKenney 已提交
848
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
849 850 851 852 853 854 855

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
856
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
857
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
858
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
859 860
		}
		local_irq_restore(flags);
861 862 863 864 865
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
866
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
867
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
868 869 870 871 872 873
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
874
		rcu_preempt_check_blocked_tasks(rnp);
875
		rnp->qsmask = rnp->qsmaskinit;
876
		rnp->gpnum = rsp->gpnum;
877
		rnp->completed = rsp->completed;
878
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
879
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
880
		rcu_preempt_boost_start_gp(rnp);
881 882 883
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
884
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
885 886 887
		return;
	}

P
Paul E. McKenney 已提交
888
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
889 890 891


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
892
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
893 894

	/*
895 896 897 898 899 900 901 902 903
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
904 905 906 907
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
908 909
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
910
	 */
911
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
912
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
913
		rcu_preempt_check_blocked_tasks(rnp);
914
		rnp->qsmask = rnp->qsmaskinit;
915
		rnp->gpnum = rsp->gpnum;
916 917 918
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
919
		rcu_preempt_boost_start_gp(rnp);
920 921 922
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
923
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
924 925
	}

926
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
927
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
928
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
929 930
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
931 932
}

933
/*
P
Paul E. McKenney 已提交
934 935 936 937 938
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
939
 */
P
Paul E. McKenney 已提交
940
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
941
	__releases(rcu_get_root(rsp)->lock)
942
{
943 944
	unsigned long gp_duration;

945
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
946 947 948 949 950 951

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
952 953 954
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
955
	rsp->completed = rsp->gpnum;
956
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
957
	rsp->signaled = RCU_GP_IDLE;
958 959 960
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

961
/*
P
Paul E. McKenney 已提交
962 963 964 965 966 967
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
968 969
 */
static void
P
Paul E. McKenney 已提交
970 971
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
972 973
	__releases(rnp->lock)
{
974 975
	struct rcu_node *rnp_c;

976 977 978 979 980
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
981
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
982 983 984
			return;
		}
		rnp->qsmask &= ~mask;
985 986 987 988
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
989
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
990 991

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
992
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
993 994 995 996 997 998 999 1000 1001
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1002
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1003
		rnp_c = rnp;
1004
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1005
		raw_spin_lock_irqsave(&rnp->lock, flags);
1006
		WARN_ON_ONCE(rnp_c->qsmask);
1007 1008 1009 1010
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1011
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1012
	 * to clean up and start the next grace period if one is needed.
1013
	 */
P
Paul E. McKenney 已提交
1014
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1015 1016 1017
}

/*
P
Paul E. McKenney 已提交
1018 1019 1020 1021 1022 1023 1024
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1025 1026
 */
static void
1027
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1028 1029 1030 1031 1032 1033
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1034
	raw_spin_lock_irqsave(&rnp->lock, flags);
1035
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1036 1037

		/*
1038 1039 1040 1041
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1042
		 */
1043
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1044
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1045 1046 1047 1048
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1049
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1050 1051 1052 1053 1054 1055 1056 1057 1058
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1059
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1087
	if (!rdp->passed_quiesce)
1088 1089
		return;

P
Paul E. McKenney 已提交
1090 1091 1092 1093
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1094
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1095 1096 1097 1098
}

#ifdef CONFIG_HOTPLUG_CPU

1099
/*
1100 1101 1102
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1103
 */
1104
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1105 1106
{
	int i;
1107 1108
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1109
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1110
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1111 1112 1113

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1114 1115 1116 1117 1118 1119 1120

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1121 1122 1123 1124 1125 1126
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1127 1128 1129
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1130 1131
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1132 1133 1134 1135 1136
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1137
	int need_report = 0;
1138
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1139
	struct rcu_node *rnp;
1140

1141
	rcu_stop_cpu_kthread(cpu);
1142 1143

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1144
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1145 1146

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1147
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1148 1149
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1150
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1151 1152
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1153
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1154
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1155 1156 1157 1158 1159
			else
				trace_rcu_grace_period(rsp->name,
						       rnp->gpnum + 1 -
						       !!(rnp->qsmask & mask),
						       "cpuofl");
1160 1161
			break;
		}
1162 1163 1164 1165 1166
		if (rnp == rdp->mynode) {
			trace_rcu_grace_period(rsp->name,
					       rnp->gpnum + 1 -
					       !!(rnp->qsmask & mask),
					       "cpuofl");
1167
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1168
		} else
P
Paul E. McKenney 已提交
1169
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1170 1171 1172 1173
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1174 1175 1176
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1177 1178
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1179
	 */
P
Paul E. McKenney 已提交
1180
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1181
	rnp = rdp->mynode;
1182
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1183
		rcu_report_unblock_qs_rnp(rnp, flags);
1184
	else
P
Paul E. McKenney 已提交
1185
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1186 1187
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1188
	rcu_node_kthread_setaffinity(rnp, -1);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1199
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1200
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1201
	rcu_preempt_offline_cpu(cpu);
1202 1203 1204 1205
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1206
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1207 1208 1209
{
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1220
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1221 1222 1223
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1224
	int bl, count;
1225 1226

	/* If no callbacks are ready, just return.*/
1227
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1228 1229
		trace_rcu_batch_start(rsp->name, 0, 0);
		trace_rcu_batch_end(rsp->name, 0);
1230
		return;
1231
	}
1232 1233 1234 1235 1236 1237

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1238
	bl = rdp->blimit;
1239
	trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1254
		debug_rcu_head_unqueue(list);
1255
		__rcu_reclaim(rsp->name, list);
1256
		list = next;
1257
		if (++count >= bl)
1258 1259 1260 1261
			break;
	}

	local_irq_save(flags);
1262
	trace_rcu_batch_end(rsp->name, count);
1263 1264 1265

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1266
	rdp->n_cbs_invoked += count;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1281 1282 1283 1284 1285 1286 1287
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1288 1289
	local_irq_restore(flags);

1290
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1291
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1292
		invoke_rcu_core();
1293 1294 1295 1296 1297
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1298
 * Also schedule RCU core processing.
1299 1300 1301 1302 1303 1304 1305
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1306
	trace_rcu_utilization("Start scheduler-tick");
1307
	if (user ||
1308 1309
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1310 1311 1312 1313 1314

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1315
		 * a quiescent state, so note it.
1316 1317
		 *
		 * No memory barrier is required here because both
1318 1319 1320
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1321 1322
		 */

1323 1324
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1325 1326 1327 1328 1329 1330 1331

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1332
		 * critical section, so note it.
1333 1334
		 */

1335
		rcu_bh_qs(cpu);
1336
	}
1337
	rcu_preempt_check_callbacks(cpu);
1338
	if (rcu_pending(cpu))
1339
		invoke_rcu_core();
1340
	trace_rcu_utilization("End scheduler-tick");
1341 1342 1343 1344 1345 1346 1347
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1348 1349
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1350
 * The caller must have suppressed start of new grace periods.
1351
 */
1352
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1353 1354 1355 1356 1357
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1358
	struct rcu_node *rnp;
1359

1360
	rcu_for_each_leaf_node(rsp, rnp) {
1361
		mask = 0;
P
Paul E. McKenney 已提交
1362
		raw_spin_lock_irqsave(&rnp->lock, flags);
1363
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1364
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1365
			return;
1366
		}
1367
		if (rnp->qsmask == 0) {
1368
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1369 1370
			continue;
		}
1371
		cpu = rnp->grplo;
1372
		bit = 1;
1373
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1374 1375
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1376 1377
				mask |= bit;
		}
1378
		if (mask != 0) {
1379

P
Paul E. McKenney 已提交
1380 1381
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1382 1383
			continue;
		}
P
Paul E. McKenney 已提交
1384
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1385
	}
1386
	rnp = rcu_get_root(rsp);
1387 1388 1389 1390
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1402 1403 1404
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1405
		return;  /* No grace period in progress, nothing to force. */
1406
	}
P
Paul E. McKenney 已提交
1407
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1408
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1409
		trace_rcu_utilization("End fqs");
1410 1411
		return;	/* Someone else is already on the job. */
	}
1412
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1413
		goto unlock_fqs_ret; /* no emergency and done recently. */
1414
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1415
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1416
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1417
	if(!rcu_gp_in_progress(rsp)) {
1418
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1419
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1420
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1421
	}
1422
	rsp->fqs_active = 1;
1423
	switch (rsp->signaled) {
1424
	case RCU_GP_IDLE:
1425 1426
	case RCU_GP_INIT:

1427
		break; /* grace period idle or initializing, ignore. */
1428 1429 1430 1431 1432

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1433 1434
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1435
		/* Record dyntick-idle state. */
1436
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1437
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1438
		if (rcu_gp_in_progress(rsp))
1439
			rsp->signaled = RCU_FORCE_QS;
1440
		break;
1441 1442 1443 1444

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1445
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1446
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1447 1448 1449

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1450
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1451
		break;
1452
	}
1453
	rsp->fqs_active = 0;
1454
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1455
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1456 1457
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1458
		trace_rcu_utilization("End fqs");
1459 1460
		return;
	}
P
Paul E. McKenney 已提交
1461
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1462
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1463
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1464
	trace_rcu_utilization("End fqs");
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
1477 1478 1479
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1480 1481 1482 1483 1484 1485
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1486 1487
	WARN_ON_ONCE(rdp->beenonline == 0);

1488 1489 1490 1491
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1492
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1506
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1507 1508 1509 1510
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1511
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1512
		invoke_rcu_callbacks(rsp, rdp);
1513 1514
}

1515
/*
1516
 * Do RCU core processing for the current CPU.
1517
 */
1518
static void rcu_process_callbacks(struct softirq_action *unused)
1519
{
1520
	trace_rcu_utilization("Start RCU core");
1521 1522
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1523
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1524
	rcu_preempt_process_callbacks();
1525 1526 1527

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1528
	trace_rcu_utilization("End RCU core");
1529 1530
}

1531
/*
1532 1533 1534 1535 1536
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1537
 */
1538
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1539
{
1540 1541
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1542 1543
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1544 1545
		return;
	}
1546
	invoke_rcu_callbacks_kthread();
1547 1548
}

1549
static void invoke_rcu_core(void)
1550 1551 1552 1553
{
	raise_softirq(RCU_SOFTIRQ);
}

1554 1555 1556 1557 1558 1559 1560
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1561
	debug_rcu_head_queue(head);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1574
	rdp = this_cpu_ptr(rsp->rda);
1575 1576 1577 1578

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1579 1580
	rdp->qlen++;

1581 1582 1583 1584 1585 1586
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
					 rdp->qlen);
	else
		trace_rcu_callback(rsp->name, head, rdp->qlen);

1587 1588 1589 1590 1591
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1592

1593 1594 1595 1596 1597 1598 1599
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1600
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1622
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1623 1624 1625 1626 1627
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1628
 * Queue an RCU-sched callback for invocation after a grace period.
1629
 */
1630
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1631
{
1632
	__call_rcu(head, func, &rcu_sched_state);
1633
}
1634
EXPORT_SYMBOL_GPL(call_rcu_sched);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	if (rcu_blocking_is_gp())
		return;
1672
	wait_rcu_gp(call_rcu_sched);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	if (rcu_blocking_is_gp())
		return;
1689
	wait_rcu_gp(call_rcu_bh);
1690 1691 1692
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1693 1694 1695 1696 1697 1698 1699 1700 1701
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1702 1703
	struct rcu_node *rnp = rdp->mynode;

1704 1705 1706 1707 1708 1709
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1710 1711
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
1712 1713 1714 1715 1716 1717

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1718
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1719
		if (!rdp->preemptible &&
1720 1721 1722
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1723
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1724
		rdp->n_rp_report_qs++;
1725
		return 1;
1726
	}
1727 1728

	/* Does this CPU have callbacks ready to invoke? */
1729 1730
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1731
		return 1;
1732
	}
1733 1734

	/* Has RCU gone idle with this CPU needing another grace period? */
1735 1736
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1737
		return 1;
1738
	}
1739 1740

	/* Has another RCU grace period completed?  */
1741
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1742
		rdp->n_rp_gp_completed++;
1743
		return 1;
1744
	}
1745 1746

	/* Has a new RCU grace period started? */
1747
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1748
		rdp->n_rp_gp_started++;
1749
		return 1;
1750
	}
1751 1752

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1753
	if (rcu_gp_in_progress(rsp) &&
1754
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1755
		rdp->n_rp_need_fqs++;
1756
		return 1;
1757
	}
1758 1759

	/* nothing to do */
1760
	rdp->n_rp_need_nothing++;
1761 1762 1763 1764 1765 1766 1767 1768
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1769
static int rcu_pending(int cpu)
1770
{
1771
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1772 1773
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1774 1775 1776 1777 1778
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1779
 * 1 if so.
1780
 */
1781
static int rcu_needs_cpu_quick_check(int cpu)
1782 1783
{
	/* RCU callbacks either ready or pending? */
1784
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1785 1786
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1819 1820
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1821 1822 1823
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1824
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1825 1826 1827 1828 1829 1830 1831 1832 1833
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
1834 1835 1836
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
1851
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
1852 1853 1854 1855 1856 1857 1858 1859
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
1860
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
1861 1862 1863
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

1864
/*
1865
 * Do boot-time initialization of a CPU's per-CPU RCU data.
1866
 */
1867 1868
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1869 1870 1871
{
	unsigned long flags;
	int i;
1872
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1873 1874 1875
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1876
	raw_spin_lock_irqsave(&rnp->lock, flags);
1877 1878 1879 1880 1881 1882 1883 1884 1885
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
1886
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
1887
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1888 1889 1890 1891 1892 1893 1894
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1895
 */
1896
static void __cpuinit
P
Paul E. McKenney 已提交
1897
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1898 1899 1900
{
	unsigned long flags;
	unsigned long mask;
1901
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1902 1903 1904
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1905
	raw_spin_lock_irqsave(&rnp->lock, flags);
1906
	rdp->passed_quiesce = 0;  /* We could be racing with new GP, */
1907 1908
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
1909
	rdp->preemptible = preemptible;
1910 1911
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
1912
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
1913
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1914 1915 1916 1917 1918 1919 1920

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
1921
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
1922 1923 1924 1925 1926 1927

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
1928
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1929 1930
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
1931 1932 1933
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
1934
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1935
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1936
		}
P
Paul E. McKenney 已提交
1937
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1938 1939 1940
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
1941
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1942 1943
}

P
Peter Zijlstra 已提交
1944
static void __cpuinit rcu_prepare_cpu(int cpu)
1945
{
1946 1947 1948
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
1949 1950 1951
}

/*
1952
 * Handle CPU online/offline notification events.
1953
 */
1954 1955
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
1956 1957
{
	long cpu = (long)hcpu;
1958
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1959
	struct rcu_node *rnp = rdp->mynode;
1960

1961
	trace_rcu_utilization("Start CPU hotplug");
1962 1963 1964
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
1965 1966
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
1967 1968
		break;
	case CPU_ONLINE:
1969 1970
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
1971
		rcu_cpu_kthread_setrt(cpu, 1);
1972 1973 1974
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
1975
		rcu_cpu_kthread_setrt(cpu, 0);
1976
		break;
1977 1978 1979
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
1980 1981 1982
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1983
		 */
1984 1985 1986
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
1987
		break;
1988 1989 1990 1991 1992 1993 1994 1995 1996
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
1997
	trace_rcu_utilization("End CPU hotplug");
1998 1999 2000
	return NOTIFY_OK;
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2016 2017 2018 2019 2020 2021 2022 2023 2024
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2025
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2026
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2027
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2048 2049
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2050
{
2051 2052 2053 2054
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2055 2056 2057 2058 2059
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2060 2061
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2074
			raw_spin_lock_init(&rnp->lock);
2075 2076
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2077
			rnp->gpnum = 0;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2095
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2096 2097
		}
	}
2098

2099
	rsp->rda = rda;
2100 2101
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2102
		while (i > rnp->grphi)
2103
			rnp++;
2104
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2105 2106
		rcu_boot_init_percpu_data(i, rsp);
	}
2107 2108
}

2109
void __init rcu_init(void)
2110
{
P
Paul E. McKenney 已提交
2111
	int cpu;
2112

2113
	rcu_bootup_announce();
2114 2115
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2116
	__rcu_init_preempt();
2117
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2118 2119 2120 2121 2122 2123 2124

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2125 2126
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2127
	check_cpu_stall_init();
2128 2129
}

2130
#include "rcutree_plugin.h"