amd_iommu.c 92.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

71 72 73
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

74 75 76 77 78 79
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

80
static const struct iommu_ops amd_iommu_ops;
81

82
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83
int amd_iommu_max_glx_val = -1;
84

85 86
static struct dma_map_ops amd_iommu_dma_ops;

87 88 89 90 91 92
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
93
	struct list_head alias_list;      /* Link alias-groups together */
94 95 96 97 98 99 100 101 102 103 104 105 106 107
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

108 109 110
/*
 * general struct to manage commands send to an IOMMU
 */
111
struct iommu_cmd {
112 113 114
	u32 data[4];
};

115 116
struct kmem_cache *amd_iommu_irq_cache;

117
static void update_domain(struct protection_domain *domain);
118
static int alloc_passthrough_domain(void);
119
static int protection_domain_init(struct protection_domain *domain);
120

121 122 123 124 125 126
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

127 128 129 130 131
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

132
static struct iommu_dev_data *alloc_dev_data(u16 devid)
133 134 135 136 137 138 139 140
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

141 142
	INIT_LIST_HEAD(&dev_data->alias_list);

143
	dev_data->devid = devid;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

194 195 196 197
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

198
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
199 200
}

201 202 203 204 205
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

206 207 208 209
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
210 211
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
212 213 214 215 216 217 218 219 220 221 222 223
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

224 225 226 227 228 229 230 231 232
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

233
/*
234 235
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
236
 */
237 238
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
239
{
240
	u64 addr;
241

242 243 244 245 246
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
247
	}
248
}
249

250 251 252 253 254 255 256 257
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
258

259 260 261 262 263 264 265
	devid = get_device_id(dev);

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
266 267
}

268 269 270 271 272 273 274 275 276 277 278
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

279 280
	/* No PCI device */
	if (!dev_is_pci(dev))
281 282 283 284 285 286 287 288 289 290 291 292 293 294
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

295
static void init_iommu_group(struct device *dev)
296
{
297 298
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
299 300
	struct iommu_group *group;

301
	group = iommu_group_get_for_dev(dev);
302 303 304 305 306 307 308 309 310 311 312 313
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

378 379 380 381 382 383 384 385 386 387 388 389 390
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

391 392
	alias = get_alias(dev);

393 394 395 396 397 398 399 400 401 402 403 404
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

405 406
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
407
	}
408

409 410 411 412 413 414 415
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

416 417
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
418 419 420
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

421 422 423
	return 0;
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

438 439
static void iommu_uninit_device(struct device *dev)
{
440 441 442 443 444
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
445 446 447
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

448 449
	iommu_group_remove_device(dev);

450 451 452
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

453 454 455
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

456
	/*
457 458
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
459
	 */
460
}
J
Joerg Roedel 已提交
461

462 463 464 465 466 467
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

468
DECLARE_STATS_COUNTER(compl_wait);
469
DECLARE_STATS_COUNTER(cnt_map_single);
470
DECLARE_STATS_COUNTER(cnt_unmap_single);
471
DECLARE_STATS_COUNTER(cnt_map_sg);
472
DECLARE_STATS_COUNTER(cnt_unmap_sg);
473
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
474
DECLARE_STATS_COUNTER(cnt_free_coherent);
475
DECLARE_STATS_COUNTER(cross_page);
476
DECLARE_STATS_COUNTER(domain_flush_single);
477
DECLARE_STATS_COUNTER(domain_flush_all);
478
DECLARE_STATS_COUNTER(alloced_io_mem);
479
DECLARE_STATS_COUNTER(total_map_requests);
480 481 482 483 484
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
504
					 &amd_iommu_unmap_flush);
505 506

	amd_iommu_stats_add(&compl_wait);
507
	amd_iommu_stats_add(&cnt_map_single);
508
	amd_iommu_stats_add(&cnt_unmap_single);
509
	amd_iommu_stats_add(&cnt_map_sg);
510
	amd_iommu_stats_add(&cnt_unmap_sg);
511
	amd_iommu_stats_add(&cnt_alloc_coherent);
512
	amd_iommu_stats_add(&cnt_free_coherent);
513
	amd_iommu_stats_add(&cross_page);
514
	amd_iommu_stats_add(&domain_flush_single);
515
	amd_iommu_stats_add(&domain_flush_all);
516
	amd_iommu_stats_add(&alloced_io_mem);
517
	amd_iommu_stats_add(&total_map_requests);
518 519 520 521
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
522 523 524 525
}

#endif

526 527 528 529 530 531
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

532 533 534 535
static void dump_dte_entry(u16 devid)
{
	int i;

536 537
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
538 539 540
			amd_iommu_dev_table[devid].data[i]);
}

541 542 543 544 545 546 547 548 549
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

550
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
573

574
	printk(KERN_ERR "AMD-Vi: Event logged [");
575 576 577 578 579

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
580
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581
		       address, flags);
582
		dump_dte_entry(devid);
583 584 585 586
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
587
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
588 589 590 591 592
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
593
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
594 595 596 597 598
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
599
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
600 601 602 603
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
604
		dump_command(address);
605 606 607 608 609 610 611 612
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
613
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 615 616 617 618
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
619
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
620 621 622 623 624
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
625 626

	memset(__evt, 0, 4 * sizeof(u32));
627 628 629 630 631 632 633 634 635 636
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
637
		iommu_print_event(iommu, iommu->evt_buf + head);
638 639 640 641 642 643
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

644
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
645 646 647
{
	struct amd_iommu_fault fault;

648 649
	INC_STATS_COUNTER(pri_requests);

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
691

692 693 694
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
695

696 697 698 699 700 701 702
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
703 704
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
705 706 707 708 709 710

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 712 713 714
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

715
irqreturn_t amd_iommu_int_thread(int irq, void *data)
716
{
717 718
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
719

720 721 722 723
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
724

725 726 727 728
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
729

730 731 732 733
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
750
	return IRQ_HANDLED;
751 752
}

753 754 755 756 757
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

758 759 760 761 762 763
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
784 785 786
{
	u8 *target;

787
	target = iommu->cmd_buf + tail;
788 789 790 791 792 793
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
794
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
795
}
796

797
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
798
{
799 800
	WARN_ON(address & 0x7ULL);

801
	memset(cmd, 0, sizeof(*cmd));
802 803 804
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
805 806 807
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

808 809 810 811 812 813 814
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

815 816 817 818
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
819
	bool s;
820 821

	pages = iommu_num_pages(address, size, PAGE_SIZE);
822
	s     = false;
823 824 825 826 827 828 829

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
830
		s = true;
831 832 833 834 835 836 837 838 839 840 841
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
842
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
843 844 845
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

846 847 848 849
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
850
	bool s;
851 852

	pages = iommu_num_pages(address, size, PAGE_SIZE);
853
	s     = false;
854 855 856 857 858 859 860

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
861
		s = true;
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

877 878 879 880 881 882 883
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

884
	cmd->data[0]  = pasid;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
903
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
904 905
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
906
	cmd->data[1] |= (pasid & 0xff) << 16;
907 908 909 910 911 912 913 914
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

915 916 917 918 919 920 921
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
922
		cmd->data[1]  = pasid;
923 924 925 926 927 928 929 930
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

931 932 933 934
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
935 936
}

937 938 939 940 941 942 943
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

944 945
/*
 * Writes the command to the IOMMUs command buffer and informs the
946
 * hardware about the new command.
947
 */
948 949 950
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
951
{
952
	u32 left, tail, head, next_tail;
953 954
	unsigned long flags;

955
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
956 957

again:
958 959
	spin_lock_irqsave(&iommu->lock, flags);

960 961 962 963
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
964

965 966 967 968
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
969

970 971
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
972

973 974 975 976 977 978
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
979 980
	}

981 982 983
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
984
	iommu->need_sync = sync;
985

986
	spin_unlock_irqrestore(&iommu->lock, flags);
987

988
	return 0;
989 990
}

991 992 993 994 995
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

996 997 998 999
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1000
static int iommu_completion_wait(struct amd_iommu *iommu)
1001 1002
{
	struct iommu_cmd cmd;
1003
	volatile u64 sem = 0;
1004
	int ret;
1005

1006
	if (!iommu->need_sync)
1007
		return 0;
1008

1009
	build_completion_wait(&cmd, (u64)&sem);
1010

1011
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1012
	if (ret)
1013
		return ret;
1014

1015
	return wait_on_sem(&sem);
1016 1017
}

1018
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1019
{
1020
	struct iommu_cmd cmd;
1021

1022
	build_inv_dte(&cmd, devid);
1023

1024 1025
	return iommu_queue_command(iommu, &cmd);
}
1026

1027 1028 1029
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1030

1031 1032
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1033

1034 1035
	iommu_completion_wait(iommu);
}
1036

1037 1038 1039 1040 1041 1042 1043
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1044

1045 1046 1047 1048 1049 1050
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1051

1052
	iommu_completion_wait(iommu);
1053 1054
}

1055
static void iommu_flush_all(struct amd_iommu *iommu)
1056
{
1057
	struct iommu_cmd cmd;
1058

1059
	build_inv_all(&cmd);
1060

1061 1062 1063 1064
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1084 1085
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1086 1087 1088 1089
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1090
		iommu_flush_irt_all(iommu);
1091
		iommu_flush_tlb_all(iommu);
1092 1093 1094
	}
}

1095
/*
1096
 * Command send function for flushing on-device TLB
1097
 */
1098 1099
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1100 1101
{
	struct amd_iommu *iommu;
1102
	struct iommu_cmd cmd;
1103
	int qdep;
1104

1105 1106
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1107

1108
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1109 1110

	return iommu_queue_command(iommu, &cmd);
1111 1112
}

1113 1114 1115
/*
 * Command send function for invalidating a device table entry
 */
1116
static int device_flush_dte(struct iommu_dev_data *dev_data)
1117
{
1118
	struct amd_iommu *iommu;
1119
	int ret;
1120

1121
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1122

1123
	ret = iommu_flush_dte(iommu, dev_data->devid);
1124 1125 1126
	if (ret)
		return ret;

1127
	if (dev_data->ats.enabled)
1128
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1129 1130

	return ret;
1131 1132
}

1133 1134 1135 1136 1137
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1138 1139
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1140
{
1141
	struct iommu_dev_data *dev_data;
1142 1143
	struct iommu_cmd cmd;
	int ret = 0, i;
1144

1145
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1146

1147 1148 1149 1150 1151 1152 1153 1154
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1155
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1156 1157
	}

1158 1159
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1160
		if (!dev_data->ats.enabled)
1161 1162
			continue;

1163
		ret |= device_flush_iotlb(dev_data, address, size);
1164 1165
	}

1166
	WARN_ON(ret);
1167 1168
}

1169 1170
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1171
{
1172
	__domain_flush_pages(domain, address, size, 0);
1173
}
1174

1175
/* Flush the whole IO/TLB for a given protection domain */
1176
static void domain_flush_tlb(struct protection_domain *domain)
1177
{
1178
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1179 1180
}

1181
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1182
static void domain_flush_tlb_pde(struct protection_domain *domain)
1183
{
1184
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1185 1186
}

1187
static void domain_flush_complete(struct protection_domain *domain)
1188
{
1189
	int i;
1190

1191 1192 1193
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1194

1195 1196 1197 1198 1199
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1200
	}
1201 1202
}

1203

1204
/*
1205
 * This function flushes the DTEs for all devices in domain
1206
 */
1207
static void domain_flush_devices(struct protection_domain *domain)
1208
{
1209
	struct iommu_dev_data *dev_data;
1210

1211
	list_for_each_entry(dev_data, &domain->dev_list, list)
1212
		device_flush_dte(dev_data);
1213 1214
}

1215 1216 1217 1218 1219 1220 1221
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1251
		      unsigned long page_size,
1252 1253 1254
		      u64 **pte_page,
		      gfp_t gfp)
{
1255
	int level, end_lvl;
1256
	u64 *pte, *page;
1257 1258

	BUG_ON(!is_power_of_2(page_size));
1259 1260 1261 1262

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1263 1264 1265 1266
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1267 1268 1269 1270 1271 1272 1273 1274 1275

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1276 1277 1278 1279
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1297 1298 1299
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1300 1301 1302 1303
{
	int level;
	u64 *pte;

1304 1305 1306
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1307 1308 1309
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1310

1311 1312 1313
	while (level > 0) {

		/* Not Present */
1314 1315 1316
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1317
		/* Large PTE */
1318 1319 1320
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1321 1322 1323 1324 1325

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1326 1327
		level -= 1;

1328
		/* Walk to the next level */
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1344 1345 1346 1347 1348
	}

	return pte;
}

1349 1350 1351 1352 1353 1354 1355
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1356 1357 1358
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1359
			  int prot,
1360
			  unsigned long page_size)
1361
{
1362
	u64 __pte, *pte;
1363
	int i, count;
1364

1365 1366 1367
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1368
	if (!(prot & IOMMU_PROT_MASK))
1369 1370
		return -EINVAL;

1371 1372
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1373

1374 1375 1376
	if (!pte)
		return -ENOMEM;

1377 1378 1379
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1380

1381
	if (count > 1) {
1382 1383 1384 1385
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1386 1387 1388 1389 1390 1391

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1392 1393
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1394

1395 1396
	update_domain(dom);

1397 1398 1399
	return 0;
}

1400 1401 1402
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1403
{
1404 1405
	unsigned long long unmapped;
	unsigned long unmap_size;
1406 1407 1408 1409 1410
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1411

1412 1413
	while (unmapped < page_size) {

1414 1415 1416 1417 1418 1419
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1420 1421 1422 1423 1424 1425 1426 1427
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1428
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1429

1430
	return unmapped;
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1442

1443
/*
1444
 * The address allocator core functions.
1445 1446 1447
 *
 * called with domain->lock held
 */
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1469 1470 1471 1472 1473
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1474
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1475 1476 1477
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1478
	struct amd_iommu *iommu;
1479
	unsigned long i, old_size, pte_pgsize;
1480

1481 1482 1483 1484
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1504
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1515
	old_size                = dma_dom->aperture_size;
1516 1517
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1530
	/* Initialize the exclusion range if necessary */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1552
	     i += pte_pgsize) {
1553
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1554 1555 1556
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1557 1558
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1559 1560
	}

1561 1562
	update_domain(&dma_dom->domain);

1563 1564 1565
	return 0;

out_free:
1566 1567
	update_domain(&dma_dom->domain);

1568 1569 1570 1571 1572 1573 1574 1575
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1576 1577 1578 1579 1580 1581 1582
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1583
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1584 1585
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
1586
	unsigned long boundary_size, mask;
1587 1588 1589
	unsigned long address = -1;
	unsigned long limit;

1590 1591
	next_bit >>= PAGE_SHIFT;

1592 1593 1594 1595
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1612
			dom->next_address = address + (pages << PAGE_SHIFT);
1613 1614 1615 1616 1617 1618 1619 1620 1621
			break;
		}

		next_bit = 0;
	}

	return address;
}

1622 1623
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1624
					     unsigned int pages,
1625 1626
					     unsigned long align_mask,
					     u64 dma_mask)
1627 1628 1629
{
	unsigned long address;

1630 1631 1632 1633
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1634

1635
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1636
				     dma_mask, dom->next_address);
1637

1638
	if (address == -1) {
1639
		dom->next_address = 0;
1640 1641
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1642 1643
		dom->need_flush = true;
	}
1644

1645
	if (unlikely(address == -1))
1646
		address = DMA_ERROR_CODE;
1647 1648 1649 1650 1651 1652

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1653 1654 1655 1656 1657
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1658 1659 1660 1661
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1662 1663
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1664

1665 1666
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1667 1668 1669 1670
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1671

1672
	if (address >= dom->next_address)
1673
		dom->need_flush = true;
1674 1675

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1676

A
Akinobu Mita 已提交
1677
	bitmap_clear(range->bitmap, address, pages);
1678

1679 1680
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1753
		/* PTE present? */				\
1754 1755 1756
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1757 1758 1759 1760 1761
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1774
static void free_pagetable(struct protection_domain *domain)
1775
{
1776
	unsigned long root = (unsigned long)domain->pt_root;
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1801 1802 1803
	}
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1834 1835
static void free_gcr3_table(struct protection_domain *domain)
{
1836 1837 1838 1839 1840 1841 1842
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1843 1844 1845
	free_page((unsigned long)domain->gcr3_tbl);
}

1846 1847 1848 1849
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1850 1851
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1852 1853
	int i;

1854 1855 1856
	if (!dom)
		return;

1857 1858
	del_domain_from_list(&dom->domain);

1859
	free_pagetable(&dom->domain);
1860

1861 1862 1863 1864 1865 1866
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1867 1868 1869 1870

	kfree(dom);
}

1871 1872
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1873
 * It also initializes the page table and the address allocator data
1874 1875
 * structures required for the dma_ops interface
 */
1876
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1877 1878 1879 1880 1881 1882 1883
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1884
	if (protection_domain_init(&dma_dom->domain))
1885
		goto free_dma_dom;
1886

1887
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1888
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1889
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1890 1891 1892 1893
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1894 1895
	dma_dom->need_flush = false;

1896 1897
	add_domain_to_list(&dma_dom->domain);

1898
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1899 1900
		goto free_dma_dom;

1901
	/*
1902 1903
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1904
	 */
1905
	dma_dom->aperture[0]->bitmap[0] = 1;
1906
	dma_dom->next_address = 0;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1917 1918 1919 1920 1921 1922 1923 1924 1925
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1926
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1927
{
1928
	u64 pte_root = 0;
1929
	u64 flags = 0;
1930

1931 1932 1933
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1934 1935 1936
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1937

1938 1939
	flags = amd_iommu_dev_table[devid].data[1];

1940 1941 1942
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1969 1970 1971 1972 1973
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1974 1975 1976 1977 1978 1979 1980 1981 1982
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1983 1984
}

1985 1986
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1987 1988
{
	struct amd_iommu *iommu;
1989
	bool ats;
1990

1991 1992
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1993 1994 1995 1996

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1997
	set_dte_entry(dev_data->devid, domain, ats);
1998 1999 2000 2001 2002 2003

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2004
	device_flush_dte(dev_data);
2005 2006
}

2007
static void do_detach(struct iommu_dev_data *dev_data)
2008 2009 2010
{
	struct amd_iommu *iommu;

2011
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2012 2013

	/* decrease reference counters */
2014 2015 2016 2017 2018 2019
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2020
	clear_dte_entry(dev_data->devid);
2021

2022
	/* Flush the DTE entry */
2023
	device_flush_dte(dev_data);
2024 2025 2026 2027 2028 2029
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2030
static int __attach_device(struct iommu_dev_data *dev_data,
2031
			   struct protection_domain *domain)
2032
{
2033
	struct iommu_dev_data *head, *entry;
2034
	int ret;
2035

2036 2037 2038
	/* lock domain */
	spin_lock(&domain->lock);

2039
	head = dev_data;
2040

2041 2042
	if (head->alias_data != NULL)
		head = head->alias_data;
2043

2044
	/* Now we have the root of the alias group, if any */
2045

2046 2047 2048
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2049

2050 2051
	/* Attach alias group root */
	do_attach(head, domain);
2052

2053 2054 2055
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2056

2057 2058 2059 2060
	ret = 0;

out_unlock:

2061 2062
	/* ready */
	spin_unlock(&domain->lock);
2063

2064
	return ret;
2065
}
2066

2067 2068 2069 2070 2071 2072 2073 2074

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2075 2076 2077 2078 2079 2080
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2081
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2082 2083 2084
	if (!pos)
		return -EINVAL;

2085 2086 2087
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2088 2089 2090 2091

	return 0;
}

2092 2093
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2094 2095 2096 2097 2098 2099 2100 2101
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2113 2114
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2115 2116 2117
	if (ret)
		goto out_err;

2118 2119 2120 2121 2122 2123
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2137
/* FIXME: Move this to PCI code */
2138
#define PCI_PRI_TLP_OFF		(1 << 15)
2139

J
Joerg Roedel 已提交
2140
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2141
{
2142
	u16 status;
2143 2144
	int pos;

2145
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2146 2147 2148
	if (!pos)
		return false;

2149
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2150

2151
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2152 2153
}

2154
/*
F
Frank Arnold 已提交
2155
 * If a device is not yet associated with a domain, this function
2156 2157
 * assigns it visible for the hardware
 */
2158 2159
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2160
{
2161
	struct pci_dev *pdev = to_pci_dev(dev);
2162
	struct iommu_dev_data *dev_data;
2163
	unsigned long flags;
2164
	int ret;
2165

2166 2167
	dev_data = get_dev_data(dev);

2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2177
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2178 2179
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2180 2181 2182
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2183

2184
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2185
	ret = __attach_device(dev_data, domain);
2186 2187
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2188 2189 2190 2191 2192
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2193
	domain_flush_tlb_pde(domain);
2194 2195

	return ret;
2196 2197
}

2198 2199 2200
/*
 * Removes a device from a protection domain (unlocked)
 */
2201
static void __detach_device(struct iommu_dev_data *dev_data)
2202
{
2203
	struct iommu_dev_data *head, *entry;
2204
	struct protection_domain *domain;
2205
	unsigned long flags;
2206

2207
	BUG_ON(!dev_data->domain);
2208

2209 2210 2211
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2212

2213 2214 2215
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2216

2217 2218
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2219

2220
	do_detach(head);
2221

2222
	spin_unlock_irqrestore(&domain->lock, flags);
2223 2224 2225

	/*
	 * If we run in passthrough mode the device must be assigned to the
2226 2227
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2228
	 */
2229
	if (dev_data->passthrough &&
2230
	    (dev_data->domain == NULL && domain != pt_domain))
2231
		__attach_device(dev_data, pt_domain);
2232 2233 2234 2235 2236
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2237
static void detach_device(struct device *dev)
2238
{
2239
	struct protection_domain *domain;
2240
	struct iommu_dev_data *dev_data;
2241 2242
	unsigned long flags;

2243
	dev_data = get_dev_data(dev);
2244
	domain   = dev_data->domain;
2245

2246 2247
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2248
	__detach_device(dev_data);
2249
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2250

2251 2252 2253
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2254
		pci_disable_ats(to_pci_dev(dev));
2255 2256

	dev_data->ats.enabled = false;
2257
}
2258

2259
static int amd_iommu_add_device(struct device *dev)
2260
{
2261
	struct iommu_dev_data *dev_data;
2262
	struct iommu_domain *domain;
2263
	struct amd_iommu *iommu;
2264
	u16 devid;
2265
	int ret;
2266

2267
	if (!check_device(dev) || get_dev_data(dev))
2268
		return 0;
2269

2270 2271
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2272

2273
	ret = iommu_init_device(dev);
2274 2275 2276 2277
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2278

2279
		iommu_ignore_device(dev);
2280
		dev->archdata.dma_ops = &nommu_dma_ops;
2281 2282 2283
		goto out;
	}
	init_iommu_group(dev);
2284

2285
	dev_data = get_dev_data(dev);
2286

2287
	BUG_ON(!dev_data);
2288

2289
	if (dev_data->iommu_v2)
2290
		iommu_request_dm_for_dev(dev);
2291

2292 2293 2294 2295 2296 2297
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		dev_data->passthrough = true;
		dev->archdata.dma_ops = &nommu_dma_ops;
	} else {
2298
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2299 2300
	}

2301
out:
2302 2303 2304 2305 2306
	iommu_completion_wait(iommu);

	return 0;
}

2307
static void amd_iommu_remove_device(struct device *dev)
2308
{
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2335
static struct protection_domain *get_domain(struct device *dev)
2336
{
2337
	struct protection_domain *domain;
2338
	struct iommu_domain *io_domain;
2339

2340
	if (!check_device(dev))
2341
		return ERR_PTR(-EINVAL);
2342

2343
	io_domain = iommu_get_domain_for_dev(dev);
2344 2345
	if (!io_domain)
		return NULL;
2346

2347 2348
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2349
		return ERR_PTR(-EBUSY);
2350

2351
	return domain;
2352 2353
}

2354 2355
static void update_device_table(struct protection_domain *domain)
{
2356
	struct iommu_dev_data *dev_data;
2357

2358 2359
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2360 2361 2362 2363 2364 2365 2366 2367
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2368 2369 2370

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2371 2372 2373 2374

	domain->updated = false;
}

2375 2376 2377 2378 2379 2380
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2381
	struct aperture_range *aperture;
2382 2383
	u64 *pte, *pte_page;

2384 2385 2386 2387 2388
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2389
	if (!pte) {
2390
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2391
				GFP_ATOMIC);
2392 2393
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2394
		pte += PM_LEVEL_INDEX(0, address);
2395

2396
	update_domain(&dom->domain);
2397 2398 2399 2400

	return pte;
}

2401 2402 2403 2404
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2405
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2416
	pte  = dma_ops_get_pte(dom, address);
2417
	if (!pte)
2418
		return DMA_ERROR_CODE;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2436 2437 2438
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2439
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2440 2441
				 unsigned long address)
{
2442
	struct aperture_range *aperture;
2443 2444 2445 2446 2447
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2448 2449 2450 2451 2452 2453 2454
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2455

2456
	pte += PM_LEVEL_INDEX(0, address);
2457 2458 2459 2460 2461 2462

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2463 2464
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2465 2466
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2467 2468
 * Must be called with the domain lock held.
 */
2469 2470 2471 2472
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2473
			       int dir,
2474 2475
			       bool align,
			       u64 dma_mask)
2476 2477
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2478
	dma_addr_t address, start, ret;
2479
	unsigned int pages;
2480
	unsigned long align_mask = 0;
2481 2482
	int i;

2483
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2484 2485
	paddr &= PAGE_MASK;

2486 2487
	INC_STATS_COUNTER(total_map_requests);

2488 2489 2490
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2491 2492 2493
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2494
retry:
2495 2496
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2497
	if (unlikely(address == DMA_ERROR_CODE)) {
2498 2499 2500 2501 2502 2503 2504
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2505
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2506 2507 2508
			goto out;

		/*
2509
		 * aperture was successfully enlarged by 128 MB, try
2510 2511 2512 2513
		 * allocation again
		 */
		goto retry;
	}
2514 2515 2516

	start = address;
	for (i = 0; i < pages; ++i) {
2517
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2518
		if (ret == DMA_ERROR_CODE)
2519 2520
			goto out_unmap;

2521 2522 2523 2524 2525
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2526 2527
	ADD_STATS_COUNTER(alloced_io_mem, size);

2528
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2529
		domain_flush_tlb(&dma_dom->domain);
2530
		dma_dom->need_flush = false;
2531
	} else if (unlikely(amd_iommu_np_cache))
2532
		domain_flush_pages(&dma_dom->domain, address, size);
2533

2534 2535
out:
	return address;
2536 2537 2538 2539 2540

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2541
		dma_ops_domain_unmap(dma_dom, start);
2542 2543 2544 2545
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2546
	return DMA_ERROR_CODE;
2547 2548
}

2549 2550 2551 2552
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2553
static void __unmap_single(struct dma_ops_domain *dma_dom,
2554 2555 2556 2557
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2558
	dma_addr_t flush_addr;
2559 2560 2561
	dma_addr_t i, start;
	unsigned int pages;

2562
	if ((dma_addr == DMA_ERROR_CODE) ||
2563
	    (dma_addr + size > dma_dom->aperture_size))
2564 2565
		return;

2566
	flush_addr = dma_addr;
2567
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2568 2569 2570 2571
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2572
		dma_ops_domain_unmap(dma_dom, start);
2573 2574 2575
		start += PAGE_SIZE;
	}

2576 2577
	SUB_STATS_COUNTER(alloced_io_mem, size);

2578
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2579

2580
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2581
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2582 2583
		dma_dom->need_flush = false;
	}
2584 2585
}

2586 2587 2588
/*
 * The exported map_single function for dma_ops.
 */
2589 2590 2591 2592
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2593 2594 2595 2596
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2597
	u64 dma_mask;
2598
	phys_addr_t paddr = page_to_phys(page) + offset;
2599

2600 2601
	INC_STATS_COUNTER(cnt_map_single);

2602 2603
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2604
		return (dma_addr_t)paddr;
2605 2606
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2607

2608 2609
	dma_mask = *dev->dma_mask;

2610
	spin_lock_irqsave(&domain->lock, flags);
2611

2612
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2613
			    dma_mask);
2614
	if (addr == DMA_ERROR_CODE)
2615 2616
		goto out;

2617
	domain_flush_complete(domain);
2618 2619 2620 2621 2622 2623 2624

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2625 2626 2627
/*
 * The exported unmap_single function for dma_ops.
 */
2628 2629
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2630 2631 2632 2633
{
	unsigned long flags;
	struct protection_domain *domain;

2634 2635
	INC_STATS_COUNTER(cnt_unmap_single);

2636 2637
	domain = get_domain(dev);
	if (IS_ERR(domain))
2638 2639
		return;

2640 2641
	spin_lock_irqsave(&domain->lock, flags);

2642
	__unmap_single(domain->priv, dma_addr, size, dir);
2643

2644
	domain_flush_complete(domain);
2645 2646 2647 2648

	spin_unlock_irqrestore(&domain->lock, flags);
}

2649 2650 2651 2652
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2653
static int map_sg(struct device *dev, struct scatterlist *sglist,
2654 2655
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2656 2657 2658 2659 2660 2661 2662
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2663
	u64 dma_mask;
2664

2665 2666
	INC_STATS_COUNTER(cnt_map_sg);

2667
	domain = get_domain(dev);
2668
	if (IS_ERR(domain))
2669
		return 0;
2670

2671
	dma_mask = *dev->dma_mask;
2672 2673 2674 2675 2676 2677

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2678
		s->dma_address = __map_single(dev, domain->priv,
2679 2680
					      paddr, s->length, dir, false,
					      dma_mask);
2681 2682 2683 2684 2685 2686 2687 2688

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2689
	domain_flush_complete(domain);
2690 2691 2692 2693 2694 2695 2696 2697

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2698
			__unmap_single(domain->priv, s->dma_address,
2699 2700 2701 2702 2703 2704 2705 2706 2707
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2708 2709 2710 2711
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2712
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2713 2714
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2715 2716 2717 2718 2719 2720
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2721 2722
	INC_STATS_COUNTER(cnt_unmap_sg);

2723 2724
	domain = get_domain(dev);
	if (IS_ERR(domain))
2725 2726
		return;

2727 2728 2729
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2730
		__unmap_single(domain->priv, s->dma_address,
2731 2732 2733 2734
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2735
	domain_flush_complete(domain);
2736 2737 2738 2739

	spin_unlock_irqrestore(&domain->lock, flags);
}

2740 2741 2742
/*
 * The exported alloc_coherent function for dma_ops.
 */
2743
static void *alloc_coherent(struct device *dev, size_t size,
2744 2745
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2746
{
2747
	u64 dma_mask = dev->coherent_dma_mask;
2748 2749 2750
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2751

2752 2753
	INC_STATS_COUNTER(cnt_alloc_coherent);

2754 2755
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2756 2757 2758
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2759 2760
	} else if (IS_ERR(domain))
		return NULL;
2761

2762
	size	  = PAGE_ALIGN(size);
2763 2764
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2765
	flag     |= __GFP_ZERO;
2766

2767 2768 2769 2770
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2771

2772 2773 2774 2775 2776
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2777

2778 2779 2780
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2781 2782
	spin_lock_irqsave(&domain->lock, flags);

2783
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2784
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2785

2786
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2787
		spin_unlock_irqrestore(&domain->lock, flags);
2788
		goto out_free;
J
Jiri Slaby 已提交
2789
	}
2790

2791
	domain_flush_complete(domain);
2792 2793 2794

	spin_unlock_irqrestore(&domain->lock, flags);

2795
	return page_address(page);
2796 2797 2798

out_free:

2799 2800
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2801 2802

	return NULL;
2803 2804
}

2805 2806 2807
/*
 * The exported free_coherent function for dma_ops.
 */
2808
static void free_coherent(struct device *dev, size_t size,
2809 2810
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2811 2812
{
	struct protection_domain *domain;
2813 2814
	unsigned long flags;
	struct page *page;
2815

2816 2817
	INC_STATS_COUNTER(cnt_free_coherent);

2818 2819 2820
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2821 2822
	domain = get_domain(dev);
	if (IS_ERR(domain))
2823 2824
		goto free_mem;

2825 2826
	spin_lock_irqsave(&domain->lock, flags);

2827
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2828

2829
	domain_flush_complete(domain);
2830 2831 2832 2833

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2834 2835
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2836 2837
}

2838 2839 2840 2841 2842 2843
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2844
	return check_device(dev);
2845 2846
}

2847
static struct dma_map_ops amd_iommu_dma_ops = {
2848 2849
	.alloc = alloc_coherent,
	.free = free_coherent,
2850 2851
	.map_page = map_page,
	.unmap_page = unmap_page,
2852 2853
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2854
	.dma_supported = amd_iommu_dma_supported,
2855 2856
};

2857
int __init amd_iommu_init_api(void)
2858
{
2859
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2860 2861
}

2862 2863 2864
int __init amd_iommu_init_dma_ops(void)
{
	iommu_detected = 1;
2865
	swiotlb = 0;
2866

2867 2868
	amd_iommu_stats_init();

2869 2870 2871 2872 2873
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2874 2875
	return 0;
}
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2889
	struct iommu_dev_data *entry;
2890 2891 2892 2893
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2894 2895 2896 2897
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2898
	}
2899 2900 2901 2902

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2903 2904 2905 2906 2907
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2908 2909
	del_domain_from_list(domain);

2910 2911 2912 2913 2914 2915
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2928
static struct protection_domain *protection_domain_alloc(void)
2929 2930 2931 2932 2933
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2934
		return NULL;
2935

2936
	if (protection_domain_init(domain))
2937 2938
		goto out_err;

2939 2940
	add_domain_to_list(domain);

2941 2942 2943 2944 2945 2946 2947 2948
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2949
static int alloc_passthrough_domain(void)
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
2963 2964

static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2965
{
2966
	struct protection_domain *pdomain;
2967
	struct dma_ops_domain *dma_domain;
2968

2969 2970 2971 2972 2973
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2974

2975 2976 2977 2978 2979 2980
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2981

2982 2983 2984
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2995 2996 2997 2998
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2999

3000 3001
		pdomain->mode = PAGE_MODE_NONE;
		break;
3002 3003 3004
	default:
		return NULL;
	}
3005

3006
	return &pdomain->domain;
3007 3008
}

3009
static void amd_iommu_domain_free(struct iommu_domain *dom)
3010
{
3011
	struct protection_domain *domain;
3012

3013
	if (!dom)
3014 3015
		return;

3016 3017
	domain = to_pdomain(dom);

3018 3019 3020 3021 3022
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3023 3024
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3025

3026 3027 3028
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3029
	protection_domain_free(domain);
3030 3031
}

3032 3033 3034
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3035
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3036 3037 3038
	struct amd_iommu *iommu;
	u16 devid;

3039
	if (!check_device(dev))
3040 3041
		return;

3042
	devid = get_device_id(dev);
3043

3044
	if (dev_data->domain != NULL)
3045
		detach_device(dev);
3046 3047 3048 3049 3050 3051 3052 3053

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3054 3055 3056
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3057
	struct protection_domain *domain = to_pdomain(dom);
3058
	struct iommu_dev_data *dev_data;
3059
	struct amd_iommu *iommu;
3060
	int ret;
3061

3062
	if (!check_device(dev))
3063 3064
		return -EINVAL;

3065 3066
	dev_data = dev->archdata.iommu;

3067
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3068 3069 3070
	if (!iommu)
		return -EINVAL;

3071
	if (dev_data->domain)
3072
		detach_device(dev);
3073

3074
	ret = attach_device(dev, domain);
3075 3076 3077

	iommu_completion_wait(iommu);

3078
	return ret;
3079 3080
}

3081
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3082
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3083
{
3084
	struct protection_domain *domain = to_pdomain(dom);
3085 3086 3087
	int prot = 0;
	int ret;

3088 3089 3090
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3091 3092 3093 3094 3095
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3096
	mutex_lock(&domain->api_lock);
3097
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3098 3099
	mutex_unlock(&domain->api_lock);

3100
	return ret;
3101 3102
}

3103 3104
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3105
{
3106
	struct protection_domain *domain = to_pdomain(dom);
3107
	size_t unmap_size;
3108

3109 3110 3111
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3112
	mutex_lock(&domain->api_lock);
3113
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3114
	mutex_unlock(&domain->api_lock);
3115

3116
	domain_flush_tlb_pde(domain);
3117

3118
	return unmap_size;
3119 3120
}

3121
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3122
					  dma_addr_t iova)
3123
{
3124
	struct protection_domain *domain = to_pdomain(dom);
3125
	unsigned long offset_mask, pte_pgsize;
3126
	u64 *pte, __pte;
3127

3128 3129 3130
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3131
	pte = fetch_pte(domain, iova, &pte_pgsize);
3132

3133
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3134 3135
		return 0;

3136 3137
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3138

3139
	return (__pte & ~offset_mask) | (iova & offset_mask);
3140 3141
}

3142
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3143
{
3144 3145
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3146
		return true;
3147
	case IOMMU_CAP_INTR_REMAP:
3148
		return (irq_remapping_enabled == 1);
3149 3150
	case IOMMU_CAP_NOEXEC:
		return false;
3151 3152
	}

3153
	return false;
S
Sheng Yang 已提交
3154 3155
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3197
static const struct iommu_ops amd_iommu_ops = {
3198
	.capable = amd_iommu_capable,
3199 3200
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3201 3202
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3203 3204
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3205
	.map_sg = default_iommu_map_sg,
3206
	.iova_to_phys = amd_iommu_iova_to_phys,
3207 3208
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3209 3210
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3211
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3212 3213
};

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3226
	struct iommu_dev_data *dev_data;
3227
	struct pci_dev *dev = NULL;
3228
	int ret;
3229

3230 3231 3232
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3233

3234
	for_each_pci_dev(dev) {
3235
		if (!check_device(&dev->dev))
3236 3237
			continue;

3238 3239 3240
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3241
		attach_device(&dev->dev, pt_domain);
3242 3243
	}

J
Joerg Roedel 已提交
3244 3245
	amd_iommu_stats_init();

3246 3247 3248 3249
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3263 3264 3265

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3266
	struct protection_domain *domain = to_pdomain(dom);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3284 3285 3286

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3287
	struct protection_domain *domain = to_pdomain(dom);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3391 3392
	INC_STATS_COUNTER(invalidate_iotlb);

3393 3394 3395 3396 3397 3398
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3399
	struct protection_domain *domain = to_pdomain(dom);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3413 3414
	INC_STATS_COUNTER(invalidate_iotlb_all);

3415 3416 3417 3418 3419 3420
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3421
	struct protection_domain *domain = to_pdomain(dom);
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3501
	struct protection_domain *domain = to_pdomain(dom);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3515
	struct protection_domain *domain = to_pdomain(dom);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3526 3527 3528 3529 3530 3531 3532 3533

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3534 3535
	INC_STATS_COUNTER(complete_ppr);

3536 3537 3538 3539 3540 3541 3542 3543 3544
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3545 3546 3547

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3548
	struct protection_domain *pdomain;
3549

3550 3551
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3552 3553 3554
		return NULL;

	/* Only return IOMMUv2 domains */
3555
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3556 3557
		return NULL;

3558
	return &pdomain->domain;
3559 3560
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3692 3693 3694
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3695 3696 3697 3698 3699 3700 3701
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3702
		table = NULL;
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3720
		set_dte_irq_entry(alias, table);
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3755
			struct irq_2_irte *irte_info;
3756 3757 3758 3759 3760 3761

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3762
			cfg->remapped	      = 1;
3763 3764 3765
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3841 3842 3843 3844 3845
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
3846
	struct irq_2_irte *irte_info;
3847 3848 3849 3850 3851 3852 3853
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

3854
	cfg = irq_cfg(irq);
3855 3856 3857
	if (!cfg)
		return -EINVAL;

3858
	irte_info = &cfg->irq_2_irte;
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
3872
	cfg->remapped	      = 1;
3873 3874
	irte_info->devid      = devid;
	irte_info->index      = index;
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
3908
	struct irq_2_irte *irte_info;
3909 3910 3911 3912 3913 3914 3915 3916
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

3917
	cfg       = irqd_cfg(data);
3918
	irq       = data->irq;
3919
	irte_info = &cfg->irq_2_irte;
3920 3921 3922 3923

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

3924
	if (get_irte(irte_info->devid, irte_info->index, &irte))
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

3940
	modify_irte(irte_info->devid, irte_info->index, irte);
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
3952
	struct irq_2_irte *irte_info;
3953 3954
	struct irq_cfg *cfg;

3955
	cfg = irq_cfg(irq);
3956 3957 3958
	if (!cfg)
		return -EINVAL;

3959
	irte_info = &cfg->irq_2_irte;
3960

3961
	free_irte(irte_info->devid, irte_info->index);
3962 3963 3964 3965

	return 0;
}

3966 3967 3968 3969
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
3970
	struct irq_2_irte *irte_info;
3971 3972 3973
	struct irq_cfg *cfg;
	union irte irte;

3974
	cfg = irq_cfg(irq);
3975 3976 3977
	if (!cfg)
		return;

3978
	irte_info = &cfg->irq_2_irte;
3979 3980 3981 3982 3983 3984 3985 3986

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

3987
	modify_irte(irte_info->devid, irte_info->index, irte);
3988 3989 3990

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
3991
	msg->data       = irte_info->index;
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4003
	cfg = irq_cfg(irq);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4016
	struct irq_2_irte *irte_info;
4017 4018 4019 4020 4021 4022
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4023
	cfg = irq_cfg(irq);
4024 4025 4026 4027 4028 4029 4030
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4031
	irte_info	= &cfg->irq_2_irte;
4032

4033
	cfg->remapped	      = 1;
4034 4035
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4036 4037 4038 4039

	return 0;
}

4040
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4041
{
4042
	struct irq_2_irte *irte_info;
4043 4044 4045
	struct irq_cfg *cfg;
	int index, devid;

4046
	cfg = irq_cfg(irq);
4047 4048 4049
	if (!cfg)
		return -EINVAL;

4050
	irte_info = &cfg->irq_2_irte;
4051 4052 4053 4054 4055 4056 4057 4058
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4059
	cfg->remapped	      = 1;
4060 4061
	irte_info->devid      = devid;
	irte_info->index      = index;
4062 4063 4064 4065

	return 0;
}

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4078
	.alloc_hpet_msi		= alloc_hpet_msi,
4079
};
4080
#endif