cpuset.c 75.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
80 81
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

82 83 84 85 86 87 88 89 90 91 92 93
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

94
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
95

96 97 98 99 100 101
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
102 103
	/* partition number for rebuild_sched_domains() */
	int pn;
104

105 106
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
107 108
};

109
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
110
{
111
	return css ? container_of(css, struct cpuset, css) : NULL;
112 113 114 115 116
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
117
	return css_cs(task_css(task, cpuset_cgrp_id));
118 119
}

120
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
121
{
T
Tejun Heo 已提交
122
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
138 139
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
140
	CS_ONLINE,
L
Linus Torvalds 已提交
141 142
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
143
	CS_MEM_HARDWALL,
144
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
145
	CS_SCHED_LOAD_BALANCE,
146 147
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
148 149 150
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
151 152 153 154 155
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
156 157
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
158
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
159 160 161 162
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
163
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
164 165
}

166 167 168 169 170
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
171 172 173 174 175
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

176 177
static inline int is_memory_migrate(const struct cpuset *cs)
{
178
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
179 180
}

181 182 183 184 185 186 187 188 189 190
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
191
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
192 193
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
194 195
};

196 197 198
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
199
 * @pos_css: used for iteration
200 201 202 203 204
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
205 206 207
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
208

209 210 211
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
212
 * @pos_css: used for iteration
213 214 215
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
216
 * with RCU read locked.  The caller may modify @pos_css by calling
217 218
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
219
 */
220 221 222
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
223

L
Linus Torvalds 已提交
224
/*
225 226 227 228 229 230 231 232 233 234 235 236 237 238
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
239 240
 *
 * Calls to the kernel memory allocator can not be made while holding
241
 * callback_mutex, as that would risk double tripping on callback_mutex
242 243 244
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
245
 * If a task is only holding callback_mutex, then it has read-only
246 247
 * access to cpusets.
 *
248 249 250
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
251
 *
252
 * The cpuset_common_file_read() handlers only hold callback_mutex across
253 254 255
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
256 257
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
258 259
 */

260
static DEFINE_MUTEX(cpuset_mutex);
261
static DEFINE_MUTEX(callback_mutex);
262

263 264 265 266 267 268
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

269 270
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

271 272
/*
 * This is ugly, but preserves the userspace API for existing cpuset
273
 * users. If someone tries to mount the "cpuset" filesystem, we
274 275
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
276 277
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
278
{
279
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
280
	struct dentry *ret = ERR_PTR(-ENODEV);
281 282 283 284
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
285 286
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
287 288 289
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
290 291 292 293
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
294
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
295 296 297
};

/*
298
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
299
 * are online.  If none are online, walk up the cpuset hierarchy
300 301
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
302 303
 *
 * One way or another, we guarantee to return some non-empty subset
304
 * of cpu_online_mask.
L
Linus Torvalds 已提交
305
 *
306
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
307
 */
308
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
309
{
310
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
311
		cs = parent_cs(cs);
312
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
313 314 315 316
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
317 318
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
319
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
320 321
 *
 * One way or another, we guarantee to return some non-empty subset
322
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
323
 *
324
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
325
 */
326
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
327
{
328
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
329
		cs = parent_cs(cs);
330
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
331 332
}

333 334 335
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
336
 * Called with callback_mutex/cpuset_mutex held
337 338 339 340 341 342 343 344 345 346 347 348 349 350
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
351 352 353 354 355
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
356
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
357 358 359 360
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
361
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
362 363 364 365 366
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

367 368 369 370
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
371
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
372
{
373 374 375 376 377 378 379 380 381 382 383 384 385
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
386 387 388 389 390 391 392 393
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
394
	free_cpumask_var(trial->cpus_allowed);
395 396 397
	kfree(trial);
}

L
Linus Torvalds 已提交
398 399 400 401 402 403 404
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
405
 * cpuset_mutex held.
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415 416 417
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

418
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
419
{
420
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
421
	struct cpuset *c, *par;
422 423 424
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
425 426

	/* Each of our child cpusets must be a subset of us */
427
	ret = -EBUSY;
428
	cpuset_for_each_child(c, css, cur)
429 430
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
431 432

	/* Remaining checks don't apply to root cpuset */
433
	ret = 0;
434
	if (cur == &top_cpuset)
435
		goto out;
L
Linus Torvalds 已提交
436

T
Tejun Heo 已提交
437
	par = parent_cs(cur);
438

L
Linus Torvalds 已提交
439
	/* We must be a subset of our parent cpuset */
440
	ret = -EACCES;
L
Linus Torvalds 已提交
441
	if (!is_cpuset_subset(trial, par))
442
		goto out;
L
Linus Torvalds 已提交
443

444 445 446 447
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
448
	ret = -EINVAL;
449
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
450 451
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
452
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
453
			goto out;
L
Linus Torvalds 已提交
454 455 456
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
457
			goto out;
L
Linus Torvalds 已提交
458 459
	}

460 461
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
462
	 * be changed to have empty cpus_allowed or mems_allowed.
463
	 */
464
	ret = -ENOSPC;
465
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
466 467 468 469 470 471 472
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
473

474 475 476 477
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
478 479
}

480
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
481
/*
482
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
483 484 485 486
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
487
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
488 489
}

490 491 492 493 494 495 496 497
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

498 499
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
500
{
501
	struct cpuset *cp;
502
	struct cgroup_subsys_state *pos_css;
503

504
	rcu_read_lock();
505
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
506 507 508
		if (cp == root_cs)
			continue;

509 510
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
511
			pos_css = css_rightmost_descendant(pos_css);
512
			continue;
513
		}
514 515 516 517

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
518
	rcu_read_unlock();
519 520
}

P
Paul Jackson 已提交
521
/*
522 523 524 525 526
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
527
 * The output of this function needs to be passed to kernel/sched/core.c
528 529 530
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
531
 *
L
Li Zefan 已提交
532
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
533 534 535 536 537 538 539
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
540
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
541 542
 *
 * The three key local variables below are:
543
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
544 545 546 547 548 549 550 551 552 553 554 555
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
556
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
575
static int generate_sched_domains(cpumask_var_t **domains,
576
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
577 578 579 580 581
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
582
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
583
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
584
	int ndoms = 0;		/* number of sched domains in result */
585
	int nslot;		/* next empty doms[] struct cpumask slot */
586
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
587 588

	doms = NULL;
589
	dattr = NULL;
590
	csa = NULL;
P
Paul Jackson 已提交
591 592 593

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
594 595
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
596
		if (!doms)
597 598
			goto done;

599 600 601
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
602
			update_domain_attr_tree(dattr, &top_cpuset);
603
		}
604
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
605 606

		goto done;
P
Paul Jackson 已提交
607 608
	}

609
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
610 611 612 613
	if (!csa)
		goto done;
	csn = 0;

614
	rcu_read_lock();
615
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
616 617
		if (cp == &top_cpuset)
			continue;
618
		/*
619 620 621 622 623 624
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
625
		 */
626 627
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
628
			continue;
629

630 631 632 633
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
634
		pos_css = css_rightmost_descendant(pos_css);
635 636
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

665 666 667 668
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
669
	doms = alloc_sched_domains(ndoms);
670
	if (!doms)
671 672 673 674 675 676
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
677
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
678 679 680

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
681
		struct cpumask *dp;
P
Paul Jackson 已提交
682 683
		int apn = a->pn;

684 685 686 687 688
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

689
		dp = doms[nslot];
690 691 692 693

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
694 695
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
696
				warnings--;
P
Paul Jackson 已提交
697
			}
698 699
			continue;
		}
P
Paul Jackson 已提交
700

701
		cpumask_clear(dp);
702 703 704 705 706 707
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
708
				cpumask_or(dp, dp, b->cpus_allowed);
709 710 711 712 713
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
714 715
			}
		}
716
		nslot++;
P
Paul Jackson 已提交
717 718 719
	}
	BUG_ON(nslot != ndoms);

720 721 722
done:
	kfree(csa);

723 724 725 726 727 728 729
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

730 731 732 733 734 735 736 737
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
738 739 740 741 742
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
743
 *
744
 * Call with cpuset_mutex held.  Takes get_online_cpus().
745
 */
746
static void rebuild_sched_domains_locked(void)
747 748
{
	struct sched_domain_attr *attr;
749
	cpumask_var_t *doms;
750 751
	int ndoms;

752
	lockdep_assert_held(&cpuset_mutex);
753
	get_online_cpus();
754

755 756 757 758 759 760 761 762
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

763 764 765 766 767
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
768
out:
769
	put_online_cpus();
770
}
771
#else /* !CONFIG_SMP */
772
static void rebuild_sched_domains_locked(void)
773 774 775
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
776

777 778
void rebuild_sched_domains(void)
{
779
	mutex_lock(&cpuset_mutex);
780
	rebuild_sched_domains_locked();
781
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
782 783
}

784 785 786
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
787
 *
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
815
 */
816
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
817
{
818 819 820
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
821
}
822

823 824 825 826
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
827 828 829
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
830
 */
831
static void update_tasks_cpumask(struct cpuset *cs)
832
{
833 834 835 836 837 838 839 840
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
	css_task_iter_end(&it);
841 842
}

843 844 845 846 847 848 849 850 851 852
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
853
static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
854 855
{
	struct cpuset *cp;
856
	struct cgroup_subsys_state *pos_css;
857 858

	rcu_read_lock();
859
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
860 861 862 863 864 865 866 867 868
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!cpumask_empty(cp->cpus_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
869
		}
870
		if (!css_tryget_online(&cp->css))
871 872 873
			continue;
		rcu_read_unlock();

874
		update_tasks_cpumask(cp);
875 876 877 878 879 880 881

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
882 883 884
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
885
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
886 887
 * @buf: buffer of cpu numbers written to this cpuset
 */
888 889
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
890
{
C
Cliff Wickman 已提交
891 892
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
893

894
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
895 896 897
	if (cs == &top_cpuset)
		return -EACCES;

898
	/*
899
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
900 901 902
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
903
	 */
904
	if (!*buf) {
905
		cpumask_clear(trialcs->cpus_allowed);
906
	} else {
907
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
908 909
		if (retval < 0)
			return retval;
910

911
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
912
			return -EINVAL;
913
	}
P
Paul Jackson 已提交
914

P
Paul Menage 已提交
915
	/* Nothing to do if the cpus didn't change */
916
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
917
		return 0;
C
Cliff Wickman 已提交
918

919 920 921 922
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

923
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
924

925
	mutex_lock(&callback_mutex);
926
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
927
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
928

929
	update_tasks_cpumask_hier(cs, true);
C
Cliff Wickman 已提交
930

P
Paul Menage 已提交
931
	if (is_load_balanced)
932
		rebuild_sched_domains_locked();
933
	return 0;
L
Linus Torvalds 已提交
934 935
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
954
	struct cpuset *mems_cs;
955 956 957 958 959

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

960
	rcu_read_lock();
961 962
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
963
	rcu_read_unlock();
964 965
}

966
/*
967 968 969 970 971 972 973 974 975 976 977
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
978
	bool need_loop;
979

980 981 982 983 984 985 986 987 988 989
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
990 991
	/*
	 * Determine if a loop is necessary if another thread is doing
992
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
993 994 995 996 997
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
998

999 1000
	if (need_loop) {
		local_irq_disable();
1001
		write_seqcount_begin(&tsk->mems_allowed_seq);
1002
	}
1003

1004 1005
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1006 1007

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1008
	tsk->mems_allowed = *newmems;
1009

1010
	if (need_loop) {
1011
		write_seqcount_end(&tsk->mems_allowed_seq);
1012 1013
		local_irq_enable();
	}
1014

1015
	task_unlock(tsk);
1016 1017
}

1018 1019
static void *cpuset_being_rebound;

1020 1021 1022 1023
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1024 1025 1026
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1027
 */
1028
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1029
{
1030
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1031
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1032 1033
	struct css_task_iter it;
	struct task_struct *task;
1034

1035
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1036

1037
	guarantee_online_mems(mems_cs, &newmems);
1038

1039
	/*
1040 1041 1042 1043
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1044
	 * the global cpuset_mutex, we know that no other rebind effort
1045
	 * will be contending for the global variable cpuset_being_rebound.
1046
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1047
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1048
	 */
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1068

1069 1070 1071 1072 1073 1074
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1075
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1076
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
1089
static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
1090 1091
{
	struct cpuset *cp;
1092
	struct cgroup_subsys_state *pos_css;
1093 1094

	rcu_read_lock();
1095
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (cp == root_cs) {
			if (!update_root)
				continue;
		} else {
			/* skip the whole subtree if @cp have some CPU */
			if (!nodes_empty(cp->mems_allowed)) {
				pos_css = css_rightmost_descendant(pos_css);
				continue;
			}
1105
		}
1106
		if (!css_tryget_online(&cp->css))
1107 1108 1109
			continue;
		rcu_read_unlock();

1110
		update_tasks_nodemask(cp);
1111 1112 1113 1114 1115 1116 1117

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1118 1119 1120
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1121 1122 1123 1124
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1125
 *
1126
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1127 1128 1129 1130
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1131 1132
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1133 1134 1135 1136
{
	int retval;

	/*
1137
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1138 1139
	 * it's read-only
	 */
1140 1141 1142 1143
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1144 1145 1146 1147 1148 1149 1150 1151

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1152
		nodes_clear(trialcs->mems_allowed);
1153
	} else {
1154
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1155 1156 1157
		if (retval < 0)
			goto done;

1158
		if (!nodes_subset(trialcs->mems_allowed,
1159
				node_states[N_MEMORY])) {
1160 1161 1162
			retval =  -EINVAL;
			goto done;
		}
1163
	}
1164 1165

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1166 1167 1168
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1169
	retval = validate_change(cs, trialcs);
1170 1171 1172 1173
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1174
	cs->mems_allowed = trialcs->mems_allowed;
1175 1176
	mutex_unlock(&callback_mutex);

1177
	update_tasks_nodemask_hier(cs, true);
1178 1179 1180 1181
done:
	return retval;
}

1182 1183
int current_cpuset_is_being_rebound(void)
{
1184 1185 1186 1187 1188 1189 1190
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1191 1192
}

1193
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1194
{
1195
#ifdef CONFIG_SMP
1196
	if (val < -1 || val >= sched_domain_level_max)
1197
		return -EINVAL;
1198
#endif
1199 1200 1201

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1202 1203
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1204
			rebuild_sched_domains_locked();
1205 1206 1207 1208 1209
	}

	return 0;
}

1210
/**
1211 1212 1213
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1214 1215 1216
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1217
 */
1218
static void update_tasks_flags(struct cpuset *cs)
1219
{
1220 1221 1222 1223 1224 1225 1226
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1227 1228
}

L
Linus Torvalds 已提交
1229 1230
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1231 1232 1233
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1234
 *
1235
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1236 1237
 */

1238 1239
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1240
{
1241
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1242
	int balance_flag_changed;
1243 1244
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1245

1246 1247 1248 1249
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1250
	if (turning_on)
1251
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1252
	else
1253
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1254

1255
	err = validate_change(cs, trialcs);
1256
	if (err < 0)
1257
		goto out;
P
Paul Jackson 已提交
1258 1259

	balance_flag_changed = (is_sched_load_balance(cs) !=
1260
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1261

1262 1263 1264
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1265
	mutex_lock(&callback_mutex);
1266
	cs->flags = trialcs->flags;
1267
	mutex_unlock(&callback_mutex);
1268

1269
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1270
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1271

1272
	if (spread_flag_changed)
1273
		update_tasks_flags(cs);
1274 1275 1276
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1277 1278
}

1279
/*
A
Adrian Bunk 已提交
1280
 * Frequency meter - How fast is some event occurring?
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1377 1378
static struct cpuset *cpuset_attach_old_cs;

1379
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1380 1381
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1382
{
1383
	struct cpuset *cs = css_cs(css);
1384 1385
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1386

1387 1388 1389
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1390 1391
	mutex_lock(&cpuset_mutex);

1392 1393 1394 1395
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1396
	ret = -ENOSPC;
1397
	if (!cgroup_sane_behavior(css->cgroup) &&
1398
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1399
		goto out_unlock;
1400

1401
	cgroup_taskset_for_each(task, tset) {
1402
		/*
1403 1404 1405 1406 1407 1408 1409
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1410
		 */
1411
		ret = -EINVAL;
1412
		if (task->flags & PF_NO_SETAFFINITY)
1413 1414 1415 1416
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1417
	}
1418

1419 1420 1421 1422 1423
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1424 1425 1426 1427
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1428
}
1429

1430
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1431 1432
				 struct cgroup_taskset *tset)
{
1433
	mutex_lock(&cpuset_mutex);
1434
	css_cs(css)->attach_in_progress--;
1435
	mutex_unlock(&cpuset_mutex);
1436
}
L
Linus Torvalds 已提交
1437

1438
/*
1439
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1440 1441 1442 1443 1444
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1445 1446
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1447
{
1448
	/* static buf protected by cpuset_mutex */
1449
	static nodemask_t cpuset_attach_nodemask_to;
1450
	struct mm_struct *mm;
1451 1452
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1453
	struct cpuset *cs = css_cs(css);
1454
	struct cpuset *oldcs = cpuset_attach_old_cs;
1455 1456
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1457

1458 1459
	mutex_lock(&cpuset_mutex);

1460 1461 1462 1463
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1464
		guarantee_online_cpus(cpus_cs, cpus_attach);
1465

1466
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1467

1468
	cgroup_taskset_for_each(task, tset) {
1469 1470 1471 1472 1473 1474 1475 1476 1477
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1478

1479 1480 1481 1482 1483
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1484
	mm = get_task_mm(leader);
1485
	if (mm) {
1486 1487
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1488
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1499
					  &cpuset_attach_nodemask_to);
1500
		}
1501 1502
		mmput(mm);
	}
1503

1504
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1505

1506
	cs->attach_in_progress--;
1507 1508
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1509 1510

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1516
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1517 1518 1519 1520
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1521
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1522
	FILE_SCHED_LOAD_BALANCE,
1523
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1524 1525
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1526 1527
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1528 1529
} cpuset_filetype_t;

1530 1531
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1532
{
1533
	struct cpuset *cs = css_cs(css);
1534
	cpuset_filetype_t type = cft->private;
1535
	int retval = 0;
1536

1537
	mutex_lock(&cpuset_mutex);
1538 1539
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1540
		goto out_unlock;
1541
	}
1542 1543

	switch (type) {
L
Linus Torvalds 已提交
1544
	case FILE_CPU_EXCLUSIVE:
1545
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1546 1547
		break;
	case FILE_MEM_EXCLUSIVE:
1548
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1549
		break;
1550 1551 1552
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1553
	case FILE_SCHED_LOAD_BALANCE:
1554
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1555
		break;
1556
	case FILE_MEMORY_MIGRATE:
1557
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1558
		break;
1559
	case FILE_MEMORY_PRESSURE_ENABLED:
1560
		cpuset_memory_pressure_enabled = !!val;
1561 1562 1563 1564
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1565
	case FILE_SPREAD_PAGE:
1566
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1567 1568
		break;
	case FILE_SPREAD_SLAB:
1569
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1570
		break;
L
Linus Torvalds 已提交
1571 1572
	default:
		retval = -EINVAL;
1573
		break;
L
Linus Torvalds 已提交
1574
	}
1575 1576
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1577 1578 1579
	return retval;
}

1580 1581
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1582
{
1583
	struct cpuset *cs = css_cs(css);
1584
	cpuset_filetype_t type = cft->private;
1585
	int retval = -ENODEV;
1586

1587 1588 1589
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1590

1591 1592 1593 1594 1595 1596 1597 1598
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1599 1600
out_unlock:
	mutex_unlock(&cpuset_mutex);
1601 1602 1603
	return retval;
}

1604 1605 1606
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1607 1608
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1609
{
1610
	struct cpuset *cs = css_cs(of_css(of));
1611
	struct cpuset *trialcs;
1612
	int retval = -ENODEV;
1613

1614 1615
	buf = strstrip(buf);

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1626 1627 1628 1629 1630 1631 1632 1633
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1634
	 */
1635 1636
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1637 1638
	flush_work(&cpuset_hotplug_work);

1639 1640 1641
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1642

1643
	trialcs = alloc_trial_cpuset(cs);
1644 1645
	if (!trialcs) {
		retval = -ENOMEM;
1646
		goto out_unlock;
1647
	}
1648

1649
	switch (of_cft(of)->private) {
1650
	case FILE_CPULIST:
1651
		retval = update_cpumask(cs, trialcs, buf);
1652 1653
		break;
	case FILE_MEMLIST:
1654
		retval = update_nodemask(cs, trialcs, buf);
1655 1656 1657 1658 1659
		break;
	default:
		retval = -EINVAL;
		break;
	}
1660 1661

	free_trial_cpuset(trialcs);
1662 1663
out_unlock:
	mutex_unlock(&cpuset_mutex);
1664 1665
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1666
	return retval ?: nbytes;
1667 1668
}

L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675 1676
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1677
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1678
{
1679 1680
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1681 1682 1683
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1684

1685 1686
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1687

1688
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1689 1690 1691

	switch (type) {
	case FILE_CPULIST:
1692
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1693 1694
		break;
	case FILE_MEMLIST:
1695
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1696 1697
		break;
	default:
1698 1699
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1700 1701
	}

1702 1703 1704 1705 1706 1707 1708 1709 1710
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1711 1712
}

1713
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1714
{
1715
	struct cpuset *cs = css_cs(css);
1716 1717 1718 1719 1720 1721
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1722 1723
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1739 1740 1741

	/* Unreachable but makes gcc happy */
	return 0;
1742
}
L
Linus Torvalds 已提交
1743

1744
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1745
{
1746
	struct cpuset *cs = css_cs(css);
1747 1748 1749 1750 1751 1752 1753
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1754 1755 1756

	/* Unrechable but makes gcc happy */
	return 0;
1757 1758
}

L
Linus Torvalds 已提交
1759 1760 1761 1762 1763

/*
 * for the common functions, 'private' gives the type of file
 */

1764 1765 1766
static struct cftype files[] = {
	{
		.name = "cpus",
1767
		.seq_show = cpuset_common_seq_show,
1768
		.write = cpuset_write_resmask,
1769
		.max_write_len = (100U + 6 * NR_CPUS),
1770 1771 1772 1773 1774
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1775
		.seq_show = cpuset_common_seq_show,
1776
		.write = cpuset_write_resmask,
1777
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1795 1796 1797 1798 1799 1800 1801
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1802 1803 1804 1805 1806 1807 1808 1809 1810
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1811 1812
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1828
		.mode = S_IRUGO,
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1844

1845 1846 1847 1848 1849 1850 1851
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1852

1853 1854
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1855 1856

/*
1857
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1858
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1859 1860
 */

1861 1862
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1863
{
T
Tejun Heo 已提交
1864
	struct cpuset *cs;
L
Linus Torvalds 已提交
1865

1866
	if (!parent_css)
1867
		return &top_cpuset.css;
1868

T
Tejun Heo 已提交
1869
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1870
	if (!cs)
1871
		return ERR_PTR(-ENOMEM);
1872 1873 1874 1875
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1876

P
Paul Jackson 已提交
1877
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1878
	cpumask_clear(cs->cpus_allowed);
1879
	nodes_clear(cs->mems_allowed);
1880
	fmeter_init(&cs->fmeter);
1881
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1882

T
Tejun Heo 已提交
1883 1884 1885
	return &cs->css;
}

1886
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1887
{
1888
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1889
	struct cpuset *parent = parent_cs(cs);
1890
	struct cpuset *tmp_cs;
1891
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1892 1893 1894 1895

	if (!parent)
		return 0;

1896 1897
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1898
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1899 1900 1901 1902
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1903

1904
	cpuset_inc();
1905

1906
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1907
		goto out_unlock;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1922
	rcu_read_lock();
1923
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1924 1925
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1926
			goto out_unlock;
1927
		}
1928
	}
1929
	rcu_read_unlock();
1930 1931 1932 1933 1934

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1935 1936
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1937 1938 1939
	return 0;
}

1940 1941 1942 1943 1944 1945
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

1946
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1947
{
1948
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1949

1950
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1951 1952 1953 1954

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

1955
	cpuset_dec();
T
Tejun Heo 已提交
1956
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1957

1958
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1959 1960
}

1961
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
1962
{
1963
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
1964

1965
	free_cpumask_var(cs->cpus_allowed);
1966
	kfree(cs);
L
Linus Torvalds 已提交
1967 1968
}

1969
struct cgroup_subsys cpuset_cgrp_subsys = {
1970
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1971 1972
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1973
	.css_free = cpuset_css_free,
1974
	.can_attach = cpuset_can_attach,
1975
	.cancel_attach = cpuset_cancel_attach,
1976
	.attach = cpuset_attach,
1977
	.base_cftypes = files,
1978 1979 1980
	.early_init = 1,
};

L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1989
	int err = 0;
L
Linus Torvalds 已提交
1990

1991 1992 1993
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1994
	cpumask_setall(top_cpuset.cpus_allowed);
1995
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1996

1997
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1998
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1999
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2000 2001 2002

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2003 2004
		return err;

2005 2006 2007
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2008
	return 0;
L
Linus Torvalds 已提交
2009 2010
}

2011
/*
2012
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2013 2014
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2015 2016
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2017
 */
2018 2019 2020 2021 2022 2023 2024 2025
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2026
	parent = parent_cs(cs);
2027
	while (cpumask_empty(parent->cpus_allowed) ||
2028
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2029
		parent = parent_cs(parent);
2030

2031
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2032
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2033 2034
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2035
	}
2036 2037
}

2038
/**
2039
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2040
 * @cs: cpuset in interest
2041
 *
2042 2043 2044
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2045
 */
2046
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2047
{
2048
	static cpumask_t off_cpus;
2049
	static nodemask_t off_mems;
2050
	bool is_empty;
2051
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2052

2053 2054
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2055

2056
	mutex_lock(&cpuset_mutex);
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2067 2068
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2069

2070 2071 2072 2073 2074 2075
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
2076 2077 2078
	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
	 * call update_tasks_cpumask() if the cpuset becomes empty, as
	 * the tasks in it will be migrated to an ancestor.
2079 2080
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2081
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2082
		update_tasks_cpumask(cs);
2083

2084 2085 2086 2087 2088 2089
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
2090 2091 2092
	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
	 * call update_tasks_nodemask() if the cpuset becomes empty, as
	 * the tasks in it will be migratd to an ancestor.
2093 2094
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
2095
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2096
		update_tasks_nodemask(cs);
2097

2098 2099
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2100

2101 2102 2103
	mutex_unlock(&cpuset_mutex);

	/*
2104 2105 2106 2107
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2108 2109
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2110
	if (!sane && is_empty)
2111
		remove_tasks_in_empty_cpuset(cs);
2112 2113
}

2114
/**
2115
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2116
 *
2117 2118 2119 2120 2121
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2122
 *
2123
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2124 2125
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2126
 *
2127 2128
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2129
 */
2130
static void cpuset_hotplug_workfn(struct work_struct *work)
2131
{
2132 2133
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2134
	bool cpus_updated, mems_updated;
2135

2136
	mutex_lock(&cpuset_mutex);
2137

2138 2139 2140
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2141

2142 2143
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2144

2145 2146 2147 2148 2149 2150 2151
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2152

2153 2154 2155 2156 2157
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2158
		update_tasks_nodemask(&top_cpuset);
2159
	}
2160

2161 2162
	mutex_unlock(&cpuset_mutex);

2163 2164
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2165
		struct cpuset *cs;
2166
		struct cgroup_subsys_state *pos_css;
2167

2168
		rcu_read_lock();
2169
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2170
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2171 2172
				continue;
			rcu_read_unlock();
2173

2174
			cpuset_hotplug_update_tasks(cs);
2175

2176 2177 2178 2179 2180
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2181

2182
	/* rebuild sched domains if cpus_allowed has changed */
2183 2184
	if (cpus_updated)
		rebuild_sched_domains();
2185 2186
}

2187
void cpuset_update_active_cpus(bool cpu_online)
2188
{
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2201 2202
}

2203
/*
2204 2205
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2206
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2207
 */
2208 2209
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2210
{
2211
	schedule_work(&cpuset_hotplug_work);
2212
	return NOTIFY_OK;
2213
}
2214 2215 2216 2217 2218

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2219

L
Linus Torvalds 已提交
2220 2221 2222 2223
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2224
 */
L
Linus Torvalds 已提交
2225 2226
void __init cpuset_init_smp(void)
{
2227
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2228
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2229
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2230

2231
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2237
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2238
 *
2239
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2240
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2241
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2242 2243 2244
 * tasks cpuset.
 **/

2245
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2246
{
2247 2248
	struct cpuset *cpus_cs;

2249
	mutex_lock(&callback_mutex);
2250
	rcu_read_lock();
2251 2252
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2253
	rcu_read_unlock();
2254
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2255 2256
}

2257
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2258
{
2259
	struct cpuset *cpus_cs;
2260 2261

	rcu_read_lock();
2262 2263
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2279 2280 2281
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2282 2283 2284
	 */
}

L
Linus Torvalds 已提交
2285 2286
void cpuset_init_current_mems_allowed(void)
{
2287
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2288 2289
}

2290 2291 2292 2293 2294 2295
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2296
 * subset of node_states[N_MEMORY], even if this means going outside the
2297 2298 2299 2300 2301
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2302
	struct cpuset *mems_cs;
2303 2304
	nodemask_t mask;

2305
	mutex_lock(&callback_mutex);
2306
	rcu_read_lock();
2307 2308
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2309
	rcu_read_unlock();
2310
	mutex_unlock(&callback_mutex);
2311 2312 2313 2314

	return mask;
}

2315
/**
2316 2317
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2318
 *
2319
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2320
 */
2321
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2322
{
2323
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2324 2325
}

2326
/*
2327 2328 2329 2330
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2331
 */
2332
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2333
{
T
Tejun Heo 已提交
2334 2335
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2336 2337 2338
	return cs;
}

2339
/**
2340 2341
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2342
 * @gfp_mask: memory allocation flags
2343
 *
2344 2345 2346 2347 2348 2349
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2350 2351
 * Otherwise, no.
 *
2352 2353 2354
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2355
 *
2356 2357
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2358 2359 2360 2361 2362 2363 2364
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2365
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2366 2367
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2368
 * GFP_KERNEL allocations are not so marked, so can escape to the
2369
 * nearest enclosing hardwalled ancestor cpuset.
2370
 *
2371 2372 2373 2374 2375 2376 2377
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2378
 *
2379
 * The first call here from mm/page_alloc:get_page_from_freelist()
2380 2381 2382
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2383 2384 2385 2386 2387 2388
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2389 2390
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2391
 *	TIF_MEMDIE   - any node ok
2392
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2393
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2394 2395
 *
 * Rule:
2396
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2397 2398
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2399
 */
2400
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2401
{
2402
	struct cpuset *cs;		/* current cpuset ancestors */
2403
	int allowed;			/* is allocation in zone z allowed? */
2404

2405
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2406
		return 1;
2407
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2408 2409
	if (node_isset(node, current->mems_allowed))
		return 1;
2410 2411 2412 2413 2414 2415
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2416 2417 2418
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2419 2420 2421
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2422
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2423
	mutex_lock(&callback_mutex);
2424

2425
	rcu_read_lock();
2426
	cs = nearest_hardwall_ancestor(task_cs(current));
2427
	allowed = node_isset(node, cs->mems_allowed);
2428
	rcu_read_unlock();
2429

2430
	mutex_unlock(&callback_mutex);
2431
	return allowed;
L
Linus Torvalds 已提交
2432 2433
}

2434
/*
2435 2436
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2437 2438
 * @gfp_mask: memory allocation flags
 *
2439 2440 2441 2442 2443
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2444 2445 2446 2447 2448 2449 2450
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2451 2452
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2453 2454 2455 2456
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2457
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2458 2459 2460 2461 2462
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2463 2464 2465 2466 2467 2468
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2469 2470 2471
	return 0;
}

2472
/**
2473 2474
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2499
static int cpuset_spread_node(int *rotor)
2500 2501 2502
{
	int node;

2503
	node = next_node(*rotor, current->mems_allowed);
2504 2505
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2506
	*rotor = node;
2507 2508
	return node;
}
2509 2510 2511

int cpuset_mem_spread_node(void)
{
2512 2513 2514 2515
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2516 2517 2518 2519 2520
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2521 2522 2523 2524
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2525 2526 2527
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2528 2529
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2530
/**
2531 2532 2533 2534 2535 2536 2537 2538
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2539 2540
 **/

2541 2542
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2543
{
2544
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2545 2546
}

2547 2548
#define CPUSET_NODELIST_LEN	(256)

2549 2550
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2551
 * @tsk: pointer to task_struct of some task.
2552 2553
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2554
 * mems_allowed to the kernel log.
2555 2556 2557
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2558 2559 2560
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2561
	struct cgroup *cgrp;
2562

2563
	spin_lock(&cpuset_buffer_lock);
2564
	rcu_read_lock();
2565

2566
	cgrp = task_cs(tsk)->css.cgroup;
2567 2568
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
2569
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2570 2571
	pr_cont_cgroup_name(cgrp);
	pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2572

2573
	rcu_read_unlock();
2574 2575 2576
	spin_unlock(&cpuset_buffer_lock);
}

2577 2578 2579 2580 2581 2582
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2583
int cpuset_memory_pressure_enabled __read_mostly;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2605
	rcu_read_lock();
2606
	fmeter_markevent(&task_cs(current)->fmeter);
2607
	rcu_read_unlock();
2608 2609
}

2610
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2611 2612 2613 2614
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2615 2616
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2617
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2618
 *    anyway.
L
Linus Torvalds 已提交
2619
 */
2620
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2621
{
2622
	struct pid *pid;
L
Linus Torvalds 已提交
2623
	struct task_struct *tsk;
T
Tejun Heo 已提交
2624
	char *buf, *p;
2625
	struct cgroup_subsys_state *css;
2626
	int retval;
L
Linus Torvalds 已提交
2627

2628
	retval = -ENOMEM;
T
Tejun Heo 已提交
2629
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2630
	if (!buf)
2631 2632 2633
		goto out;

	retval = -ESRCH;
2634 2635
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2636 2637
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2638

T
Tejun Heo 已提交
2639
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2640
	rcu_read_lock();
2641
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2642
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2643
	rcu_read_unlock();
T
Tejun Heo 已提交
2644
	if (!p)
L
Li Zefan 已提交
2645
		goto out_put_task;
T
Tejun Heo 已提交
2646
	seq_puts(m, p);
L
Linus Torvalds 已提交
2647
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2648
	retval = 0;
L
Li Zefan 已提交
2649
out_put_task:
2650 2651
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2652
	kfree(buf);
2653
out:
L
Linus Torvalds 已提交
2654 2655
	return retval;
}
2656
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2657

2658
/* Display task mems_allowed in /proc/<pid>/status file. */
2659 2660
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2661
	seq_puts(m, "Mems_allowed:\t");
2662
	seq_nodemask(m, &task->mems_allowed);
2663 2664
	seq_puts(m, "\n");
	seq_puts(m, "Mems_allowed_list:\t");
2665
	seq_nodemask_list(m, &task->mems_allowed);
2666
	seq_puts(m, "\n");
L
Linus Torvalds 已提交
2667
}