blk-mq.c 72.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67 68
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129
		blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->queue_rq_srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
259 260 261 262 263 264 265

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
266 267
}

268 269 270 271 272 273
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

274 275
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
276
{
277 278 279
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

280 281
	rq->rq_flags = 0;

282 283 284 285 286 287 288 289 290 291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

295 296
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
297 298
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
299
	rq->cmd_flags = op;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302 303 304 305 306 307
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
308
	rq->start_time = jiffies;
309 310
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
311
	set_start_time_ns(rq);
312 313 314 315 316 317 318 319 320 321 322
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
323 324
	rq->timeout = 0;

325 326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

329 330
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
331 332
}

333 334 335 336 337 338
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
339
	unsigned int tag;
340
	bool put_ctx_on_error = false;
341 342 343

	blk_queue_enter_live(q);
	data->q = q;
344 345 346 347
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
348 349
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 351
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
352 353 354 355 356 357 358 359

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
360 361
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
362 363
	}

364 365
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
366 367
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
368 369
			data->ctx = NULL;
		}
370 371
		blk_queue_exit(q);
		return NULL;
372 373
	}

374
	rq = blk_mq_rq_ctx_init(data, tag, op);
375 376
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
377
		if (e && e->type->ops.mq.prepare_request) {
378 379 380
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

381 382
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
383
		}
384 385 386
	}
	data->hctx->queued++;
	return rq;
387 388
}

389
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390
		unsigned int flags)
391
{
392
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
393
	struct request *rq;
394
	int ret;
395

396
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 398
	if (ret)
		return ERR_PTR(ret);
399

400
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401
	blk_queue_exit(q);
402

403
	if (!rq)
404
		return ERR_PTR(-EWOULDBLOCK);
405

406 407
	blk_mq_put_ctx(alloc_data.ctx);

408 409 410
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
411 412
	return rq;
}
413
EXPORT_SYMBOL(blk_mq_alloc_request);
414

415 416
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
417
{
418
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
419
	struct request *rq;
420
	unsigned int cpu;
M
Ming Lin 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

439 440 441 442
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
443 444 445 446
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
447
	}
448 449
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
450

451
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452
	blk_queue_exit(q);
453

454 455 456 457
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
458 459 460
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

461
void blk_mq_free_request(struct request *rq)
462 463
{
	struct request_queue *q = rq->q;
464 465 466 467 468
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

469
	if (rq->rq_flags & RQF_ELVPRIV) {
470 471 472 473 474 475 476
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
477

478
	ctx->rq_completed[rq_is_sync(rq)]++;
479
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
480
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
481

482 483 484
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
485
	wbt_done(q->rq_wb, &rq->issue_stat);
486

S
Shaohua Li 已提交
487 488 489
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

490
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 493 494
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
495
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496
	blk_mq_sched_restart(hctx);
497
	blk_queue_exit(q);
498
}
J
Jens Axboe 已提交
499
EXPORT_SYMBOL_GPL(blk_mq_free_request);
500

501
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502
{
M
Ming Lei 已提交
503 504
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
505
	if (rq->end_io) {
J
Jens Axboe 已提交
506
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
507
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
508 509 510
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
511
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
512
	}
513
}
514
EXPORT_SYMBOL(__blk_mq_end_request);
515

516
void blk_mq_end_request(struct request *rq, blk_status_t error)
517 518 519
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
520
	__blk_mq_end_request(rq, error);
521
}
522
EXPORT_SYMBOL(blk_mq_end_request);
523

524
static void __blk_mq_complete_request_remote(void *data)
525
{
526
	struct request *rq = data;
527

528
	rq->q->softirq_done_fn(rq);
529 530
}

531
static void __blk_mq_complete_request(struct request *rq)
532 533
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
534
	bool shared = false;
535 536
	int cpu;

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
C
Christoph Hellwig 已提交
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563 564 565 566 567 568 569 570 571

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
572
void blk_mq_complete_request(struct request *rq)
573
{
574 575 576
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
577
		return;
578
	if (!blk_mark_rq_complete(rq))
579
		__blk_mq_complete_request(rq);
580 581
}
EXPORT_SYMBOL(blk_mq_complete_request);
582

583 584 585 586 587 588
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

589
void blk_mq_start_request(struct request *rq)
590 591 592
{
	struct request_queue *q = rq->q;

593 594
	blk_mq_sched_started_request(rq);

595 596
	trace_block_rq_issue(q, rq);

597
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
600
		wbt_issue(q->rq_wb, &rq->issue_stat);
601 602
	}

603
	blk_add_timer(rq);
604

605
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606

607 608 609 610 611
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
612 613 614 615
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
616
	 */
617 618 619 620 621 622 623 624 625 626 627 628
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
629
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630
	}
631 632 633 634 635 636 637 638 639

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
640
}
641
EXPORT_SYMBOL(blk_mq_start_request);
642

643 644
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645
 * flag isn't set yet, so there may be race with timeout handler,
646 647 648 649 650 651
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
652
static void __blk_mq_requeue_request(struct request *rq)
653 654 655 656
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
657
	wbt_requeue(q->rq_wb, &rq->issue_stat);
658
	blk_mq_sched_requeue_request(rq);
659

660 661 662 663
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
664 665
}

666
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 668 669 670
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
671
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 673 674
}
EXPORT_SYMBOL(blk_mq_requeue_request);

675 676 677
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
678
		container_of(work, struct request_queue, requeue_work.work);
679 680 681
	LIST_HEAD(rq_list);
	struct request *rq, *next;

682
	spin_lock_irq(&q->requeue_lock);
683
	list_splice_init(&q->requeue_list, &rq_list);
684
	spin_unlock_irq(&q->requeue_lock);
685 686

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 689
			continue;

690
		rq->rq_flags &= ~RQF_SOFTBARRIER;
691
		list_del_init(&rq->queuelist);
692
		blk_mq_sched_insert_request(rq, true, false, false, true);
693 694 695 696 697
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
698
		blk_mq_sched_insert_request(rq, false, false, false, true);
699 700
	}

701
	blk_mq_run_hw_queues(q, false);
702 703
}

704 705
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
706 707 708 709 710 711 712 713
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
714
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715 716 717

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
718
		rq->rq_flags |= RQF_SOFTBARRIER;
719 720 721 722 723
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
724 725 726

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
727 728 729 730 731
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
732
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 734 735
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

736 737 738
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
739 740
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
741 742 743
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

744 745
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
746 747
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
748
		return tags->rqs[tag];
749
	}
750 751

	return NULL;
752 753 754
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

755
struct blk_mq_timeout_data {
756 757
	unsigned long next;
	unsigned int next_set;
758 759
};

760
void blk_mq_rq_timed_out(struct request *req, bool reserved)
761
{
J
Jens Axboe 已提交
762
	const struct blk_mq_ops *ops = req->q->mq_ops;
763
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764 765 766 767 768 769 770

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
771
	 * both flags will get cleared. So check here again, and ignore
772 773
	 * a timeout event with a request that isn't active.
	 */
774 775
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
776

777
	if (ops->timeout)
778
		ret = ops->timeout(req, reserved);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
794
}
795

796 797 798 799
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
800
	unsigned long deadline;
801

802
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803
		return;
804

805 806 807 808 809 810 811 812
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
826 827 828 829 830 831 832 833 834 835
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
836
			blk_mq_rq_timed_out(rq, reserved);
837 838 839
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
840 841
		data->next_set = 1;
	}
842 843
}

844
static void blk_mq_timeout_work(struct work_struct *work)
845
{
846 847
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
848 849 850 851 852
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
853

854 855 856 857 858 859 860 861 862
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
863
	 * blk_freeze_queue_start, and the moment the last request is
864 865 866 867
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
868 869
		return;

870
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871

872 873 874
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
875
	} else {
876 877
		struct blk_mq_hw_ctx *hctx;

878 879 880 881 882
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
883
	}
884
	blk_queue_exit(q);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

905 906 907 908
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
909
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910
{
911 912 913 914
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
915

916
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917
}
918
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

959 960 961 962
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
963

964
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 966
}

967 968
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
969 970 971 972 973 974 975
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

976 977
	might_sleep_if(wait);

978 979
	if (rq->tag != -1)
		goto done;
980

981 982 983
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

984 985
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
986 987 988 989
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
990 991 992
		data.hctx->tags->rqs[rq->tag] = rq;
	}

993 994 995 996
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
997 998
}

999 1000
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1055
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1056 1057 1058 1059 1060 1061
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1062
	list_del(&wait->entry);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1093 1094
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1095
{
1096
	struct blk_mq_hw_ctx *hctx;
1097
	struct request *rq, *nxt;
1098
	int errors, queued;
1099

1100 1101 1102
	if (list_empty(list))
		return false;

1103 1104
	WARN_ON(!list_is_singular(list) && got_budget);

1105 1106 1107
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1108
	errors = queued = 0;
1109
	do {
1110
		struct blk_mq_queue_data bd;
1111
		blk_status_t ret;
1112

1113
		rq = list_first_entry(list, struct request, queuelist);
1114 1115 1116
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1117 1118

			/*
1119 1120
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1121
			 */
1122 1123 1124
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1125
				break;
1126
			}
1127 1128 1129 1130 1131 1132

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1133 1134 1135 1136 1137 1138 1139
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

1140 1141
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;
1142

1143 1144
		list_del_init(&rq->queuelist);

1145
		bd.rq = rq;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1157 1158

		ret = q->mq_ops->queue_rq(hctx, &bd);
1159
		if (ret == BLK_STS_RESOURCE) {
1160 1161 1162 1163 1164 1165 1166 1167
			/*
			 * If an I/O scheduler has been configured and we got a
			 * driver tag for the next request already, free it again.
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1168
			blk_mq_put_driver_tag_hctx(hctx, rq);
1169
			list_add(&rq->queuelist, list);
1170
			__blk_mq_requeue_request(rq);
1171
			break;
1172 1173 1174
		}

		if (unlikely(ret != BLK_STS_OK)) {
1175
			errors++;
1176
			blk_mq_end_request(rq, BLK_STS_IOERR);
1177
			continue;
1178 1179
		}

1180
		queued++;
1181
	} while (!list_empty(list));
1182

1183
	hctx->dispatched[queued_to_index(queued)]++;
1184 1185 1186 1187 1188

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1189
	if (!list_empty(list)) {
1190
		spin_lock(&hctx->lock);
1191
		list_splice_init(list, &hctx->dispatch);
1192
		spin_unlock(&hctx->lock);
1193

1194
		/*
1195 1196 1197
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1198
		 *
1199 1200 1201 1202
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1203
		 *
1204 1205 1206 1207 1208 1209 1210
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1211
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1212
		 *   and dm-rq.
1213
		 */
1214 1215
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1216
			blk_mq_run_hw_queue(hctx, true);
1217
	}
1218

1219
	return (queued + errors) != 0;
1220 1221
}

1222 1223 1224 1225
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1226 1227 1228 1229
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1230 1231 1232
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1233 1234 1235 1236 1237 1238
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1239 1240
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1241
		blk_mq_sched_dispatch_requests(hctx);
1242 1243
		rcu_read_unlock();
	} else {
1244 1245
		might_sleep();

1246
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1247
		blk_mq_sched_dispatch_requests(hctx);
1248
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1249 1250 1251
	}
}

1252 1253 1254 1255 1256 1257 1258 1259
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1260 1261
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1262 1263

	if (--hctx->next_cpu_batch <= 0) {
1264
		int next_cpu;
1265 1266 1267 1268 1269 1270 1271 1272 1273

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1274
	return hctx->next_cpu;
1275 1276
}

1277 1278
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1279
{
1280 1281 1282 1283
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1284 1285
		return;

1286
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1287 1288
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1289
			__blk_mq_run_hw_queue(hctx);
1290
			put_cpu();
1291 1292
			return;
		}
1293

1294
		put_cpu();
1295
	}
1296

1297 1298 1299
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1311
}
O
Omar Sandoval 已提交
1312
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1313

1314
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1315 1316 1317 1318 1319
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1320
		if (!blk_mq_hctx_has_pending(hctx) ||
1321
		    blk_mq_hctx_stopped(hctx))
1322 1323
			continue;

1324
		blk_mq_run_hw_queue(hctx, async);
1325 1326
	}
}
1327
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1349 1350 1351
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1352
 * BLK_STS_RESOURCE is usually returned.
1353 1354 1355 1356 1357
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1358 1359
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1360
	cancel_delayed_work(&hctx->run_work);
1361

1362
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1363
}
1364
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1365

1366 1367 1368
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1369
 * BLK_STS_RESOURCE is usually returned.
1370 1371 1372 1373 1374
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1375 1376
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1377 1378 1379 1380 1381
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1382 1383 1384
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1385 1386 1387
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1388

1389
	blk_mq_run_hw_queue(hctx, false);
1390 1391 1392
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1413
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1414 1415 1416 1417
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1418 1419
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1420 1421 1422
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1423
static void blk_mq_run_work_fn(struct work_struct *work)
1424 1425 1426
{
	struct blk_mq_hw_ctx *hctx;

1427
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1428

1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1437

1438 1439 1440
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1441 1442 1443 1444

	__blk_mq_run_hw_queue(hctx);
}

1445 1446 1447

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1448
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1449
		return;
1450

1451 1452 1453 1454 1455
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1456
	blk_mq_stop_hw_queue(hctx);
1457 1458 1459 1460
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1461 1462 1463
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1464 1465 1466
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1467
{
J
Jens Axboe 已提交
1468 1469
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1470 1471
	lockdep_assert_held(&ctx->lock);

1472 1473
	trace_block_rq_insert(hctx->queue, rq);

1474 1475 1476 1477
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1478
}
1479

1480 1481
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1482 1483 1484
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1485 1486
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1487
	__blk_mq_insert_req_list(hctx, rq, at_head);
1488 1489 1490
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1507 1508
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1520
		BUG_ON(rq->mq_ctx != ctx);
1521
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1522
		__blk_mq_insert_req_list(hctx, rq, false);
1523
	}
1524
	blk_mq_hctx_mark_pending(hctx, ctx);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1561 1562 1563 1564
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1581 1582 1583
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1584 1585 1586 1587 1588
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1589
	blk_init_request_from_bio(rq, bio);
1590

S
Shaohua Li 已提交
1591 1592
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1593
	blk_account_io_start(rq, true);
1594 1595
}

1596 1597 1598 1599 1600 1601 1602
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1603
}
1604

1605 1606
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1607 1608 1609 1610
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1611 1612
}

M
Ming Lei 已提交
1613 1614 1615
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1616 1617 1618 1619
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1620
		.last = true,
1621
	};
1622
	blk_qc_t new_cookie;
1623
	blk_status_t ret;
M
Ming Lei 已提交
1624 1625
	bool run_queue = true;

1626 1627
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1628 1629 1630
		run_queue = false;
		goto insert;
	}
1631

1632
	if (q->elevator)
1633 1634
		goto insert;

M
Ming Lei 已提交
1635
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1636 1637
		goto insert;

1638
	if (!blk_mq_get_dispatch_budget(hctx)) {
1639 1640
		blk_mq_put_driver_tag(rq);
		goto insert;
1641
	}
1642

1643 1644
	new_cookie = request_to_qc_t(hctx, rq);

1645 1646 1647 1648 1649 1650
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1651 1652
	switch (ret) {
	case BLK_STS_OK:
1653
		*cookie = new_cookie;
1654
		return;
1655 1656 1657 1658
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1659
		*cookie = BLK_QC_T_NONE;
1660
		blk_mq_end_request(rq, ret);
1661
		return;
1662
	}
1663

1664
insert:
M
Ming Lei 已提交
1665
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1666 1667
}

1668 1669 1670 1671 1672
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1673
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1674 1675
		rcu_read_unlock();
	} else {
1676 1677 1678 1679
		unsigned int srcu_idx;

		might_sleep();

1680
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1681
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1682
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1683 1684 1685
	}
}

1686
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1687
{
1688
	const int is_sync = op_is_sync(bio->bi_opf);
1689
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1690
	struct blk_mq_alloc_data data = { .flags = 0 };
1691
	struct request *rq;
1692
	unsigned int request_count = 0;
1693
	struct blk_plug *plug;
1694
	struct request *same_queue_rq = NULL;
1695
	blk_qc_t cookie;
J
Jens Axboe 已提交
1696
	unsigned int wb_acct;
1697 1698 1699

	blk_queue_bounce(q, &bio);

1700
	blk_queue_split(q, &bio);
1701

1702
	if (!bio_integrity_prep(bio))
1703
		return BLK_QC_T_NONE;
1704

1705 1706 1707
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1708

1709 1710 1711
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1712 1713
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1714 1715
	trace_block_getrq(q, bio, bio->bi_opf);

1716
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1717 1718
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1719 1720
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1721
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1722 1723 1724
	}

	wbt_track(&rq->issue_stat, wb_acct);
1725

1726
	cookie = request_to_qc_t(data.hctx, rq);
1727

1728
	plug = current->plug;
1729
	if (unlikely(is_flush_fua)) {
1730
		blk_mq_put_ctx(data.ctx);
1731
		blk_mq_bio_to_request(rq, bio);
1732 1733 1734
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1735
		} else {
1736 1737
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1738
		}
1739
	} else if (plug && q->nr_hw_queues == 1) {
1740 1741
		struct request *last = NULL;

1742
		blk_mq_put_ctx(data.ctx);
1743
		blk_mq_bio_to_request(rq, bio);
1744 1745 1746 1747 1748 1749 1750

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1751 1752 1753
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1754
		if (!request_count)
1755
			trace_block_plug(q);
1756 1757
		else
			last = list_entry_rq(plug->mq_list.prev);
1758

1759 1760
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1761 1762
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1763
		}
1764

1765
		list_add_tail(&rq->queuelist, &plug->mq_list);
1766
	} else if (plug && !blk_queue_nomerges(q)) {
1767
		blk_mq_bio_to_request(rq, bio);
1768 1769

		/*
1770
		 * We do limited plugging. If the bio can be merged, do that.
1771 1772
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1773 1774
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1775
		 */
1776 1777 1778 1779 1780 1781
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1782 1783
		blk_mq_put_ctx(data.ctx);

1784 1785 1786
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1787 1788
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1789
		}
1790
	} else if (q->nr_hw_queues > 1 && is_sync) {
1791
		blk_mq_put_ctx(data.ctx);
1792 1793
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1794
	} else if (q->elevator) {
1795
		blk_mq_put_ctx(data.ctx);
1796
		blk_mq_bio_to_request(rq, bio);
1797
		blk_mq_sched_insert_request(rq, false, true, true, true);
1798
	} else {
1799
		blk_mq_put_ctx(data.ctx);
1800 1801
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1802
		blk_mq_run_hw_queue(data.hctx, true);
1803
	}
1804

1805
	return cookie;
1806 1807
}

1808 1809
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1810
{
1811
	struct page *page;
1812

1813
	if (tags->rqs && set->ops->exit_request) {
1814
		int i;
1815

1816
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1817 1818 1819
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1820
				continue;
1821
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1822
			tags->static_rqs[i] = NULL;
1823
		}
1824 1825
	}

1826 1827
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1828
		list_del_init(&page->lru);
1829 1830 1831 1832 1833
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1834 1835
		__free_pages(page, page->private);
	}
1836
}
1837

1838 1839
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1840
	kfree(tags->rqs);
1841
	tags->rqs = NULL;
J
Jens Axboe 已提交
1842 1843
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1844

1845
	blk_mq_free_tags(tags);
1846 1847
}

1848 1849 1850 1851
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1852
{
1853
	struct blk_mq_tags *tags;
1854
	int node;
1855

1856 1857 1858 1859 1860
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1861
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1862 1863
	if (!tags)
		return NULL;
1864

1865
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1866
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1867
				 node);
1868 1869 1870 1871
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1872

J
Jens Axboe 已提交
1873 1874
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1875
				 node);
J
Jens Axboe 已提交
1876 1877 1878 1879 1880 1881
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1895 1896 1897 1898 1899
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1900 1901 1902

	INIT_LIST_HEAD(&tags->page_list);

1903 1904 1905 1906
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1907
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1908
				cache_line_size());
1909
	left = rq_size * depth;
1910

1911
	for (i = 0; i < depth; ) {
1912 1913 1914 1915 1916
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1917
		while (this_order && left < order_to_size(this_order - 1))
1918 1919 1920
			this_order--;

		do {
1921
			page = alloc_pages_node(node,
1922
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1923
				this_order);
1924 1925 1926 1927 1928 1929 1930 1931 1932
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1933
			goto fail;
1934 1935

		page->private = this_order;
1936
		list_add_tail(&page->lru, &tags->page_list);
1937 1938

		p = page_address(page);
1939 1940 1941 1942
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1943
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1944
		entries_per_page = order_to_size(this_order) / rq_size;
1945
		to_do = min(entries_per_page, depth - i);
1946 1947
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1948 1949 1950
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1951
			if (set->ops->init_request) {
1952
				if (set->ops->init_request(set, rq, hctx_idx,
1953
						node)) {
J
Jens Axboe 已提交
1954
					tags->static_rqs[i] = NULL;
1955
					goto fail;
1956
				}
1957 1958
			}

1959 1960 1961 1962
			p += rq_size;
			i++;
		}
	}
1963
	return 0;
1964

1965
fail:
1966 1967
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1968 1969
}

J
Jens Axboe 已提交
1970 1971 1972 1973 1974
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1975
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1976
{
1977
	struct blk_mq_hw_ctx *hctx;
1978 1979 1980
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1981
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1982
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1983 1984 1985 1986 1987 1988 1989 1990 1991

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1992
		return 0;
1993

J
Jens Axboe 已提交
1994 1995 1996
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1997 1998

	blk_mq_run_hw_queue(hctx, true);
1999
	return 0;
2000 2001
}

2002
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2003
{
2004 2005
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2006 2007
}

2008
/* hctx->ctxs will be freed in queue's release handler */
2009 2010 2011 2012
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2013 2014
	blk_mq_debugfs_unregister_hctx(hctx);

2015 2016
	blk_mq_tag_idle(hctx);

2017
	if (set->ops->exit_request)
2018
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2019

2020 2021
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2022 2023 2024
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2025
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2026
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2027

2028
	blk_mq_remove_cpuhp(hctx);
2029
	blk_free_flush_queue(hctx->fq);
2030
	sbitmap_free(&hctx->ctx_map);
2031 2032
}

M
Ming Lei 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2042
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2043 2044 2045
	}
}

2046 2047 2048
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2049
{
2050 2051 2052 2053 2054 2055
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2056
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2057 2058 2059
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2060
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2061

2062
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2063 2064

	hctx->tags = set->tags[hctx_idx];
2065 2066

	/*
2067 2068
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2069
	 */
2070 2071 2072 2073
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2074

2075 2076
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2077
		goto free_ctxs;
2078

2079
	hctx->nr_ctx = 0;
2080

2081 2082 2083
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2084

2085 2086 2087
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2088 2089
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2090
		goto sched_exit_hctx;
2091

2092
	if (set->ops->init_request &&
2093 2094
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2095
		goto free_fq;
2096

2097
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2098
		init_srcu_struct(hctx->queue_rq_srcu);
2099

2100 2101
	blk_mq_debugfs_register_hctx(q, hctx);

2102
	return 0;
2103

2104 2105
 free_fq:
	kfree(hctx->fq);
2106 2107
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2108 2109 2110
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2111
 free_bitmap:
2112
	sbitmap_free(&hctx->ctx_map);
2113 2114 2115
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2116
	blk_mq_remove_cpuhp(hctx);
2117 2118
	return -1;
}
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2134 2135
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2136 2137
			continue;

C
Christoph Hellwig 已提交
2138
		hctx = blk_mq_map_queue(q, i);
2139

2140 2141 2142 2143 2144
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2145
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2146 2147 2148
	}
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2171 2172 2173 2174 2175
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2176 2177
}

2178
static void blk_mq_map_swqueue(struct request_queue *q)
2179
{
2180
	unsigned int i, hctx_idx;
2181 2182
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2183
	struct blk_mq_tag_set *set = q->tag_set;
2184

2185 2186 2187 2188 2189
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2190
	queue_for_each_hw_ctx(q, hctx, i) {
2191
		cpumask_clear(hctx->cpumask);
2192 2193 2194 2195
		hctx->nr_ctx = 0;
	}

	/*
2196 2197 2198
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2199
	 */
2200
	for_each_present_cpu(i) {
2201 2202
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2203 2204
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2205 2206 2207 2208 2209 2210
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2211
			q->mq_map[i] = 0;
2212 2213
		}

2214
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2215
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2216

2217
		cpumask_set_cpu(i, hctx->cpumask);
2218 2219 2220
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2221

2222 2223
	mutex_unlock(&q->sysfs_lock);

2224
	queue_for_each_hw_ctx(q, hctx, i) {
2225
		/*
2226 2227
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2228 2229
		 */
		if (!hctx->nr_ctx) {
2230 2231 2232 2233
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2234 2235 2236
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2237
			hctx->tags = NULL;
2238 2239 2240
			continue;
		}

M
Ming Lei 已提交
2241 2242 2243
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2244 2245 2246 2247 2248
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2249
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2250

2251 2252 2253
		/*
		 * Initialize batch roundrobin counts
		 */
2254 2255 2256
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2257 2258
}

2259 2260 2261 2262
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2263
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2264 2265 2266 2267
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2268
	queue_for_each_hw_ctx(q, hctx, i) {
2269 2270 2271
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2272
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2273 2274 2275
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2276
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2277
		}
2278 2279 2280
	}
}

2281 2282
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2283 2284
{
	struct request_queue *q;
2285

2286 2287
	lockdep_assert_held(&set->tag_list_lock);

2288 2289
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2290
		queue_set_hctx_shared(q, shared);
2291 2292 2293 2294 2295 2296 2297 2298 2299
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2300 2301
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2302 2303 2304 2305 2306 2307
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2308
	mutex_unlock(&set->tag_list_lock);
2309 2310

	synchronize_rcu();
2311 2312 2313 2314 2315 2316 2317 2318
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2319 2320 2321 2322 2323 2324 2325 2326 2327

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2328
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2329

2330 2331 2332
	mutex_unlock(&set->tag_list_lock);
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2345 2346 2347
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2348
		kobject_put(&hctx->kobj);
2349
	}
2350

2351 2352
	q->mq_map = NULL;

2353 2354
	kfree(q->queue_hw_ctx);

2355 2356 2357 2358 2359 2360
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2361 2362 2363
	free_percpu(q->queue_ctx);
}

2364
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2394 2395
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2396
{
K
Keith Busch 已提交
2397 2398
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2399

K
Keith Busch 已提交
2400
	blk_mq_sysfs_unregister(q);
2401
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2402
		int node;
2403

K
Keith Busch 已提交
2404 2405 2406 2407
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2408
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2409
					GFP_KERNEL, node);
2410
		if (!hctxs[i])
K
Keith Busch 已提交
2411
			break;
2412

2413
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2414 2415 2416 2417 2418
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2419

2420
		atomic_set(&hctxs[i]->nr_active, 0);
2421
		hctxs[i]->numa_node = node;
2422
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2423 2424 2425 2426 2427 2428 2429 2430

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2431
	}
K
Keith Busch 已提交
2432 2433 2434 2435
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2436 2437
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2451 2452 2453
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2454
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2455 2456
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2457 2458 2459
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2460 2461
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2462
		goto err_exit;
K
Keith Busch 已提交
2463

2464 2465 2466
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2467 2468 2469 2470 2471
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2472
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2473 2474 2475 2476

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2477

2478
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2479
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2480 2481 2482

	q->nr_queues = nr_cpu_ids;

2483
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2484

2485 2486 2487
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2488 2489
	q->sg_reserved_size = INT_MAX;

2490
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2491 2492 2493
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2494
	blk_queue_make_request(q, blk_mq_make_request);
2495 2496
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2497

2498 2499 2500 2501 2502
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2503 2504 2505 2506 2507
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2508 2509
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2510

2511
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2512
	blk_mq_add_queue_tag_set(set, q);
2513
	blk_mq_map_swqueue(q);
2514

2515 2516 2517 2518 2519 2520 2521 2522
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2523
	return q;
2524

2525
err_hctxs:
K
Keith Busch 已提交
2526
	kfree(q->queue_hw_ctx);
2527
err_percpu:
K
Keith Busch 已提交
2528
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2529 2530
err_exit:
	q->mq_ops = NULL;
2531 2532
	return ERR_PTR(-ENOMEM);
}
2533
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2534 2535 2536

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2537
	struct blk_mq_tag_set	*set = q->tag_set;
2538

2539
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2540
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2541 2542 2543
}

/* Basically redo blk_mq_init_queue with queue frozen */
2544
static void blk_mq_queue_reinit(struct request_queue *q)
2545
{
2546
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2547

2548
	blk_mq_debugfs_unregister_hctxs(q);
2549 2550
	blk_mq_sysfs_unregister(q);

2551 2552 2553 2554 2555 2556
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2557
	blk_mq_map_swqueue(q);
2558

2559
	blk_mq_sysfs_register(q);
2560
	blk_mq_debugfs_register_hctxs(q);
2561 2562
}

2563 2564 2565 2566
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2567 2568
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2569 2570 2571 2572 2573 2574
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2575
		blk_mq_free_rq_map(set->tags[i]);
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2615 2616 2617 2618 2619 2620 2621 2622
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2623 2624 2625 2626 2627 2628
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2629 2630
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2631 2632
	int ret;

B
Bart Van Assche 已提交
2633 2634
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2635 2636
	if (!set->nr_hw_queues)
		return -EINVAL;
2637
	if (!set->queue_depth)
2638 2639 2640 2641
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2642
	if (!set->ops->queue_rq)
2643 2644
		return -EINVAL;

2645 2646 2647
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2648 2649 2650 2651 2652
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2663 2664 2665 2666 2667
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2668

K
Keith Busch 已提交
2669
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2670 2671
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2672
		return -ENOMEM;
2673

2674 2675 2676
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2677 2678 2679
	if (!set->mq_map)
		goto out_free_tags;

2680
	ret = blk_mq_update_queue_map(set);
2681 2682 2683 2684 2685
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2686
		goto out_free_mq_map;
2687

2688 2689 2690
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2691
	return 0;
2692 2693 2694 2695 2696

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2697 2698
	kfree(set->tags);
	set->tags = NULL;
2699
	return ret;
2700 2701 2702 2703 2704 2705 2706
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2707 2708
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2709

2710 2711 2712
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2713
	kfree(set->tags);
2714
	set->tags = NULL;
2715 2716 2717
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2718 2719 2720 2721 2722 2723
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2724
	if (!set)
2725 2726
		return -EINVAL;

2727 2728
	blk_mq_freeze_queue(q);

2729 2730
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2731 2732
		if (!hctx->tags)
			continue;
2733 2734 2735 2736
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2737
		if (!hctx->sched_tags) {
2738
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2739 2740 2741 2742 2743
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2744 2745 2746 2747 2748 2749 2750
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2751 2752
	blk_mq_unfreeze_queue(q);

2753 2754 2755
	return ret;
}

2756 2757
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2758 2759 2760
{
	struct request_queue *q;

2761 2762
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2772
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2773 2774
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2775
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2776 2777 2778 2779 2780
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2781 2782 2783 2784 2785 2786 2787

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2788 2789
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2816
	int bucket;
2817

2818 2819 2820 2821
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2822 2823
}

2824 2825 2826 2827 2828
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2829
	int bucket;
2830 2831 2832 2833 2834

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2835
	if (!blk_poll_stats_enable(q))
2836 2837 2838 2839 2840 2841 2842 2843
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2844 2845
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2846
	 */
2847 2848 2849 2850 2851 2852
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2853 2854 2855 2856

	return ret;
}

2857
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2858
				     struct blk_mq_hw_ctx *hctx,
2859 2860 2861 2862
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2863
	unsigned int nsecs;
2864 2865
	ktime_t kt;

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2884 2885 2886 2887 2888 2889 2890 2891
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2892
	kt = nsecs;
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2915 2916 2917 2918 2919
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2920 2921 2922 2923 2924 2925 2926
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2927
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2928 2929
		return true;

J
Jens Axboe 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2958
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2959 2960 2961 2962
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2963
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2964 2965 2966
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2967 2968
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2969
	else {
2970
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2971 2972 2973 2974 2975 2976 2977 2978 2979
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2980 2981 2982 2983

	return __blk_mq_poll(hctx, rq);
}

2984 2985
static int __init blk_mq_init(void)
{
2986 2987 2988 2989 2990 2991
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2992 2993
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2994 2995 2996
	return 0;
}
subsys_initcall(blk_mq_init);