igb_main.c 207.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63
#define MAJ 4
C
Carolyn Wyborny 已提交
64 65
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 86 87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
97 98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 108 109 110 111 112 113 114 115 116 117 118 119 120
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
121
static void igb_setup_mrqc(struct igb_adapter *);
122
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123
static void igb_remove(struct pci_dev *pdev);
124 125 126
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
127
static void igb_configure(struct igb_adapter *);
128 129 130 131
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
132 133
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
134
static void igb_set_rx_mode(struct net_device *);
135 136 137
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
138
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
139 140
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
141 142
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
143
static void igb_set_uta(struct igb_adapter *adapter);
144 145 146
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
147
static irqreturn_t igb_msix_ring(int irq, void *);
148
#ifdef CONFIG_IGB_DCA
149
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
150
static void igb_setup_dca(struct igb_adapter *);
151
#endif /* CONFIG_IGB_DCA */
152
static int igb_poll(struct napi_struct *, int);
153
static bool igb_clean_tx_irq(struct igb_q_vector *);
154
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 156 157
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
158
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 160
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161
static void igb_restore_vlan(struct igb_adapter *);
162
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 164 165
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
166
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 169 170 171 172 173
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
174
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
175 176

#ifdef CONFIG_PCI_IOV
177
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
179
#endif
180 181

#ifdef CONFIG_PM
182
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
183
static int igb_suspend(struct device *);
184
#endif
Y
Yan, Zheng 已提交
185 186 187 188 189 190 191 192 193 194 195
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
196 197
#endif
static void igb_shutdown(struct pci_dev *);
198
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
200 201 202 203 204 205 206
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
207 208 209 210
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
211
#ifdef CONFIG_PCI_IOV
212 213 214 215 216 217
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

218 219 220 221 222
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

223
static const struct pci_error_handlers igb_err_handler = {
224 225 226 227 228
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

229
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 231 232 233 234

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
235
	.remove   = igb_remove,
236
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
237
	.driver.pm = &igb_pm_ops,
238 239
#endif
	.shutdown = igb_shutdown,
240
	.sriov_configure = igb_pci_sriov_configure,
241 242 243 244 245 246 247 248
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

249 250 251 252 253
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
354
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 356 357 358
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
359 360
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
377
	u16 i, n;
378 379 380 381 382 383 384

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
385 386 387 388
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
389 390 391 392
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
393
	pr_info(" Register Name   Value\n");
394 395 396 397 398 399 400 401 402 403
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
404
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405
	for (n = 0; n < adapter->num_tx_queues; n++) {
406
		struct igb_tx_buffer *buffer_info;
407
		tx_ring = adapter->tx_ring[n];
408
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
409 410
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 412
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
413 414
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
436 437 438 439 440 441
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
442 443

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
444
			const char *next_desc;
445
			struct igb_tx_buffer *buffer_info;
446
			tx_desc = IGB_TX_DESC(tx_ring, i);
447
			buffer_info = &tx_ring->tx_buffer_info[i];
448
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
449 450 451 452 453 454 455 456 457 458 459 460
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
461 462
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
463 464
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
465 466
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
467
				buffer_info->skb, next_desc);
468

469
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 471
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
472
					16, 1, buffer_info->skb->data,
473 474
					dma_unmap_len(buffer_info, len),
					true);
475 476 477 478 479 480
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
481
	pr_info("Queue [NTU] [NTC]\n");
482 483
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
484 485
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
517 518 519 520 521 522 523
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 525

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
526
			const char *next_desc;
527 528
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
529
			rx_desc = IGB_RX_DESC(rx_ring, i);
530 531
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
532 533 534 535 536 537 538 539

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

540 541
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
542 543
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
544 545
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
546
					next_desc);
547
			} else {
548 549
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
550 551 552
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
553
					next_desc);
554

555
				if (netif_msg_pktdata(adapter) &&
556
				    buffer_info->dma && buffer_info->page) {
557 558 559
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
560 561
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
562
					  IGB_RX_BUFSZ, true);
563 564 565 566 567 568 569 570 571
				}
			}
		}
	}

exit:
	return;
}

C
Carolyn Wyborny 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/*  igb_get_i2c_data - Reads the I2C SDA data bit
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
 */
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

/* igb_set_i2c_data - Sets the I2C data bit
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
 */
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

/* igb_set_i2c_clk - Sets the I2C SCL clock
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
 */
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

/* igb_get_i2c_clk - Gets the I2C SCL clock state
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
 */
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

657
/**
658
 * igb_get_hw_dev - return device
659 660
 * used by hardware layer to print debugging information
 **/
661
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662 663
{
	struct igb_adapter *adapter = hw->back;
664
	return adapter->netdev;
665
}
P
Patrick Ohly 已提交
666

667 668 669 670 671 672 673 674 675
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
676
	pr_info("%s - version %s\n",
677 678
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
679
	pr_info("%s\n", igb_copyright);
680

681
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
682 683
	dca_register_notify(&dca_notifier);
#endif
684
	ret = pci_register_driver(&igb_driver);
685 686 687 688 689 690 691 692 693 694 695 696 697
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
698
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
699 700
	dca_unregister_notify(&dca_notifier);
#endif
701 702 703 704 705
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

706 707 708 709 710 711 712 713 714 715
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
716
	int i = 0, j = 0;
717
	u32 rbase_offset = adapter->vfs_allocated_count;
718 719 720 721 722 723 724 725

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
726
		if (adapter->vfs_allocated_count) {
727
			for (; i < adapter->rss_queues; i++)
728 729
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
730
		}
731
	case e1000_82575:
732
	case e1000_82580:
733
	case e1000_i350:
734 735
	case e1000_i210:
	case e1000_i211:
736
	default:
737
		for (; i < adapter->num_rx_queues; i++)
738
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739
		for (; j < adapter->num_tx_queues; j++)
740
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741 742 743 744
		break;
	}
}

A
Alexander Duyck 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

771
#define IGB_N0_QUEUE -1
772
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773
{
774
	struct igb_adapter *adapter = q_vector->adapter;
775
	struct e1000_hw *hw = &adapter->hw;
776 777
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
778
	u32 msixbm = 0;
779

780 781 782 783
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
784 785 786

	switch (hw->mac.type) {
	case e1000_82575:
787 788 789 790
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
791
		if (rx_queue > IGB_N0_QUEUE)
792
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793
		if (tx_queue > IGB_N0_QUEUE)
794
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795 796
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
797
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
799 800
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
815
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
816
		break;
817
	case e1000_82580:
818
	case e1000_i350:
819 820
	case e1000_i210:
	case e1000_i211:
A
Alexander Duyck 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
836 837
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
838 839 840 841
	default:
		BUG();
		break;
	}
842 843 844 845 846 847

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
865 866
	switch (hw->mac.type) {
	case e1000_82575:
867 868 869 870 871 872 873 874 875
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
876 877 878 879

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
880
		adapter->eims_other = E1000_EIMS_OTHER;
881

A
Alexander Duyck 已提交
882 883 884
		break;

	case e1000_82576:
885
	case e1000_82580:
886
	case e1000_i350:
887 888
	case e1000_i210:
	case e1000_i211:
889 890 891 892 893 894 895 896
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
897 898
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

899
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
900 901 902 903 904
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
905 906 907

	adapter->eims_enable_mask |= adapter->eims_other;

908 909
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
910

911 912 913 914 915 916 917 918 919 920 921 922
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
923
	struct e1000_hw *hw = &adapter->hw;
924
	int i, err = 0, vector = 0, free_vector = 0;
925

926
	err = request_irq(adapter->msix_entries[vector].vector,
927
	                  igb_msix_other, 0, netdev->name, adapter);
928
	if (err)
929
		goto err_out;
930 931 932 933

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

934 935
		vector++;

936 937
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

938
		if (q_vector->rx.ring && q_vector->tx.ring)
939
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940 941
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
942
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943 944
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
945
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946
				q_vector->rx.ring->queue_index);
947
		else
948 949
			sprintf(q_vector->name, "%s-unused", netdev->name);

950
		err = request_irq(adapter->msix_entries[vector].vector,
951
		                  igb_msix_ring, 0, q_vector->name,
952
		                  q_vector);
953
		if (err)
954
			goto err_free;
955 956 957 958
	}

	igb_configure_msix(adapter);
	return 0;
959 960 961 962 963 964 965 966 967 968 969

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
970 971 972 973 974 975 976 977 978
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
979
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980
		pci_disable_msi(adapter->pdev);
981
	}
982 983
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * igb_free_q_vector - Free memory allocated for specific interrupt vector
 * @adapter: board private structure to initialize
 * @v_idx: Index of vector to be freed
 *
 * This function frees the memory allocated to the q_vector.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

	/*
	 * ixgbe_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1023 1024 1025 1026
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1027
	adapter->num_q_vectors = 0;
1028 1029 1030

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1044 1045 1046 1047 1048 1049 1050

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1051
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052 1053 1054 1055
{
	int err;
	int numvecs, i;

1056 1057 1058
	if (!msix)
		goto msi_only;

1059
	/* Number of supported queues. */
1060
	adapter->num_rx_queues = adapter->rss_queues;
1061 1062 1063 1064
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1065

1066 1067 1068
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1069
	/* if tx handler is separate add 1 for every tx queue */
1070 1071
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1072 1073 1074 1075 1076 1077

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1078 1079
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1091
		return;
1092 1093 1094 1095 1096

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108
		wrfl();
1109 1110 1111 1112
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1113
	adapter->vfs_allocated_count = 0;
1114
	adapter->rss_queues = 1;
1115
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116
	adapter->num_rx_queues = 1;
1117
	adapter->num_tx_queues = 1;
1118
	adapter->num_q_vectors = 1;
1119
	if (!pci_enable_msi(adapter->pdev))
1120
		adapter->flags |= IGB_FLAG_HAS_MSI;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1130
/**
1131
 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132
 * @adapter: board private structure to initialize
1133 1134 1135 1136 1137 1138
 * @v_count: q_vectors allocated on adapter, used for ring interleaving
 * @v_idx: index of vector in adapter struct
 * @txr_count: total number of Tx rings to allocate
 * @txr_idx: index of first Tx ring to allocate
 * @rxr_count: total number of Rx rings to allocate
 * @rxr_idx: index of first Rx ring to allocate
1139
 *
1140
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141
 **/
1142 1143 1144 1145
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1146 1147
{
	struct igb_q_vector *q_vector;
1148 1149
	struct igb_ring *ring;
	int ring_count, size;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1206
	}
1207

1208 1209 1210 1211
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1212

1213 1214
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1215

1216 1217
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1218

1219 1220 1221
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222

1223 1224 1225 1226 1227 1228
		/*
		 * On i350, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 * */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1239 1240
}

1241

1242
/**
1243 1244
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
1245
 *
1246 1247
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
1248
 **/
1249
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250
{
1251 1252 1253 1254 1255
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1256

1257 1258 1259 1260
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1261

1262 1263 1264 1265 1266 1267
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1268 1269
		}
	}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1287
	return 0;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1298 1299 1300 1301 1302 1303 1304
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
1305
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306 1307 1308 1309
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1310
	igb_set_interrupt_capability(adapter, msix);
1311 1312 1313 1314 1315 1316 1317

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1318
	igb_cache_ring_register(adapter);
1319 1320

	return 0;
1321

1322 1323 1324 1325 1326
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1336
	struct pci_dev *pdev = adapter->pdev;
1337 1338 1339 1340
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1341
		if (!err)
1342 1343
			goto request_done;
		/* fall back to MSI */
1344 1345
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1346

1347
		igb_clear_interrupt_scheme(adapter);
1348 1349
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1350
			goto request_done;
1351

1352 1353
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1354
		igb_configure(adapter);
1355
	}
P
PJ Waskiewicz 已提交
1356

1357 1358
	igb_assign_vector(adapter->q_vector[0], 0);

1359
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361
				  netdev->name, adapter);
1362 1363
		if (!err)
			goto request_done;
1364

1365 1366
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1367
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368 1369
	}

1370
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371
			  netdev->name, adapter);
1372

A
Andy Gospodarek 已提交
1373
	if (err)
1374
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1386
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387

1388
		for (i = 0; i < adapter->num_q_vectors; i++)
1389
			free_irq(adapter->msix_entries[vector++].vector,
1390
				 adapter->q_vector[i]);
1391 1392
	} else {
		free_irq(adapter->pdev->irq, adapter);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1404 1405 1406 1407 1408
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1409
	if (adapter->msix_entries) {
1410 1411 1412 1413 1414
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415
	}
P
PJ Waskiewicz 已提交
1416 1417

	wr32(E1000_IAM, 0);
1418 1419
	wr32(E1000_IMC, ~0);
	wrfl();
1420 1421 1422 1423 1424 1425 1426
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1438
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439 1440 1441 1442
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1443
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444
		if (adapter->vfs_allocated_count) {
1445
			wr32(E1000_MBVFIMR, 0xFF);
1446 1447 1448
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1449
	} else {
1450 1451 1452 1453
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1454
	}
1455 1456 1457 1458
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1459
	struct e1000_hw *hw = &adapter->hw;
1460 1461
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1473
	    !test_bit(old_vid, adapter->active_vlans)) {
1474 1475
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1529
	igb_set_rx_mode(netdev);
1530 1531 1532

	igb_restore_vlan(adapter);

1533
	igb_setup_tctl(adapter);
1534
	igb_setup_mrqc(adapter);
1535
	igb_setup_rctl(adapter);
1536 1537

	igb_configure_tx(adapter);
1538
	igb_configure_rx(adapter);
1539 1540 1541

	igb_rx_fifo_flush_82575(&adapter->hw);

1542
	/* call igb_desc_unused which always leaves
1543 1544 1545
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1546
		struct igb_ring *ring = adapter->rx_ring[i];
1547
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548 1549 1550
	}
}

1551 1552 1553 1554 1555 1556
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1557 1558
	igb_reset_phy(&adapter->hw);

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1591 1592 1593
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1594
	if (adapter->msix_entries)
1595
		igb_configure_msix(adapter);
1596 1597
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1598 1599 1600 1601 1602

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1603 1604 1605 1606 1607 1608 1609
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1610 1611
	netif_tx_start_all_queues(adapter->netdev);

1612 1613 1614 1615
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1616 1617 1618 1619 1620 1621
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1622
	struct e1000_hw *hw = &adapter->hw;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1635
	netif_tx_stop_all_queues(netdev);
1636 1637 1638 1639 1640 1641 1642 1643 1644

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1645 1646
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1647 1648 1649 1650 1651 1652 1653

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1654 1655

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1656 1657 1658
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1659

1660 1661 1662
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1663 1664
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1665 1666
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1667 1668 1669 1670 1671
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1686
	struct pci_dev *pdev = adapter->pdev;
1687
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1688 1689
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1690
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691 1692 1693 1694

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1695
	switch (mac->type) {
1696
	case e1000_i350:
1697 1698 1699 1700
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1701
	case e1000_82576:
1702 1703
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704 1705
		break;
	case e1000_82575:
1706 1707
	case e1000_i210:
	case e1000_i211:
1708 1709 1710
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1711
	}
1712

A
Alexander Duyck 已提交
1713 1714
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1732
				sizeof(union e1000_adv_tx_desc) -
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1753
		wr32(E1000_PBA, pba);
1754 1755 1756 1757 1758 1759 1760 1761 1762
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1763
			((pba << 10) - 2 * adapter->max_frame_size));
1764

1765
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766
	fc->low_water = fc->high_water - 16;
1767 1768
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1769
	fc->current_mode = fc->requested_mode;
1770

1771 1772 1773 1774
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1775
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776 1777

		/* ping all the active vfs to let them know we are going down */
1778
		igb_ping_all_vfs(adapter);
1779 1780 1781 1782 1783 1784

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1785
	/* Allow time for pending master requests to run */
1786
	hw->mac.ops.reset_hw(hw);
1787 1788
	wr32(E1000_WUC, 0);

1789
	if (hw->mac.ops.init_hw(hw))
1790
		dev_err(&pdev->dev, "Hardware Error\n");
1791

1792 1793 1794 1795 1796 1797 1798
	/*
	 * Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1799
	igb_init_dmac(adapter, pba);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1812 1813 1814
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1815 1816 1817 1818 1819
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1820 1821 1822
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1823
	igb_get_phy_info(hw);
1824 1825
}

1826 1827
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1841 1842
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1843
{
1844
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1845
	struct igb_adapter *adapter = netdev_priv(netdev);
1846

J
Jiri Pirko 已提交
1847 1848 1849
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1860 1861 1862
	return 0;
}

S
Stephen Hemminger 已提交
1863
static const struct net_device_ops igb_netdev_ops = {
1864
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1865
	.ndo_stop		= igb_close,
1866
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1867
	.ndo_get_stats64	= igb_get_stats64,
1868
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1869 1870 1871 1872 1873 1874 1875
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876 1877 1878 1879
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1880 1881 1882
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1883 1884
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1885 1886
};

1887 1888 1889 1890 1891 1892 1893 1894
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 *
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1895 1896 1897 1898 1899 1900
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1901
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1922 1923 1924 1925
	}
	return;
}

C
Carolyn Wyborny 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/*  igb_init_i2c - Init I2C interface
 *  @adapter: pointer to adapter structure
 *
 */
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
1964
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1965 1966 1967 1968
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1969
	u16 eeprom_data = 0;
1970
	s32 ret_val;
1971
	static int global_quad_port_a; /* global quad port a indication */
1972 1973
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1974
	int err, pci_using_dac;
1975
	u8 part_str[E1000_PBANUM_LENGTH];
1976

1977 1978 1979 1980 1981
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1982
			pci_name(pdev), pdev->vendor, pdev->device);
1983 1984 1985
		return -EINVAL;
	}

1986
	err = pci_enable_device_mem(pdev);
1987 1988 1989 1990
	if (err)
		return err;

	pci_using_dac = 0;
1991
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1992
	if (!err) {
1993
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1994 1995 1996
		if (!err)
			pci_using_dac = 1;
	} else {
1997
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1998
		if (err) {
1999
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2000 2001 2002 2003 2004 2005 2006 2007
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

2008 2009 2010
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
2011 2012 2013
	if (err)
		goto err_pci_reg;

2014
	pci_enable_pcie_error_reporting(pdev);
2015

2016
	pci_set_master(pdev);
2017
	pci_save_state(pdev);
2018 2019

	err = -ENOMEM;
2020
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2021
				   IGB_MAX_TX_QUEUES);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2033
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2034 2035 2036 2037 2038

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2039 2040
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2041 2042
		goto err_ioremap;

S
Stephen Hemminger 已提交
2043
	netdev->netdev_ops = &igb_netdev_ops;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2066
		goto err_sw_init;
2067

2068
	/* setup the private structure */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2105
	netdev->hw_features |= NETIF_F_RXALL;
2106 2107 2108 2109 2110 2111 2112 2113 2114

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2115

2116 2117
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2118
	if (pci_using_dac) {
2119
		netdev->features |= NETIF_F_HIGHDMA;
2120 2121
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2122

2123 2124
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2125
		netdev->features |= NETIF_F_SCTP_CSUM;
2126
	}
2127

2128 2129
	netdev->priv_flags |= IFF_UNICAST_FLT;

2130
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2131 2132 2133 2134 2135

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	/*
	 * make sure the NVM is good , i211 parts have special NVM that
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2146 2147 2148 2149 2150 2151 2152 2153
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2154
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2155 2156 2157 2158 2159
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2160 2161 2162
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2163
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2164
	            (unsigned long) adapter);
2165
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2166
	            (unsigned long) adapter);
2167 2168 2169 2170

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2171
	/* Initialize link properties that are user-changeable */
2172 2173 2174 2175
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2176 2177
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2178 2179 2180

	igb_validate_mdi_setting(hw);

2181
	/* By default, support wake on port A */
2182
	if (hw->bus.func == 0)
2183 2184 2185 2186
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2187 2188 2189
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2190 2191
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2192

2193 2194
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2195 2196 2197 2198 2199 2200

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2201
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2202 2203
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2204 2205
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2206 2207 2208
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2209
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2210
		break;
2211
	case E1000_DEV_ID_82576_QUAD_COPPER:
2212
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2213 2214
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2215
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2216 2217 2218 2219 2220 2221
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2222 2223 2224 2225
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2226 2227 2228
	}

	/* initialize the wol settings based on the eeprom settings */
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2241 2242 2243 2244

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2245 2246 2247 2248 2249 2250 2251
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2252 2253 2254 2255 2256 2257 2258 2259 2260
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2261 2262 2263
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2264
#ifdef CONFIG_IGB_DCA
2265
	if (dca_add_requester(&pdev->dev) == 0) {
2266
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2267 2268 2269 2270
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2271
#endif
2272 2273 2274 2275
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		/*
		 * Read the NVM to determine if this i350 device supports an
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2293
	/* do hw tstamp init after resetting */
2294
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2295

2296 2297
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2298
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2299
		 netdev->name,
2300
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2301
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2302
		                                            "unknown"),
2303 2304 2305 2306
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2307
		 netdev->dev_addr);
2308

2309 2310 2311 2312
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2313 2314 2315
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2316
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2317
		adapter->num_rx_queues, adapter->num_tx_queues);
2318 2319
	switch (hw->mac.type) {
	case e1000_i350:
2320 2321
	case e1000_i210:
	case e1000_i211:
2322 2323 2324 2325 2326
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2327 2328

	pm_runtime_put_noidle(&pdev->dev);
2329 2330 2331 2332
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2333
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2334 2335
err_eeprom:
	if (!igb_check_reset_block(hw))
2336
		igb_reset_phy(hw);
2337 2338 2339 2340

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2341
	igb_clear_interrupt_scheme(adapter);
2342 2343 2344 2345
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2346 2347
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2348 2349 2350 2351 2352 2353
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (igb_vfs_are_assigned(adapter)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
C
Carolyn Wyborny 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
/*
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
 *
 */
static void igb_remove_i2c(struct igb_adapter *adapter)
{

	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2459 2460 2461 2462 2463 2464 2465 2466 2467
/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
2468
static void igb_remove(struct pci_dev *pdev)
2469 2470 2471
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2472
	struct e1000_hw *hw = &adapter->hw;
2473

Y
Yan, Zheng 已提交
2474
	pm_runtime_get_noresume(&pdev->dev);
2475 2476 2477
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2478
	igb_remove_i2c(adapter);
2479
	igb_ptp_stop(adapter);
2480 2481 2482 2483
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2484 2485 2486 2487
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2488 2489
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2490

2491
#ifdef CONFIG_IGB_DCA
2492
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2493 2494
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2495
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2496
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2497 2498 2499
	}
#endif

2500 2501 2502 2503 2504 2505
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2506
	igb_clear_interrupt_scheme(adapter);
2507

2508
#ifdef CONFIG_PCI_IOV
2509
	igb_disable_sriov(pdev);
2510
#endif
2511

2512 2513 2514
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2515 2516
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2517

2518
	kfree(adapter->shadow_vfta);
2519 2520
	free_netdev(netdev);

2521
	pci_disable_pcie_error_reporting(pdev);
2522

2523 2524 2525
	pci_disable_device(pdev);
}

2526 2527 2528 2529 2530 2531 2532 2533 2534
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
2535
static void igb_probe_vfs(struct igb_adapter *adapter)
2536 2537 2538
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2539
	struct e1000_hw *hw = &adapter->hw;
2540

2541 2542 2543 2544
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2545 2546
	igb_enable_sriov(pdev, max_vfs);
	pci_sriov_set_totalvfs(pdev, 7);
2547

2548 2549 2550
#endif /* CONFIG_PCI_IOV */
}

2551
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2552 2553
{
	struct e1000_hw *hw = &adapter->hw;
2554
	u32 max_rss_queues;
2555

2556
	/* Determine the maximum number of RSS queues supported. */
2557
	switch (hw->mac.type) {
2558 2559 2560 2561
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2562
	case e1000_i210:
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2581
		break;
2582 2583 2584 2585 2586 2587 2588
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2589
	case e1000_i211:
2590
		/* Device supports enough interrupts without queue pairing. */
2591
		break;
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	case e1000_82576:
		/*
		 * If VFs are going to be allocated with RSS queues then we
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2605
	default:
2606 2607 2608 2609 2610 2611
		/*
		 * If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2612 2613
		break;
	}
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2668

2669
	/* Setup and initialize a copy of the hw vlan table array */
2670 2671
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2672

2673
	/* This call may decrease the number of queues */
2674
	if (igb_init_interrupt_scheme(adapter, true)) {
2675 2676 2677 2678
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2679 2680
	igb_probe_vfs(adapter);

2681 2682 2683
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2684
	if (hw->mac.type >= e1000_i350)
2685 2686
		adapter->flags &= ~IGB_FLAG_DMAC;

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2703
static int __igb_open(struct net_device *netdev, bool resuming)
2704 2705 2706
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2707
	struct pci_dev *pdev = adapter->pdev;
2708 2709 2710 2711
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2712 2713
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2714
		return -EBUSY;
Y
Yan, Zheng 已提交
2715 2716 2717 2718
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2719

2720 2721
	netif_carrier_off(netdev);

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2732
	igb_power_up_link(adapter);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2755 2756 2757
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2758 2759
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2760 2761 2762

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2763 2764 2765

	igb_irq_enable(adapter);

2766 2767 2768 2769 2770 2771 2772
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2773 2774
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2775 2776 2777
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2778 2779 2780
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2781 2782 2783

	return 0;

2784 2785
err_set_queues:
	igb_free_irq(adapter);
2786 2787
err_req_irq:
	igb_release_hw_control(adapter);
2788
	igb_power_down_link(adapter);
2789 2790 2791 2792 2793
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2794 2795
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2796 2797 2798 2799

	return err;
}

Y
Yan, Zheng 已提交
2800 2801 2802 2803 2804
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2816
static int __igb_close(struct net_device *netdev, bool suspending)
2817 2818
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2819
	struct pci_dev *pdev = adapter->pdev;
2820 2821 2822

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2823 2824 2825 2826
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2827 2828 2829 2830 2831
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2832 2833
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2834 2835 2836
	return 0;
}

Y
Yan, Zheng 已提交
2837 2838 2839 2840 2841
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2842 2843 2844 2845 2846 2847
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2848
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2849
{
2850
	struct device *dev = tx_ring->dev;
2851 2852
	int size;

2853
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2854 2855

	tx_ring->tx_buffer_info = vzalloc(size);
2856
	if (!tx_ring->tx_buffer_info)
2857 2858 2859
		goto err;

	/* round up to nearest 4K */
2860
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2861 2862
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2863 2864
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2865 2866 2867 2868 2869
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2870

2871 2872 2873
	return 0;

err:
2874
	vfree(tx_ring->tx_buffer_info);
2875 2876
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2889
	struct pci_dev *pdev = adapter->pdev;
2890 2891 2892
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2893
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2894
		if (err) {
2895
			dev_err(&pdev->dev,
2896 2897
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2898
				igb_free_tx_resources(adapter->tx_ring[i]);
2899 2900 2901 2902 2903 2904 2905 2906
			break;
		}
	}

	return err;
}

/**
2907 2908
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2909
 **/
2910
void igb_setup_tctl(struct igb_adapter *adapter)
2911 2912 2913 2914
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2915 2916
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2932 2933 2934 2935 2936 2937 2938
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2939 2940
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2941 2942
{
	struct e1000_hw *hw = &adapter->hw;
2943
	u32 txdctl = 0;
2944 2945 2946 2947
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2948
	wr32(E1000_TXDCTL(reg_idx), 0);
2949 2950 2951 2952 2953 2954 2955 2956 2957
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2958
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2959
	wr32(E1000_TDH(reg_idx), 0);
2960
	writel(0, ring->tail);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2981
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2982 2983
}

2984 2985 2986 2987 2988 2989
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2990
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2991
{
2992
	struct device *dev = rx_ring->dev;
2993
	int size;
2994

2995
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2996 2997

	rx_ring->rx_buffer_info = vzalloc(size);
2998
	if (!rx_ring->rx_buffer_info)
2999 3000 3001
		goto err;

	/* Round up to nearest 4K */
3002
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3003 3004
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3005 3006
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3007 3008 3009
	if (!rx_ring->desc)
		goto err;

3010
	rx_ring->next_to_alloc = 0;
3011 3012 3013 3014 3015 3016
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3017 3018
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3019
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3032
	struct pci_dev *pdev = adapter->pdev;
3033 3034 3035
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3036
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3037
		if (err) {
3038
			dev_err(&pdev->dev,
3039 3040
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3041
				igb_free_rx_resources(adapter->rx_ring[i]);
3042 3043 3044 3045 3046 3047 3048
			break;
		}
	}

	return err;
}

3049 3050 3051 3052 3053 3054 3055 3056
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3057
	u32 j, num_rx_queues, shift = 0;
3058 3059 3060 3061
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3062 3063

	/* Fill out hash function seeds */
3064 3065
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3066

3067
	num_rx_queues = adapter->rss_queues;
3068

3069 3070 3071 3072 3073 3074 3075
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3076 3077 3078
			shift = 3;
			num_rx_queues = 2;
		}
3079 3080 3081
		break;
	default:
		break;
3082 3083
	}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	/*
	 * Populate the indirection table 4 entries at a time.  To do this
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3115

3116 3117 3118
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3119 3120 3121 3122 3123
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3124

3125 3126 3127 3128 3129
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3143
		if (adapter->rss_queues > 1)
3144
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3145
		else
3146
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3147
	} else {
3148 3149
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3150 3151 3152 3153 3154 3155
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3156 3157 3158 3159
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
3160
void igb_setup_rctl(struct igb_adapter *adapter)
3161 3162 3163 3164 3165 3166 3167
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3168
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3169

3170
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3171
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3172

3173 3174 3175 3176
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3177
	 */
3178
	rctl |= E1000_RCTL_SECRC;
3179

3180
	/* disable store bad packets and clear size bits. */
3181
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3182

A
Alexander Duyck 已提交
3183 3184
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3185

3186 3187
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3188

3189 3190 3191 3192 3193 3194 3195 3196 3197
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3214 3215 3216
	wr32(E1000_RCTL, rctl);
}

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3237 3238 3239 3240 3241 3242 3243 3244
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3245
	u32 max_frame_size = adapter->max_frame_size;
3246 3247 3248 3249 3250
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3251 3252 3253 3254 3255 3256 3257
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3258
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3259 3260 3261 3262 3263
	}

	wr32(E1000_RLPML, max_frame_size);
}

3264 3265
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3278 3279 3280 3281 3282
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3283 3284 3285 3286

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3287
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3299 3300 3301 3302 3303 3304 3305
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3306 3307
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3308 3309 3310 3311
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3312
	u32 srrctl = 0, rxdctl = 0;
3313 3314

	/* disable the queue */
3315
	wr32(E1000_RXDCTL(reg_idx), 0);
3316 3317 3318 3319 3320 3321 3322 3323 3324

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3325
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3326
	wr32(E1000_RDH(reg_idx), 0);
3327
	writel(0, ring->tail);
3328

3329
	/* set descriptor configuration */
3330
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3331
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3332
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3333
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3334
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3335 3336 3337
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3338 3339 3340

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3341
	/* set filtering for VMDQ pools */
3342
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3343

3344 3345 3346
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3347 3348 3349

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3350 3351 3352
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
				  struct igb_ring *rx_ring)
{
#define IGB_MAX_BUILD_SKB_SIZE \
	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))

	/* set build_skb flag */
	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
		set_ring_build_skb_enabled(rx_ring);
	else
		clear_ring_build_skb_enabled(rx_ring);
}

3367 3368 3369 3370 3371 3372 3373 3374
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3375
	int i;
3376

3377 3378 3379
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3380 3381 3382 3383
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3384 3385
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
3386 3387 3388 3389 3390
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = adapter->rx_ring[i];
		igb_set_rx_buffer_len(adapter, rx_ring);
		igb_configure_rx_ring(adapter, rx_ring);
	}
3391 3392 3393 3394 3395 3396 3397 3398
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3399
void igb_free_tx_resources(struct igb_ring *tx_ring)
3400
{
3401
	igb_clean_tx_ring(tx_ring);
3402

3403 3404
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3405

3406 3407 3408 3409
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3410 3411
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3427
		igb_free_tx_resources(adapter->tx_ring[i]);
3428 3429
}

3430 3431 3432 3433 3434
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3435
		if (dma_unmap_len(tx_buffer, len))
3436
			dma_unmap_single(ring->dev,
3437 3438
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3439
					 DMA_TO_DEVICE);
3440
	} else if (dma_unmap_len(tx_buffer, len)) {
3441
		dma_unmap_page(ring->dev,
3442 3443
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3444 3445 3446 3447
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3448
	dma_unmap_len_set(tx_buffer, len, 0);
3449
	/* buffer_info must be completely set up in the transmit path */
3450 3451 3452 3453 3454 3455
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3456
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3457
{
3458
	struct igb_tx_buffer *buffer_info;
3459
	unsigned long size;
3460
	u16 i;
3461

3462
	if (!tx_ring->tx_buffer_info)
3463 3464 3465 3466
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3467
		buffer_info = &tx_ring->tx_buffer_info[i];
3468
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3469 3470
	}

3471 3472
	netdev_tx_reset_queue(txring_txq(tx_ring));

3473 3474
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3492
		igb_clean_tx_ring(adapter->tx_ring[i]);
3493 3494 3495 3496 3497 3498 3499 3500
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3501
void igb_free_rx_resources(struct igb_ring *rx_ring)
3502
{
3503
	igb_clean_rx_ring(rx_ring);
3504

3505 3506
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3507

3508 3509 3510 3511
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3512 3513
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3529
		igb_free_rx_resources(adapter->rx_ring[i]);
3530 3531 3532 3533 3534 3535
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3536
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3537 3538
{
	unsigned long size;
3539
	u16 i;
3540

3541 3542 3543 3544
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3545
	if (!rx_ring->rx_buffer_info)
3546
		return;
3547

3548 3549
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3550
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3561
		buffer_info->page = NULL;
3562 3563
	}

3564 3565
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3566 3567 3568 3569

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3570
	rx_ring->next_to_alloc = 0;
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3584
		igb_clean_rx_ring(adapter->rx_ring[i]);
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3597
	struct e1000_hw *hw = &adapter->hw;
3598 3599 3600 3601 3602 3603
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3604
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3605

3606 3607 3608
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3609

3610 3611 3612 3613
	return 0;
}

/**
3614
 * igb_write_mc_addr_list - write multicast addresses to MTA
3615 3616
 * @netdev: network interface device structure
 *
3617 3618 3619 3620
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3621
 **/
3622
static int igb_write_mc_addr_list(struct net_device *netdev)
3623 3624 3625
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3626
	struct netdev_hw_addr *ha;
3627
	u8  *mta_list;
3628 3629
	int i;

3630
	if (netdev_mc_empty(netdev)) {
3631 3632 3633 3634 3635
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3636

3637
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3638 3639
	if (!mta_list)
		return -ENOMEM;
3640

3641
	/* The shared function expects a packed array of only addresses. */
3642
	i = 0;
3643 3644
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3645 3646 3647 3648

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3649
	return netdev_mc_count(netdev);
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3670
	if (netdev_uc_count(netdev) > rar_entries)
3671
		return -ENOMEM;
3672

3673
	if (!netdev_uc_empty(netdev) && rar_entries) {
3674
		struct netdev_hw_addr *ha;
3675 3676

		netdev_for_each_uc_addr(ha, netdev) {
3677 3678
			if (!rar_entries)
				break;
3679 3680
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3681 3682
			                 vfn);
			count++;
3683 3684 3685 3686 3687 3688 3689 3690 3691
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3728
			 * then we should just turn on promiscuous mode so
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3742
		 * unicast promiscuous mode
3743 3744 3745 3746 3747 3748 3749
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3750
	}
3751
	wr32(E1000_RCTL, rctl);
3752

3753 3754 3755 3756 3757 3758
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3759
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3760
		return;
3761

3762 3763 3764
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3765
	igb_restore_vf_multicasts(adapter);
3766 3767
}

G
Greg Rose 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3807 3808 3809 3810 3811
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3812
	igb_get_phy_info(&adapter->hw);
3813 3814
}

A
Alexander Duyck 已提交
3815 3816 3817 3818
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3819
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3851 3852 3853 3854 3855
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3856
	/* check for thermal sensor event on i350 copper only */
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3884 3885
	                                           struct igb_adapter,
                                                   watchdog_task);
3886 3887
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3888
	u32 link;
3889
	int i;
3890

A
Alexander Duyck 已提交
3891
	link = igb_has_link(adapter);
3892
	if (link) {
Y
Yan, Zheng 已提交
3893 3894 3895
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3896 3897
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3898 3899 3900
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3901 3902

			ctrl = rd32(E1000_CTRL);
3903
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3904 3905
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3906 3907 3908
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3909 3910 3911 3912 3913
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3914

3915
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3916 3917 3918 3919 3920
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3921
			}
3922

3923
			/* adjust timeout factor according to speed/duplex */
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3936
			igb_ping_all_vfs(adapter);
3937
			igb_check_vf_rate_limit(adapter);
3938

3939
			/* link state has changed, schedule phy info update */
3940 3941 3942 3943 3944 3945 3946 3947
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3948 3949

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3950 3951 3952 3953
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3954
			}
3955

3956 3957 3958
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3959
			netif_carrier_off(netdev);
3960

3961 3962
			igb_ping_all_vfs(adapter);

3963
			/* link state has changed, schedule phy info update */
3964 3965 3966
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3967 3968 3969

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3970 3971 3972
		}
	}

E
Eric Dumazet 已提交
3973 3974 3975
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3976

3977
	for (i = 0; i < adapter->num_tx_queues; i++) {
3978
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3979
		if (!netif_carrier_ok(netdev)) {
3980 3981 3982 3983
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3984 3985 3986 3987 3988 3989
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3990 3991
		}

3992
		/* Force detection of hung controller every watchdog period */
3993
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3994
	}
3995

3996
	/* Cause software interrupt to ensure rx ring is cleaned */
3997
	if (adapter->msix_entries) {
3998
		u32 eics = 0;
3999 4000
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4001 4002 4003 4004
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4005

G
Greg Rose 已提交
4006
	igb_spoof_check(adapter);
4007
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4008

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4022 4023 4024 4025 4026 4027
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
4028
 *      receive rings.  The divisors and thresholds used by this function
4029 4030 4031 4032 4033 4034 4035
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
4036
 * @q_vector: pointer to q_vector
4037
 **/
4038
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4039
{
4040
	int new_val = q_vector->itr_val;
4041
	int avg_wire_size = 0;
4042
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4043
	unsigned int packets;
4044

4045 4046 4047 4048
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4049
		new_val = IGB_4K_ITR;
4050
		goto set_itr_val;
4051
	}
4052

4053 4054 4055
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4056

4057 4058 4059 4060
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4061 4062 4063 4064

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4065

4066 4067 4068 4069 4070
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4071

4072 4073 4074 4075 4076
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4077

4078 4079 4080 4081 4082
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4083

4084
set_itr_val:
4085 4086 4087
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4088
	}
4089
clear_counts:
4090 4091 4092 4093
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
4109 4110
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
4111
 **/
4112 4113
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4114
{
4115 4116 4117
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4118

4119
	/* no packets, exit with status unchanged */
4120
	if (packets == 0)
4121
		return;
4122

4123
	switch (itrval) {
4124 4125 4126
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4127
			itrval = bulk_latency;
4128
		else if ((packets < 5) && (bytes > 512))
4129
			itrval = low_latency;
4130 4131 4132 4133 4134
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4135
				itrval = bulk_latency;
4136
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4137
				itrval = bulk_latency;
4138
			} else if ((packets > 35)) {
4139
				itrval = lowest_latency;
4140 4141
			}
		} else if (bytes/packets > 2000) {
4142
			itrval = bulk_latency;
4143
		} else if (packets <= 2 && bytes < 512) {
4144
			itrval = lowest_latency;
4145 4146 4147 4148 4149
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4150
				itrval = low_latency;
4151
		} else if (bytes < 1500) {
4152
			itrval = low_latency;
4153 4154 4155 4156
		}
		break;
	}

4157 4158 4159 4160 4161 4162
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4163 4164
}

4165
static void igb_set_itr(struct igb_q_vector *q_vector)
4166
{
4167
	struct igb_adapter *adapter = q_vector->adapter;
4168
	u32 new_itr = q_vector->itr_val;
4169
	u8 current_itr = 0;
4170 4171 4172 4173

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4174
		new_itr = IGB_4K_ITR;
4175 4176 4177
		goto set_itr_now;
	}

4178 4179
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4180

4181
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4182

4183
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4184 4185 4186
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4187 4188
		current_itr = low_latency;

4189 4190 4191
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4192
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4193 4194
		break;
	case low_latency:
4195
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4196 4197
		break;
	case bulk_latency:
4198
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4199 4200 4201 4202 4203 4204
		break;
	default:
		break;
	}

set_itr_now:
4205
	if (new_itr != q_vector->itr_val) {
4206 4207 4208
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
4209 4210 4211
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
4212
				 new_itr) :
4213 4214 4215 4216 4217 4218 4219
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4220 4221
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4222 4223 4224
	}
}

4225 4226
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4240
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4241 4242 4243 4244 4245 4246 4247 4248
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4249 4250 4251
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4252
{
4253
	struct sk_buff *skb = first->skb;
4254 4255 4256
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4257 4258 4259
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4260 4261
	if (!skb_is_gso(skb))
		return 0;
4262 4263

	if (skb_header_cloned(skb)) {
4264
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4265 4266 4267 4268
		if (err)
			return err;
	}

4269 4270
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4271

4272
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4273 4274 4275 4276 4277 4278 4279
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4280
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4281 4282 4283
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4284
	} else if (skb_is_gso_v6(skb)) {
4285 4286 4287 4288
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4289 4290
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4291 4292
	}

4293
	/* compute header lengths */
4294 4295
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4296

4297 4298 4299 4300
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4301
	/* MSS L4LEN IDX */
4302 4303
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4304

4305 4306 4307
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4308
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4309

4310
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4311

4312
	return 1;
4313 4314
}

4315
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4316
{
4317
	struct sk_buff *skb = first->skb;
4318 4319 4320
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4321

4322
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4323 4324
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4325 4326
	} else {
		u8 l4_hdr = 0;
4327
		switch (first->protocol) {
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4341
				 first->protocol);
4342
			}
4343 4344
			break;
		}
4345

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4366
			}
4367
			break;
4368
		}
4369 4370 4371

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4372
	}
4373

4374
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4375
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4376

4377
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4378 4379
}

4380 4381 4382 4383 4384 4385
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4386 4387
{
	/* set type for advanced descriptor with frame checksum insertion */
4388 4389 4390
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4391 4392

	/* set HW vlan bit if vlan is present */
4393 4394 4395 4396 4397 4398
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4399 4400

	/* set timestamp bit if present */
4401 4402
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4403

4404 4405
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4406 4407 4408 4409

	return cmd_type;
}

4410 4411 4412
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4413 4414 4415
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4416 4417
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4418 4419 4420
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4421 4422 4423
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4424

4425 4426 4427 4428
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4429

4430
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4431 4432
}

4433 4434
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4435
		       const u8 hdr_len)
4436
{
4437
	struct sk_buff *skb = first->skb;
4438
	struct igb_tx_buffer *tx_buffer;
4439
	union e1000_adv_tx_desc *tx_desc;
4440
	struct skb_frag_struct *frag;
4441
	dma_addr_t dma;
4442
	unsigned int data_len, size;
4443
	u32 tx_flags = first->tx_flags;
4444
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4445 4446 4447 4448
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4449 4450 4451 4452
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4453 4454

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4467 4468 4469

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4470
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4471 4472 4473 4474 4475 4476 4477

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4478
			tx_desc->read.olinfo_status = 0;
4479 4480 4481 4482 4483 4484 4485 4486 4487

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4488

4489
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4490

4491
		i++;
4492 4493 4494
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4495
			i = 0;
4496
		}
4497
		tx_desc->read.olinfo_status = 0;
4498

E
Eric Dumazet 已提交
4499
		size = skb_frag_size(frag);
4500 4501 4502
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4503
				       size, DMA_TO_DEVICE);
4504

4505
		tx_buffer = &tx_ring->tx_buffer_info[i];
4506 4507
	}

4508
	/* write last descriptor with RS and EOP bits */
4509 4510
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4511

4512 4513
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4514 4515 4516
	/* set the timestamp */
	first->time_stamp = jiffies;

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4527
	/* set next_to_watch value indicating a packet is present */
4528
	first->next_to_watch = tx_desc;
4529

4530 4531 4532
	i++;
	if (i == tx_ring->count)
		i = 0;
4533

4534
	tx_ring->next_to_use = i;
4535

4536
	writel(i, tx_ring->tail);
4537

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4549 4550 4551
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4552
			break;
4553 4554
		if (i == 0)
			i = tx_ring->count;
4555 4556 4557
		i--;
	}

4558 4559 4560
	tx_ring->next_to_use = i;
}

4561
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4562
{
4563 4564
	struct net_device *netdev = tx_ring->netdev;

4565 4566
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4567 4568 4569 4570 4571 4572 4573
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4574
	if (igb_desc_unused(tx_ring) < size)
4575 4576 4577
		return -EBUSY;

	/* A reprieve! */
4578
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4579 4580 4581 4582 4583

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4584 4585 4586
	return 0;
}

4587
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4588
{
4589
	if (igb_desc_unused(tx_ring) >= size)
4590
		return 0;
4591
	return __igb_maybe_stop_tx(tx_ring, size);
4592 4593
}

4594 4595
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4596
{
4597
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4598
	struct igb_tx_buffer *first;
4599
	int tso;
N
Nick Nunley 已提交
4600
	u32 tx_flags = 0;
4601
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4602
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4603
	u8 hdr_len = 0;
4604

4605 4606
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4607 4608
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4620 4621 4622
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4623

4624 4625 4626 4627 4628 4629
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4630 4631
	skb_tx_timestamp(skb);

4632 4633
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     !(adapter->ptp_tx_skb))) {
4634
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4635
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4636 4637

		adapter->ptp_tx_skb = skb_get(skb);
4638
		adapter->ptp_tx_start = jiffies;
4639 4640
		if (adapter->hw.mac.type == e1000_82576)
			schedule_work(&adapter->ptp_tx_work);
4641
	}
4642

4643
	if (vlan_tx_tag_present(skb)) {
4644 4645 4646 4647
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4648 4649 4650
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4651

4652 4653
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4654
		goto out_drop;
4655 4656
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4657

4658
	igb_tx_map(tx_ring, first, hdr_len);
4659 4660

	/* Make sure there is space in the ring for the next send. */
4661
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4662

4663
	return NETDEV_TX_OK;
4664 4665

out_drop:
4666 4667
	igb_unmap_and_free_tx_resource(tx_ring, first);

4668
	return NETDEV_TX_OK;
4669 4670
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4682 4683
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4684 4685
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4697 4698 4699 4700
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
4701 4702
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4703 4704
			return NETDEV_TX_OK;
		skb->len = 17;
4705
		skb_set_tail_pointer(skb, 17);
4706
	}
4707

4708
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4722

4723
	if (hw->mac.type >= e1000_82580)
4724 4725
		hw->dev_spec._82575.global_device_reset = true;

4726
	schedule_work(&adapter->reset_task);
4727 4728
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4729 4730 4731 4732 4733 4734 4735
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4736 4737
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4738 4739 4740 4741
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4742
 * igb_get_stats64 - Get System Network Statistics
4743
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4744
 * @stats: rtnl_link_stats64 pointer
4745 4746
 *
 **/
E
Eric Dumazet 已提交
4747 4748
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4749
{
E
Eric Dumazet 已提交
4750 4751 4752 4753 4754 4755 4756 4757
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4770
	struct pci_dev *pdev = adapter->pdev;
4771
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4772

4773
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4774
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4775 4776 4777
		return -EINVAL;
	}

4778
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4779
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4780
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4781 4782 4783 4784 4785
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4786

4787 4788
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4789

4790 4791
	if (netif_running(netdev))
		igb_down(adapter);
4792

4793
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4812 4813
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4814 4815 4816
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4817
	u32 reg, mpc;
4818
	u16 phy_tmp;
4819 4820
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4821 4822
	unsigned int start;
	u64 _bytes, _packets;
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4835 4836 4837
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4838
		u32 rqdpc = rd32(E1000_RQDPC(i));
4839
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4840

4841 4842 4843 4844
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4845 4846 4847 4848 4849 4850 4851 4852

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4853 4854
	}

4855 4856
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4857 4858 4859 4860

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4861
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4862 4863 4864 4865 4866 4867 4868
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4869
	}
4870 4871
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4872 4873

	/* read stats registers */
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4891 4892 4893
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4908
	adapter->stats.rnbc += rd32(E1000_RNBC);
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4926 4927
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4928 4929

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4930 4931 4932 4933
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4934 4935 4936 4937 4938

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4939 4940
	}

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4955 4956
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4957 4958 4959 4960

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4961
	 * our own version based on RUC and ROC */
4962
	net_stats->rx_errors = adapter->stats.rxerrc +
4963 4964 4965
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4966 4967 4968 4969 4970
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4971 4972

	/* Tx Errors */
4973 4974 4975 4976 4977
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4978 4979 4980 4981 4982 4983

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4984
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4985 4986 4987 4988 4989 4990 4991 4992 4993
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4994 4995 4996 4997 4998 4999 5000 5001 5002

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5003 5004 5005 5006
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5007
	struct igb_adapter *adapter = data;
5008
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5009 5010
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5011

5012 5013 5014
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5015
	if (icr & E1000_ICR_DOUTSYNC) {
5016 5017
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5018 5019 5020 5021
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
5022
	}
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5046
	wr32(E1000_EIMS, adapter->eims_other);
5047 5048 5049 5050

	return IRQ_HANDLED;
}

5051
static void igb_write_itr(struct igb_q_vector *q_vector)
5052
{
5053
	struct igb_adapter *adapter = q_vector->adapter;
5054
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5055

5056 5057
	if (!q_vector->set_itr)
		return;
5058

5059 5060
	if (!itr_val)
		itr_val = 0x4;
5061

5062 5063
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5064
	else
5065
		itr_val |= E1000_EITR_CNT_IGNR;
5066

5067 5068
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5069 5070
}

5071
static irqreturn_t igb_msix_ring(int irq, void *data)
5072
{
5073
	struct igb_q_vector *q_vector = data;
5074

5075 5076
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5077

5078
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5079

5080
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5081 5082
}

5083
#ifdef CONFIG_IGB_DCA
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5127
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5128
{
5129
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5130 5131
	int cpu = get_cpu();

5132 5133 5134
	if (q_vector->cpu == cpu)
		goto out_no_update;

5135 5136 5137 5138 5139 5140
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5141 5142
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5143 5144 5145 5146 5147
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5148
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5149 5150
	int i;

5151
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5152 5153
		return;

5154 5155 5156
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5157
	for (i = 0; i < adapter->num_q_vectors; i++) {
5158 5159
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5160 5161 5162 5163 5164 5165 5166
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5167
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5168 5169 5170 5171 5172 5173
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5174
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5175 5176
			break;
		if (dca_add_requester(dev) == 0) {
5177
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5178
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5179 5180 5181 5182 5183
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5184
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5185
			/* without this a class_device is left
5186
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
5187
			dca_remove_requester(dev);
5188
			dev_info(&pdev->dev, "DCA disabled\n");
5189
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5190
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5191 5192 5193
		}
		break;
	}
5194

J
Jeb Cramer 已提交
5195
	return 0;
5196 5197
}

J
Jeb Cramer 已提交
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5208
#endif /* CONFIG_IGB_DCA */
5209

5210 5211 5212 5213 5214
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5215
	eth_zero_addr(mac_addr);
5216 5217
	igb_set_vf_mac(adapter, vf, mac_addr);

5218
	return 0;
5219 5220
}

5221
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5222 5223
{
	struct pci_dev *pdev = adapter->pdev;
5224 5225
	struct pci_dev *vfdev;
	int dev_id;
5226 5227 5228

	switch (adapter->hw.mac.type) {
	case e1000_82576:
5229
		dev_id = IGB_82576_VF_DEV_ID;
5230 5231
		break;
	case e1000_i350:
5232
		dev_id = IGB_I350_VF_DEV_ID;
5233 5234
		break;
	default:
5235
		return false;
5236 5237
	}

5238 5239 5240 5241 5242 5243 5244
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5245 5246
				return true;
		}
5247 5248

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5249
	}
5250

5251 5252 5253 5254
	return false;
}

#endif
5255 5256 5257 5258 5259 5260 5261 5262
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5263
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5264 5265 5266 5267 5268
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5269 5270 5271 5272 5273 5274
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5275
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5276 5277 5278 5279 5280
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5281
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5309 5310 5311 5312 5313 5314 5315 5316
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5317
	/* salt away the number of multicast addresses assigned
5318 5319 5320 5321 5322
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5323 5324 5325 5326 5327
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5328
	for (i = 0; i < n; i++)
5329
		vf_data->vf_mc_hashes[i] = hash_list[i];
5330 5331

	/* Flush and reset the mta with the new values */
5332
	igb_set_rx_mode(adapter->netdev);
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344 5345 5346
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5347
		vf_data = &adapter->vf_data[i];
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5386 5387

	adapter->vf_data[vf].vlans_enabled = 0;
5388 5389 5390 5391 5392 5393 5394
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5395 5396 5397 5398 5399
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429 5430
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5431 5432
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5433 5434
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5435
			wr32(E1000_VLVF(i), reg);
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5451
			adapter->vf_data[vf].vlans_enabled++;
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5478 5479
		}
	}
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5539
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5540
{
G
Greg Rose 已提交
5541 5542
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5543
	adapter->vf_data[vf].last_nack = jiffies;
5544 5545

	/* reset offloads to defaults */
5546
	igb_set_vmolr(adapter, vf, true);
5547 5548 5549

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5550 5551 5552 5553 5554 5555
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5556 5557 5558 5559 5560

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5561
	igb_set_rx_mode(adapter->netdev);
5562 5563
}

5564 5565 5566 5567
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5568
	/* clear mac address as we were hotplug removed/added */
5569
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5570
		eth_zero_addr(vf_mac);
5571 5572 5573 5574 5575 5576

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5577 5578 5579
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5580
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5581 5582 5583 5584
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5585
	igb_vf_reset(adapter, vf);
5586 5587

	/* set vf mac address */
5588
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5589 5590 5591 5592 5593 5594 5595

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5596
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5597 5598 5599 5600 5601 5602 5603 5604 5605

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5606 5607 5608 5609
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5610 5611
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5612

5613 5614
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5615

5616
	return err;
5617 5618 5619 5620 5621
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5622
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5623 5624 5625
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5626 5627
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5628
		igb_write_mbx(hw, &msg, 1, vf);
5629
		vf_data->last_nack = jiffies;
5630 5631 5632
	}
}

5633
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5634
{
5635 5636
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5637
	struct e1000_hw *hw = &adapter->hw;
5638
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5639 5640
	s32 retval;

5641
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5642

5643 5644
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5645
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5646 5647 5648 5649 5650
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5651 5652 5653

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5654
		return;
5655 5656 5657 5658 5659 5660 5661 5662

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5663
		return;
5664 5665
	}

5666
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5667 5668 5669 5670
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5671 5672 5673 5674
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5675 5676 5677 5678 5679 5680 5681 5682
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5683
		break;
5684 5685 5686
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5687 5688 5689 5690 5691 5692 5693
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5694 5695 5696 5697 5698 5699
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5700 5701
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5702 5703
		break;
	default:
5704
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5705 5706 5707 5708
		retval = -1;
		break;
	}

5709 5710
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5711 5712 5713 5714 5715 5716 5717
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5718
}
5719

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5738 5739
}

5740 5741 5742 5743 5744 5745 5746
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5747 5748
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5767 5768 5769 5770 5771 5772 5773
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5774 5775
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5776 5777 5778 5779
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5780
	igb_write_itr(q_vector);
5781

5782 5783 5784
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5785
	if (icr & E1000_ICR_DOUTSYNC) {
5786 5787 5788 5789
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5790 5791 5792 5793 5794 5795
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5807
	napi_schedule(&q_vector->napi);
5808 5809 5810 5811 5812

	return IRQ_HANDLED;
}

/**
5813
 * igb_intr - Legacy Interrupt Handler
5814 5815 5816 5817 5818
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5819 5820
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5831 5832
	igb_write_itr(q_vector);

5833 5834 5835
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5836
	if (icr & E1000_ICR_DOUTSYNC) {
5837 5838 5839 5840
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5841 5842 5843 5844 5845 5846 5847
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5859
	napi_schedule(&q_vector->napi);
5860 5861 5862 5863

	return IRQ_HANDLED;
}

5864
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5865
{
5866
	struct igb_adapter *adapter = q_vector->adapter;
5867
	struct e1000_hw *hw = &adapter->hw;
5868

5869 5870 5871 5872
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5873
		else
5874
			igb_update_ring_itr(q_vector);
5875 5876
	}

5877 5878
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5879
			wr32(E1000_EIMS, q_vector->eims_value);
5880 5881 5882
		else
			igb_irq_enable(adapter);
	}
5883 5884
}

5885 5886 5887 5888 5889 5890
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5891
{
5892 5893 5894
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5895
	bool clean_complete = true;
5896

5897
#ifdef CONFIG_IGB_DCA
5898 5899
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5900
#endif
5901
	if (q_vector->tx.ring)
5902
		clean_complete = igb_clean_tx_irq(q_vector);
5903

5904
	if (q_vector->rx.ring)
5905
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5906

5907 5908 5909
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5910

5911
	/* If not enough Rx work done, exit the polling mode */
5912 5913
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5914

5915
	return 0;
5916
}
A
Al Viro 已提交
5917

5918 5919
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5920
 * @q_vector: pointer to q_vector containing needed info
5921
 *
5922 5923
 * returns true if ring is completely cleaned
 **/
5924
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5925
{
5926
	struct igb_adapter *adapter = q_vector->adapter;
5927
	struct igb_ring *tx_ring = q_vector->tx.ring;
5928
	struct igb_tx_buffer *tx_buffer;
5929
	union e1000_adv_tx_desc *tx_desc;
5930
	unsigned int total_bytes = 0, total_packets = 0;
5931
	unsigned int budget = q_vector->tx.work_limit;
5932
	unsigned int i = tx_ring->next_to_clean;
5933

5934 5935
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5936

5937
	tx_buffer = &tx_ring->tx_buffer_info[i];
5938
	tx_desc = IGB_TX_DESC(tx_ring, i);
5939
	i -= tx_ring->count;
5940

5941 5942
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5943 5944 5945 5946

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5947

5948
		/* prevent any other reads prior to eop_desc */
5949
		read_barrier_depends();
5950

5951 5952 5953 5954
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5955 5956
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5957

5958 5959 5960
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5961

5962 5963
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5964

5965 5966
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5967 5968
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5969 5970
				 DMA_TO_DEVICE);

5971 5972 5973 5974
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5975 5976
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5977 5978
			tx_buffer++;
			tx_desc++;
5979
			i++;
5980 5981
			if (unlikely(!i)) {
				i -= tx_ring->count;
5982
				tx_buffer = tx_ring->tx_buffer_info;
5983 5984
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5985 5986

			/* unmap any remaining paged data */
5987
			if (dma_unmap_len(tx_buffer, len)) {
5988
				dma_unmap_page(tx_ring->dev,
5989 5990
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5991
					       DMA_TO_DEVICE);
5992
				dma_unmap_len_set(tx_buffer, len, 0);
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6005 6006 6007 6008 6009 6010 6011

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6012

6013 6014
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6015
	i += tx_ring->count;
6016
	tx_ring->next_to_clean = i;
6017 6018 6019 6020
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6021 6022
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6023

6024
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6025
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6026

6027 6028
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
6029
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6030
		if (tx_buffer->next_to_watch &&
6031
		    time_after(jiffies, tx_buffer->time_stamp +
6032 6033
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6034 6035

			/* detected Tx unit hang */
6036
			dev_err(tx_ring->dev,
6037
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6038
				"  Tx Queue             <%d>\n"
6039 6040 6041 6042 6043 6044
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6045
				"  next_to_watch        <%p>\n"
6046 6047
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6048
				tx_ring->queue_index,
6049
				rd32(E1000_TDH(tx_ring->reg_idx)),
6050
				readl(tx_ring->tail),
6051 6052
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6053
				tx_buffer->time_stamp,
6054
				tx_buffer->next_to_watch,
6055
				jiffies,
6056
				tx_buffer->next_to_watch->wb.status);
6057 6058 6059 6060 6061
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6062 6063
		}
	}
6064

6065
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6066 6067
	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
6068
		     igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6086 6087
}

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
/**
 * igb_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6113
					 IGB_RX_BUFSZ,
6114 6115 6116
					 DMA_FROM_DEVICE);
}

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
/**
 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6174 6175 6176 6177 6178
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6201
			rx_buffer->page_offset, size, truesize);
6202

6203 6204
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6205

6206 6207 6208 6209 6210 6211 6212 6213
static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc)
{
	struct igb_rx_buffer *rx_buffer;
	struct sk_buff *skb;
	struct page *page;
	void *page_addr;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6214
#if (PAGE_SIZE < 8192)
6215 6216 6217 6218 6219 6220 6221
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(NET_SKB_PAD +
					       NET_IP_ALIGN +
					       size);
#endif
6222

6223 6224
	/* If we spanned a buffer we have a huge mess so test for it */
	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6225

6226 6227 6228
	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);
6229

6230 6231 6232 6233 6234 6235
	page_addr = page_address(page) + rx_buffer->page_offset;

	/* prefetch first cache line of first page */
	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
#if L1_CACHE_BYTES < 128
	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6236
#endif
6237

6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
	/* build an skb to around the page buffer */
	skb = build_skb(page_addr, truesize);
	if (unlikely(!skb)) {
		rx_ring->rx_stats.alloc_failed++;
		return NULL;
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      IGB_RX_BUFSZ,
				      DMA_FROM_DEVICE);

	/* update pointers within the skb to store the data */
	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
	__skb_put(skb, size);

	/* pull timestamp out of packet data */
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
		__skb_pull(skb, IGB_TS_HDR_LEN);
	}

	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->dma = 0;
	rx_buffer->page = NULL;

	return skb;
6276 6277
}

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/*
		 * we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6320
				      IGB_RX_BUFSZ,
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6339
static inline void igb_rx_checksum(struct igb_ring *ring,
6340 6341
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6342
{
6343
	skb_checksum_none_assert(skb);
6344

6345
	/* Ignore Checksum bit is set */
6346
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6347 6348 6349 6350
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6351
		return;
6352

6353
	/* TCP/UDP checksum error bit is set */
6354 6355 6356
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6357 6358 6359 6360 6361
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6362 6363
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6364
			u64_stats_update_begin(&ring->rx_syncp);
6365
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6366 6367
			u64_stats_update_end(&ring->rx_syncp);
		}
6368 6369 6370 6371
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6372 6373
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6374 6375
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6376 6377
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6378 6379
}

6380 6381 6382 6383 6384 6385 6386 6387
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
/**
 * igb_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
/**
 * igb_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max_len: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, and GRO offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6475 6476 6477
		/* record next protocol if header is present */
		if (!hdr.ipv4->frag_off)
			nexthdr = hdr.ipv4->protocol;
6478 6479 6480 6481 6482 6483
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6484
		hlen = sizeof(struct ipv6hdr);
6485 6486 6487 6488
	} else {
		return hdr.network - data;
	}

6489 6490 6491
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

	/*
	 * If everything has gone correctly hdr.network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
 * igb_pull_tail - igb specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
6527
 * @rx_desc: pointer to the EOP Rx descriptor
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
 * @skb: pointer to current skb being adjusted
 *
 * This function is an igb specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6540
{
6541 6542 6543 6544 6545 6546 6547 6548
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

	/*
	 * it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6549
	 */
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

	/*
	 * we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * igb_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6624 6625
}

6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
/**
 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6665
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6666
{
6667
	struct igb_ring *rx_ring = q_vector->rx.ring;
6668
	struct sk_buff *skb = rx_ring->skb;
6669
	unsigned int total_bytes = 0, total_packets = 0;
6670
	u16 cleaned_count = igb_desc_unused(rx_ring);
6671

6672 6673
	do {
		union e1000_adv_rx_desc *rx_desc;
6674

6675 6676 6677 6678 6679
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6680

6681
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6682

6683 6684
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6685

6686 6687 6688 6689 6690 6691
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6692
		/* retrieve a buffer from the ring */
6693 6694 6695 6696
		if (ring_uses_build_skb(rx_ring))
			skb = igb_build_rx_buffer(rx_ring, rx_desc);
		else
			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6697

6698 6699 6700
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6701

6702
		cleaned_count++;
6703

6704 6705 6706
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6707 6708 6709 6710 6711

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6712 6713
		}

6714
		/* probably a little skewed due to removing CRC */
6715 6716
		total_bytes += skb->len;

6717 6718
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6719

J
Jiri Pirko 已提交
6720
		napi_gro_receive(&q_vector->napi, skb);
6721

6722 6723 6724
		/* reset skb pointer */
		skb = NULL;

6725 6726 6727
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6728

6729 6730 6731
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6732
	u64_stats_update_begin(&rx_ring->rx_syncp);
6733 6734
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6735
	u64_stats_update_end(&rx_ring->rx_syncp);
6736 6737
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6738 6739

	if (cleaned_count)
6740
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6741

6742
	return (total_packets < budget);
6743 6744
}

6745
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6746
				  struct igb_rx_buffer *bi)
6747 6748
{
	struct page *page = bi->page;
6749
	dma_addr_t dma;
6750

6751 6752
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6753 6754
		return true;

6755 6756 6757 6758 6759
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6760 6761
	}

6762 6763
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6764

6765 6766 6767 6768
	/*
	 * if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
6769
	if (dma_mapping_error(rx_ring->dev, dma)) {
6770 6771
		__free_page(page);

6772 6773 6774 6775
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6776
	bi->dma = dma;
6777 6778
	bi->page = page;
	bi->page_offset = 0;
6779

6780 6781 6782
	return true;
}

6783 6784 6785 6786 6787 6788 6789 6790
static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
	if (ring_uses_build_skb(rx_ring))
		return NET_SKB_PAD + NET_IP_ALIGN;
	else
		return 0;
}

6791
/**
6792
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6793 6794
 * @adapter: address of board private structure
 **/
6795
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6796 6797
{
	union e1000_adv_rx_desc *rx_desc;
6798
	struct igb_rx_buffer *bi;
6799
	u16 i = rx_ring->next_to_use;
6800

6801 6802 6803 6804
	/* nothing to do */
	if (!cleaned_count)
		return;

6805
	rx_desc = IGB_RX_DESC(rx_ring, i);
6806
	bi = &rx_ring->rx_buffer_info[i];
6807
	i -= rx_ring->count;
6808

6809
	do {
6810
		if (!igb_alloc_mapped_page(rx_ring, bi))
6811
			break;
6812

6813 6814 6815 6816
		/*
		 * Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
6817 6818 6819
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
						     bi->page_offset +
						     igb_rx_offset(rx_ring));
6820

6821 6822
		rx_desc++;
		bi++;
6823
		i++;
6824
		if (unlikely(!i)) {
6825
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6826
			bi = rx_ring->rx_buffer_info;
6827 6828 6829 6830 6831
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6832 6833 6834

		cleaned_count--;
	} while (cleaned_count);
6835

6836 6837
	i += rx_ring->count;

6838
	if (rx_ring->next_to_use != i) {
6839
		/* record the next descriptor to use */
6840 6841
		rx_ring->next_to_use = i;

6842 6843 6844 6845 6846
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/*
		 * Force memory writes to complete before letting h/w
6847 6848
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6849 6850
		 * such as IA-64).
		 */
6851
		wmb();
6852
		writel(i, rx_ring->tail);
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6875 6876
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6899
	case SIOCSHWTSTAMP:
6900
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6901 6902 6903 6904 6905
	default:
		return -EOPNOTSUPP;
	}
}

6906 6907 6908 6909
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6910
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6911 6912 6913 6914 6915 6916 6917 6918 6919
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6920
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6921 6922 6923 6924 6925
		return -E1000_ERR_CONFIG;

	return 0;
}

6926
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6927 6928 6929 6930
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6931
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6932

6933
	if (enable) {
6934 6935 6936 6937 6938
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6939
		/* Disable CFI check */
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6950
	igb_rlpml_set(adapter);
6951 6952
}

6953
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6954 6955 6956
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6957
	int pf_id = adapter->vfs_allocated_count;
6958

6959 6960
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6961

6962 6963
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6964 6965

	set_bit(vid, adapter->active_vlans);
6966 6967

	return 0;
6968 6969
}

6970
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6971 6972 6973
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6974
	int pf_id = adapter->vfs_allocated_count;
6975
	s32 err;
6976

6977 6978
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6979

6980 6981
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6982
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6983 6984

	clear_bit(vid, adapter->active_vlans);
6985 6986

	return 0;
6987 6988 6989 6990
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6991
	u16 vid;
6992

6993 6994
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6995 6996
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6997 6998
}

6999
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7000
{
7001
	struct pci_dev *pdev = adapter->pdev;
7002 7003 7004 7005
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7006 7007 7008 7009 7010
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7011 7012
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
7013 7014 7015
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
7016

7017
	switch (spd + dplx) {
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7036
		goto err_inval;
7037
	}
7038 7039 7040 7041

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7042
	return 0;
7043 7044 7045 7046

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7047 7048
}

Y
Yan, Zheng 已提交
7049 7050
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7051 7052 7053 7054
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7055
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7056
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7057 7058 7059 7060 7061 7062
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7063
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7064
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7065

7066
	igb_clear_interrupt_scheme(adapter);
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7080
		igb_set_rx_mode(netdev);
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7098
		igb_disable_pcie_master(hw);
7099 7100 7101 7102 7103 7104 7105 7106

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7107 7108
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7109 7110 7111
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7123
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7124
static int igb_suspend(struct device *dev)
7125 7126 7127
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7128
	struct pci_dev *pdev = to_pci_dev(dev);
7129

Y
Yan, Zheng 已提交
7130
	retval = __igb_shutdown(pdev, &wake, 0);
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7143
#endif /* CONFIG_PM_SLEEP */
7144

Y
Yan, Zheng 已提交
7145
static int igb_resume(struct device *dev)
7146
{
Y
Yan, Zheng 已提交
7147
	struct pci_dev *pdev = to_pci_dev(dev);
7148 7149 7150 7151 7152 7153 7154
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7155
	pci_save_state(pdev);
T
Taku Izumi 已提交
7156

7157
	err = pci_enable_device_mem(pdev);
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7168
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7169 7170
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7171 7172 7173
	}

	igb_reset(adapter);
7174 7175 7176 7177 7178

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

7179 7180
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7181
	if (netdev->flags & IFF_UP) {
7182
		rtnl_lock();
Y
Yan, Zheng 已提交
7183
		err = __igb_open(netdev, true);
7184
		rtnl_unlock();
A
Alexander Duyck 已提交
7185 7186 7187
		if (err)
			return err;
	}
7188 7189

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7222 7223 7224

	return 0;
}
Y
Yan, Zheng 已提交
7225 7226 7227 7228 7229 7230

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7231 7232 7233 7234
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7235 7236
	bool wake;

Y
Yan, Zheng 已提交
7237
	__igb_shutdown(pdev, &wake, 0);
7238 7239 7240 7241 7242

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7243 7244
}

7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7311 7312 7313 7314 7315 7316 7317 7318 7319
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7320
	struct e1000_hw *hw = &adapter->hw;
7321
	struct igb_q_vector *q_vector;
7322 7323
	int i;

7324
	for (i = 0; i < adapter->num_q_vectors; i++) {
7325 7326 7327 7328 7329
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7330
		napi_schedule(&q_vector->napi);
7331
	}
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7351 7352 7353
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7374
	pci_ers_result_t result;
T
Taku Izumi 已提交
7375
	int err;
7376

7377
	if (pci_enable_device_mem(pdev)) {
7378 7379
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7380 7381 7382 7383
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7384
		pci_save_state(pdev);
7385

7386 7387
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7388

7389 7390 7391 7392
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7393

7394 7395 7396 7397 7398 7399
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
7400 7401

	return result;
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7458 7459 7460 7461
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
7462 7463 7464
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7465

7466
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7467

7468
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7469 7470 7471 7472

	return 0;
}

7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
L
Lior Levy 已提交
7524 7525 7526 7527 7528
	/*
	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7561 7562
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7591
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7592 7593 7594 7595 7596
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7597 7598 7599
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7600
	u32 reg;
7601

7602 7603
	switch (hw->mac.type) {
	case e1000_82575:
7604 7605
	case e1000_i210:
	case e1000_i211:
7606 7607
	default:
		/* replication is not supported for 82575 */
7608
		return;
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7619 7620
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7621 7622
		break;
	}
7623

7624 7625 7626
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7627 7628
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7629 7630 7631 7632
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7633 7634
}

7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7649 7650 7651
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7652
			 */
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7679 7680 7681

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

C
Carolyn Wyborny 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
/*  igb_read_i2c_byte - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
 */
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
				u8 dev_addr, u8 *data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7729
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

/*  igb_write_i2c_byte - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
 */
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
				 u8 dev_addr, u8 data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7766
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7784
/* igb_main.c */