slub.c 127.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
154
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

C
Christoph Lameter 已提交
177
/* Internal SLUB flags */
C
Christoph Lameter 已提交
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

C
Christoph Lameter 已提交
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291 292 293 294
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295
		return s->object_size;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

311 312 313 314 315
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

316
static inline struct kmem_cache_order_objects oo_make(int order,
317
		unsigned long size, int reserved)
318 319
{
	struct kmem_cache_order_objects x = {
320
		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 322 323 324 325 326 327
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
328
	return x.x >> OO_SHIFT;
329 330 331 332
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
333
	return x.x & OO_MASK;
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

364 365 366 367 368 369 370
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
371 372
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373
	if (s->flags & __CMPXCHG_DOUBLE) {
374
		if (cmpxchg_double(&page->freelist, &page->counters,
375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
377
			return true;
378 379 380 381
	} else
#endif
	{
		slab_lock(page);
382 383
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
384
			page->freelist = freelist_new;
385
			set_page_slub_counters(page, counters_new);
386
			slab_unlock(page);
387
			return true;
388 389 390 391 392 393 394 395
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
396
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 398
#endif

399
	return false;
400 401
}

402 403 404 405 406
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
407 408
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409
	if (s->flags & __CMPXCHG_DOUBLE) {
410
		if (cmpxchg_double(&page->freelist, &page->counters,
411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
413
			return true;
414 415 416
	} else
#endif
	{
417 418 419
		unsigned long flags;

		local_irq_save(flags);
420
		slab_lock(page);
421 422
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
423
			page->freelist = freelist_new;
424
			set_page_slub_counters(page, counters_new);
425
			slab_unlock(page);
426
			local_irq_restore(flags);
427
			return true;
428
		}
429
		slab_unlock(page);
430
		local_irq_restore(flags);
431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
437
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 439
#endif

440
	return false;
441 442
}

C
Christoph Lameter 已提交
443
#ifdef CONFIG_SLUB_DEBUG
444 445 446
/*
 * Determine a map of object in use on a page.
 *
447
 * Node listlock must be held to guarantee that the page does
448 449 450 451 452 453 454 455 456 457 458
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
459 460 461
/*
 * Debug settings:
 */
462 463 464
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
465
static int slub_debug;
466
#endif
C
Christoph Lameter 已提交
467 468

static char *slub_debug_slabs;
469
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
487 488 489 490 491
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
492
	metadata_access_enable();
493 494
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
495
	metadata_access_disable();
C
Christoph Lameter 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
512
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
513
{
A
Akinobu Mita 已提交
514
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
515 516

	if (addr) {
517 518 519 520 521 522 523 524
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
525
		metadata_access_enable();
526
		save_stack_trace(&trace);
527
		metadata_access_disable();
528 529 530 531 532 533 534 535 536

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
537 538
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
539
		p->pid = current->pid;
C
Christoph Lameter 已提交
540 541 542 543 544 545 546
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
547 548 549
	if (!(s->flags & SLAB_STORE_USER))
		return;

550 551
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
552 553 554 555 556 557 558
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

559 560
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 562 563 564 565
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
566
				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 568 569 570
			else
				break;
	}
#endif
571 572 573 574 575 576 577 578 579 580 581 582 583
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
584
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585
	       page, page->objects, page->inuse, page->freelist, page->flags);
586 587 588 589 590

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
591
	struct va_format vaf;
592 593 594
	va_list args;

	va_start(args, fmt);
595 596
	vaf.fmt = fmt;
	vaf.va = &args;
597
	pr_err("=============================================================================\n");
598
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599
	pr_err("-----------------------------------------------------------------------------\n\n");
600

601
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602
	va_end(args);
C
Christoph Lameter 已提交
603 604
}

605 606
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
607
	struct va_format vaf;
608 609 610
	va_list args;

	va_start(args, fmt);
611 612 613
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 615 616 617
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
618 619
{
	unsigned int off;	/* Offset of last byte */
620
	u8 *addr = page_address(page);
621 622 623 624 625

	print_tracking(s, p);

	print_page_info(page);

626 627
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
628 629

	if (p > addr + 16)
630
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
631

632
	print_section("Object ", p, min_t(unsigned long, s->object_size,
633
				PAGE_SIZE));
C
Christoph Lameter 已提交
634
	if (s->flags & SLAB_RED_ZONE)
635 636
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
637 638 639 640 641 642

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

643
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
644 645 646 647
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
648
		print_section("Padding ", p + off, s->size - off);
649 650

	dump_stack();
C
Christoph Lameter 已提交
651 652
}

653
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
654 655
			u8 *object, char *reason)
{
656
	slab_bug(s, "%s", reason);
657
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
658 659
}

660 661
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
662 663 664 665
{
	va_list args;
	char buf[100];

666 667
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
668
	va_end(args);
669
	slab_bug(s, "%s", buf);
670
	print_page_info(page);
C
Christoph Lameter 已提交
671 672 673
	dump_stack();
}

674
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
675 676 677 678
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
679 680
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
681 682 683
	}

	if (s->flags & SLAB_RED_ZONE)
684
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
685 686
}

687 688 689 690 691 692 693 694 695
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
696
			u8 *start, unsigned int value, unsigned int bytes)
697 698 699 700
{
	u8 *fault;
	u8 *end;

701
	metadata_access_enable();
702
	fault = memchr_inv(start, value, bytes);
703
	metadata_access_disable();
704 705 706 707 708 709 710 711
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
712
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 714 715 716 717
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
718 719 720 721 722 723 724 725 726
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
727
 *
C
Christoph Lameter 已提交
728 729 730
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
731
 * object + s->object_size
C
Christoph Lameter 已提交
732
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
733
 * 	Padding is extended by another word if Redzoning is enabled and
734
 * 	object_size == inuse.
C
Christoph Lameter 已提交
735
 *
C
Christoph Lameter 已提交
736 737 738 739
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
740 741
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
742 743
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
744
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
745
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
746 747 748
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
749 750
 *
 * object + s->size
C
Christoph Lameter 已提交
751
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
752
 *
753
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
754
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

773 774
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
775 776
}

777
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
778 779
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
780 781 782 783 784
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
785 786 787 788

	if (!(s->flags & SLAB_POISON))
		return 1;

789
	start = page_address(page);
790
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 792
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
793 794 795
	if (!remainder)
		return 1;

796
	metadata_access_enable();
797
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798
	metadata_access_disable();
799 800 801 802 803 804
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805
	print_section("Padding ", end - remainder, remainder);
806

E
Eric Dumazet 已提交
807
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808
	return 0;
C
Christoph Lameter 已提交
809 810 811
}

static int check_object(struct kmem_cache *s, struct page *page,
812
					void *object, u8 val)
C
Christoph Lameter 已提交
813 814
{
	u8 *p = object;
815
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
816 817

	if (s->flags & SLAB_RED_ZONE) {
818
		if (!check_bytes_and_report(s, page, object, "Redzone",
819
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
820 821
			return 0;
	} else {
822
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
823
			check_bytes_and_report(s, page, p, "Alignment padding",
824 825
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
826
		}
C
Christoph Lameter 已提交
827 828 829
	}

	if (s->flags & SLAB_POISON) {
830
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831
			(!check_bytes_and_report(s, page, p, "Poison", p,
832
					POISON_FREE, s->object_size - 1) ||
833
			 !check_bytes_and_report(s, page, p, "Poison",
834
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
835 836 837 838 839 840 841
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

842
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
843 844 845 846 847 848 849 850 851 852
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
853
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
854
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
855
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
856
		 */
857
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
865 866
	int maxobj;

C
Christoph Lameter 已提交
867 868 869
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
870
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
871 872
		return 0;
	}
873

874
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 876
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
877
			page->objects, maxobj);
878 879 880
		return 0;
	}
	if (page->inuse > page->objects) {
881
		slab_err(s, page, "inuse %u > max %u",
882
			page->inuse, page->objects);
C
Christoph Lameter 已提交
883 884 885 886 887 888 889 890
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
891 892
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
893 894 895 896
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
897
	void *fp;
C
Christoph Lameter 已提交
898
	void *object = NULL;
899
	int max_objects;
C
Christoph Lameter 已提交
900

901
	fp = page->freelist;
902
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
903 904 905 906 907 908
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
909
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
910
			} else {
911
				slab_err(s, page, "Freepointer corrupt");
912
				page->freelist = NULL;
913
				page->inuse = page->objects;
914
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
915 916 917 918 919 920 921 922 923
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

924
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 926
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
927 928 929 930 931 932 933

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
934
	if (page->inuse != page->objects - nr) {
935
		slab_err(s, page, "Wrong object count. Counter is %d but "
936 937
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
938
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
939 940 941 942
	}
	return search == NULL;
}

943 944
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
945 946
{
	if (s->flags & SLAB_TRACE) {
947
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
948 949 950 951 952 953
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
954 955
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
956 957 958 959 960

		dump_stack();
	}
}

961
/*
C
Christoph Lameter 已提交
962
 * Tracking of fully allocated slabs for debugging purposes.
963
 */
964 965
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
966
{
967 968 969
	if (!(s->flags & SLAB_STORE_USER))
		return;

970
	lockdep_assert_held(&n->list_lock);
971 972 973
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
974
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 976 977 978
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

979
	lockdep_assert_held(&n->list_lock);
980 981 982
	list_del(&page->lru);
}

983 984 985 986 987 988 989 990
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

991 992 993 994 995
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

996
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 998 999 1000 1001 1002 1003 1004 1005
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1006
	if (likely(n)) {
1007
		atomic_long_inc(&n->nr_slabs);
1008 1009
		atomic_long_add(objects, &n->total_objects);
	}
1010
}
1011
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 1013 1014 1015
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1016
	atomic_long_sub(objects, &n->total_objects);
1017 1018 1019
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1020 1021 1022 1023 1024 1025
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1026
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1027 1028 1029
	init_tracking(s, object);
}

1030 1031
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1032
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1033 1034 1035 1036 1037 1038
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1039
		goto bad;
C
Christoph Lameter 已提交
1040 1041
	}

1042
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1043 1044
		goto bad;

C
Christoph Lameter 已提交
1045 1046 1047 1048
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1049
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1050
	return 1;
C
Christoph Lameter 已提交
1051

C
Christoph Lameter 已提交
1052 1053 1054 1055 1056
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1057
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1058
		 */
1059
		slab_fix(s, "Marking all objects used");
1060
		page->inuse = page->objects;
1061
		page->freelist = NULL;
C
Christoph Lameter 已提交
1062 1063 1064 1065
	}
	return 0;
}

1066 1067 1068
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1069
{
1070
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071

1072
	spin_lock_irqsave(&n->list_lock, *flags);
1073 1074
	slab_lock(page);

C
Christoph Lameter 已提交
1075 1076 1077 1078
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1079
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1080 1081 1082 1083
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1084
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1085 1086 1087
		goto fail;
	}

1088
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089
		goto out;
C
Christoph Lameter 已提交
1090

1091
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1092
		if (!PageSlab(page)) {
1093 1094
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1095
		} else if (!page->slab_cache) {
1096 1097
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1098
			dump_stack();
P
Pekka Enberg 已提交
1099
		} else
1100 1101
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1102 1103
		goto fail;
	}
C
Christoph Lameter 已提交
1104 1105 1106 1107

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1108
	init_object(s, object, SLUB_RED_INACTIVE);
1109
out:
1110
	slab_unlock(page);
1111 1112 1113 1114 1115
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1116

C
Christoph Lameter 已提交
1117
fail:
1118 1119
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1120
	slab_fix(s, "Object at 0x%p not freed", object);
1121
	return NULL;
C
Christoph Lameter 已提交
1122 1123
}

C
Christoph Lameter 已提交
1124 1125
static int __init setup_slub_debug(char *str)
{
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1150
	for (; *str && *str != ','; str++) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1167 1168 1169
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1170 1171 1172 1173 1174 1175 1176
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1177
		default:
1178 1179
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1180
		}
C
Christoph Lameter 已提交
1181 1182
	}

1183
check_slabs:
C
Christoph Lameter 已提交
1184 1185
	if (*str == ',')
		slub_debug_slabs = str + 1;
1186
out:
C
Christoph Lameter 已提交
1187 1188 1189 1190 1191
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1192
unsigned long kmem_cache_flags(unsigned long object_size,
1193
	unsigned long flags, const char *name,
1194
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1195 1196
{
	/*
1197
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1198
	 */
1199 1200
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201
		flags |= slub_debug;
1202 1203

	return flags;
C
Christoph Lameter 已提交
1204 1205
}
#else
C
Christoph Lameter 已提交
1206 1207
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1208

C
Christoph Lameter 已提交
1209
static inline int alloc_debug_processing(struct kmem_cache *s,
1210
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1211

1212 1213 1214
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1215 1216 1217 1218

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1219
			void *object, u8 val) { return 1; }
1220 1221
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1222 1223
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1224
unsigned long kmem_cache_flags(unsigned long object_size,
1225
	unsigned long flags, const char *name,
1226
	void (*ctor)(void *))
1227 1228 1229
{
	return flags;
}
C
Christoph Lameter 已提交
1230
#define slub_debug 0
1231

1232 1233
#define disable_higher_order_debug 0

1234 1235
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1236 1237
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1238 1239 1240 1241
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1242

1243 1244 1245 1246 1247 1248
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1249 1250 1251
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1252
	kasan_kmalloc_large(ptr, size);
1253 1254 1255 1256 1257
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1258
	kasan_kfree_large(x);
1259 1260
}

1261 1262
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1263 1264 1265 1266
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1267

1268 1269 1270 1271
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1272 1273 1274 1275
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1276
{
1277 1278 1279
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280
	memcg_kmem_put_cache(s);
1281
	kasan_slab_alloc(s, object);
1282
}
1283

1284 1285 1286
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1305 1306

	kasan_slab_free(s, x);
1307
}
1308

C
Christoph Lameter 已提交
1309 1310 1311
/*
 * Slab allocation and freeing
 */
1312 1313
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1314
{
1315
	struct page *page;
1316 1317
	int order = oo_order(oo);

1318 1319
	flags |= __GFP_NOTRACK;

1320 1321 1322
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1323
	if (node == NUMA_NO_NODE)
1324
		page = alloc_pages(flags, order);
1325
	else
1326 1327 1328 1329 1330 1331
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1332 1333
}

C
Christoph Lameter 已提交
1334 1335
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1336
	struct page *page;
1337
	struct kmem_cache_order_objects oo = s->oo;
1338
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1339

1340 1341 1342 1343 1344
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1345
	flags |= s->allocflags;
1346

1347 1348 1349 1350 1351 1352
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1353
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1354 1355
	if (unlikely(!page)) {
		oo = s->min;
1356
		alloc_gfp = flags;
1357 1358 1359 1360
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1361
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1362

1363 1364
		if (page)
			stat(s, ORDER_FALLBACK);
1365
	}
V
Vegard Nossum 已提交
1366

1367
	if (kmemcheck_enabled && page
1368
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1369 1370
		int pages = 1 << oo_order(oo);

1371
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1372 1373 1374 1375 1376 1377 1378 1379 1380

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1381 1382
	}

1383 1384 1385 1386 1387
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1388
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1389 1390 1391
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1392
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1393 1394 1395 1396 1397 1398 1399

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1400
	setup_object_debug(s, page, object);
1401 1402
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
1403
		s->ctor(object);
1404 1405
		kasan_poison_object_data(s, object);
	}
C
Christoph Lameter 已提交
1406 1407 1408 1409 1410 1411 1412
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
G
Glauber Costa 已提交
1413
	int order;
1414
	int idx;
C
Christoph Lameter 已提交
1415

1416 1417 1418 1419
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
1420

C
Christoph Lameter 已提交
1421 1422
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1423 1424 1425
	if (!page)
		goto out;

G
Glauber Costa 已提交
1426
	order = compound_order(page);
1427
	inc_slabs_node(s, page_to_nid(page), page->objects);
1428
	page->slab_cache = s;
1429
	__SetPageSlab(page);
1430 1431
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1432 1433 1434 1435

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1436
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1437

1438 1439
	kasan_poison_slab(page);

1440 1441 1442 1443 1444 1445
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1446 1447 1448
	}

	page->freelist = start;
1449
	page->inuse = page->objects;
1450
	page->frozen = 1;
C
Christoph Lameter 已提交
1451 1452 1453 1454 1455 1456
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1457 1458
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1459

1460
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1461 1462 1463
		void *p;

		slab_pad_check(s, page);
1464 1465
		for_each_object(p, s, page_address(page),
						page->objects)
1466
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1467 1468
	}

1469
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1470

C
Christoph Lameter 已提交
1471 1472 1473
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1474
		-pages);
C
Christoph Lameter 已提交
1475

1476
	__ClearPageSlabPfmemalloc(page);
1477
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1478

1479
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1480 1481
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1482 1483
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1484 1485
}

1486 1487 1488
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1489 1490 1491 1492
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1493 1494 1495 1496 1497
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1498
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1499 1500 1501 1502 1503
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1518 1519 1520 1521 1522 1523 1524 1525

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1526
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1527 1528 1529 1530
	free_slab(s, page);
}

/*
1531
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1532
 */
1533 1534
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1535
{
C
Christoph Lameter 已提交
1536
	n->nr_partial++;
1537
	if (tail == DEACTIVATE_TO_TAIL)
1538 1539 1540
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1541 1542
}

1543 1544
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1545
{
P
Peter Zijlstra 已提交
1546
	lockdep_assert_held(&n->list_lock);
1547 1548
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1549

1550 1551 1552
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1553 1554 1555 1556
	list_del(&page->lru);
	n->nr_partial--;
}

1557 1558 1559 1560 1561 1562 1563
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1564
/*
1565 1566
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1567
 *
1568
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1569
 */
1570
static inline void *acquire_slab(struct kmem_cache *s,
1571
		struct kmem_cache_node *n, struct page *page,
1572
		int mode, int *objects)
C
Christoph Lameter 已提交
1573
{
1574 1575 1576 1577
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1578 1579
	lockdep_assert_held(&n->list_lock);

1580 1581 1582 1583 1584
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1585 1586 1587
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1588
	*objects = new.objects - new.inuse;
1589
	if (mode) {
1590
		new.inuse = page->objects;
1591 1592 1593 1594
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1595

1596
	VM_BUG_ON(new.frozen);
1597
	new.frozen = 1;
1598

1599
	if (!__cmpxchg_double_slab(s, page,
1600
			freelist, counters,
1601
			new.freelist, new.counters,
1602 1603
			"acquire_slab"))
		return NULL;
1604 1605

	remove_partial(n, page);
1606
	WARN_ON(!freelist);
1607
	return freelist;
C
Christoph Lameter 已提交
1608 1609
}

1610
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1611
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1612

C
Christoph Lameter 已提交
1613
/*
C
Christoph Lameter 已提交
1614
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1615
 */
1616 1617
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1618
{
1619 1620
	struct page *page, *page2;
	void *object = NULL;
1621 1622
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1623 1624 1625 1626

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1627 1628
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1629 1630 1631 1632 1633
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1634
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1635
		void *t;
1636

1637 1638 1639
		if (!pfmemalloc_match(page, flags))
			continue;

1640
		t = acquire_slab(s, n, page, object == NULL, &objects);
1641 1642 1643
		if (!t)
			break;

1644
		available += objects;
1645
		if (!object) {
1646 1647 1648 1649
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1650
			put_cpu_partial(s, page, 0);
1651
			stat(s, CPU_PARTIAL_NODE);
1652
		}
1653 1654
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1655 1656
			break;

1657
	}
C
Christoph Lameter 已提交
1658
	spin_unlock(&n->list_lock);
1659
	return object;
C
Christoph Lameter 已提交
1660 1661 1662
}

/*
C
Christoph Lameter 已提交
1663
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1664
 */
1665
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1666
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1667 1668 1669
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1670
	struct zoneref *z;
1671 1672
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1673
	void *object;
1674
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1675 1676

	/*
C
Christoph Lameter 已提交
1677 1678 1679 1680
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1681
	 *
C
Christoph Lameter 已提交
1682 1683 1684 1685
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1686
	 *
C
Christoph Lameter 已提交
1687
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1688 1689 1690 1691 1692
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1693
	 */
1694 1695
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1696 1697
		return NULL;

1698
	do {
1699
		cpuset_mems_cookie = read_mems_allowed_begin();
1700
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1701 1702 1703 1704 1705
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1706
			if (n && cpuset_zone_allowed(zone, flags) &&
1707
					n->nr_partial > s->min_partial) {
1708
				object = get_partial_node(s, n, c, flags);
1709 1710
				if (object) {
					/*
1711 1712 1713 1714 1715
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1716 1717 1718
					 */
					return object;
				}
1719
			}
C
Christoph Lameter 已提交
1720
		}
1721
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1722 1723 1724 1725 1726 1727 1728
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1729
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1730
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1731
{
1732
	void *object;
1733 1734 1735 1736 1737 1738
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1739

1740
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1741 1742
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1743

1744
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1788
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1789 1790 1791

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1792
		pr_warn("due to cpu change %d -> %d\n",
1793 1794 1795 1796
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1797
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1798 1799
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1800
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1801 1802
			actual_tid, tid, next_tid(tid));
#endif
1803
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1804 1805
}

1806
static void init_kmem_cache_cpus(struct kmem_cache *s)
1807 1808 1809 1810 1811 1812
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1813

C
Christoph Lameter 已提交
1814 1815 1816
/*
 * Remove the cpu slab
 */
1817 1818
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1819
{
1820 1821 1822 1823 1824
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1825
	int tail = DEACTIVATE_TO_HEAD;
1826 1827 1828 1829
	struct page new;
	struct page old;

	if (page->freelist) {
1830
		stat(s, DEACTIVATE_REMOTE_FREES);
1831
		tail = DEACTIVATE_TO_TAIL;
1832 1833
	}

1834
	/*
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1852
			VM_BUG_ON(!new.frozen);
1853

1854
		} while (!__cmpxchg_double_slab(s, page,
1855 1856 1857 1858 1859 1860 1861
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1862
	/*
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1875
	 */
1876
redo:
1877

1878 1879
	old.freelist = page->freelist;
	old.counters = page->counters;
1880
	VM_BUG_ON(!old.frozen);
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1893
	if (!new.inuse && n->nr_partial >= s->min_partial)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1926

P
Peter Zijlstra 已提交
1927
			remove_full(s, n, page);
1928 1929 1930 1931

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1932
			stat(s, tail);
1933 1934

		} else if (m == M_FULL) {
1935

1936 1937 1938 1939 1940 1941 1942
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1943
	if (!__cmpxchg_double_slab(s, page,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1956
	}
C
Christoph Lameter 已提交
1957 1958
}

1959 1960 1961
/*
 * Unfreeze all the cpu partial slabs.
 *
1962 1963 1964
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1965
 */
1966 1967
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1968
{
1969
#ifdef CONFIG_SLUB_CPU_PARTIAL
1970
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1971
	struct page *page, *discard_page = NULL;
1972 1973 1974 1975 1976 1977

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1978 1979 1980 1981 1982 1983 1984 1985 1986

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1987 1988 1989 1990 1991

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1992
			VM_BUG_ON(!old.frozen);
1993 1994 1995 1996 1997 1998

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1999
		} while (!__cmpxchg_double_slab(s, page,
2000 2001 2002 2003
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2004
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2005 2006
			page->next = discard_page;
			discard_page = page;
2007 2008 2009
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2010 2011 2012 2013 2014
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2015 2016 2017 2018 2019 2020 2021 2022 2023

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2024
#endif
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2036
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2037
{
2038
#ifdef CONFIG_SLUB_CPU_PARTIAL
2039 2040 2041 2042
	struct page *oldpage;
	int pages;
	int pobjects;

2043
	preempt_disable();
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2059
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2060
				local_irq_restore(flags);
2061
				oldpage = NULL;
2062 2063
				pobjects = 0;
				pages = 0;
2064
				stat(s, CPU_PARTIAL_DRAIN);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2075 2076
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2077 2078 2079 2080 2081 2082 2083 2084
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2085
#endif
2086 2087
}

2088
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2089
{
2090
	stat(s, CPUSLAB_FLUSH);
2091 2092 2093 2094 2095
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2096 2097 2098 2099
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2100
 *
C
Christoph Lameter 已提交
2101 2102
 * Called from IPI handler with interrupts disabled.
 */
2103
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2104
{
2105
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2106

2107 2108 2109 2110
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2111
		unfreeze_partials(s, c);
2112
	}
C
Christoph Lameter 已提交
2113 2114 2115 2116 2117 2118
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2119
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2120 2121
}

2122 2123 2124 2125 2126
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2127
	return c->page || c->partial;
2128 2129
}

C
Christoph Lameter 已提交
2130 2131
static void flush_all(struct kmem_cache *s)
{
2132
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2133 2134
}

2135 2136 2137 2138
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2139
static inline int node_match(struct page *page, int node)
2140 2141
{
#ifdef CONFIG_NUMA
2142
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2143 2144 2145 2146 2147
		return 0;
#endif
	return 1;
}

2148
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2149 2150 2151 2152 2153
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2154 2155 2156 2157 2158 2159 2160
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2174
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2175

P
Pekka Enberg 已提交
2176 2177 2178
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2179 2180 2181
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2182
	int node;
C
Christoph Lameter 已提交
2183
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2184

2185 2186 2187
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2188
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2189
		nid, gfpflags);
2190 2191 2192
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2193

2194
	if (oo_order(s->min) > get_order(s->object_size))
2195 2196
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2197

C
Christoph Lameter 已提交
2198
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2199 2200 2201 2202
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2203 2204 2205
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2206

2207
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2208 2209
			node, nr_slabs, nr_objs, nr_free);
	}
2210
#endif
P
Pekka Enberg 已提交
2211 2212
}

2213 2214 2215
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2216
	void *freelist;
2217 2218
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2219

2220
	freelist = get_partial(s, flags, node, c);
2221

2222 2223 2224 2225
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2226
	if (page) {
2227
		c = raw_cpu_ptr(s->cpu_slab);
2228 2229 2230 2231 2232 2233 2234
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2235
		freelist = page->freelist;
2236 2237 2238 2239 2240 2241
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2242
		freelist = NULL;
2243

2244
	return freelist;
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2255
/*
2256 2257
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2258 2259 2260 2261
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2262 2263
 *
 * This function must be called with interrupt disabled.
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2274

2275
		new.counters = counters;
2276
		VM_BUG_ON(!new.frozen);
2277 2278 2279 2280

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2281
	} while (!__cmpxchg_double_slab(s, page,
2282 2283 2284 2285 2286 2287 2288
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2289
/*
2290 2291 2292 2293 2294 2295
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2296
 *
2297 2298 2299
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2300
 *
2301
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2302 2303
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2304
 */
2305 2306
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2307
{
2308
	void *freelist;
2309
	struct page *page;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2321

2322 2323
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2324
		goto new_slab;
2325
redo:
2326

2327
	if (unlikely(!node_match(page, node))) {
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2340
	}
C
Christoph Lameter 已提交
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2354
	/* must check again c->freelist in case of cpu migration or IRQ */
2355 2356
	freelist = c->freelist;
	if (freelist)
2357
		goto load_freelist;
2358

2359
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2360

2361
	if (!freelist) {
2362 2363
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2364
		goto new_slab;
2365
	}
C
Christoph Lameter 已提交
2366

2367
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2368

2369
load_freelist:
2370 2371 2372 2373 2374
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2375
	VM_BUG_ON(!c->page->frozen);
2376
	c->freelist = get_freepointer(s, freelist);
2377 2378
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2379
	return freelist;
C
Christoph Lameter 已提交
2380 2381

new_slab:
2382

2383
	if (c->partial) {
2384 2385
		page = c->page = c->partial;
		c->partial = page->next;
2386 2387 2388
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2389 2390
	}

2391
	freelist = new_slab_objects(s, gfpflags, node, &c);
2392

2393
	if (unlikely(!freelist)) {
2394
		slab_out_of_memory(s, gfpflags, node);
2395 2396
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2397
	}
2398

2399
	page = c->page;
2400
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2401
		goto load_freelist;
2402

2403
	/* Only entered in the debug case */
2404 2405
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2406
		goto new_slab;	/* Slab failed checks. Next slab needed */
2407

2408
	deactivate_slab(s, page, get_freepointer(s, freelist));
2409 2410
	c->page = NULL;
	c->freelist = NULL;
2411
	local_irq_restore(flags);
2412
	return freelist;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2425
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2426
		gfp_t gfpflags, int node, unsigned long addr)
2427 2428
{
	void **object;
2429
	struct kmem_cache_cpu *c;
2430
	struct page *page;
2431
	unsigned long tid;
2432

2433 2434
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2435
		return NULL;
2436 2437 2438 2439 2440 2441
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2442
	 *
2443 2444 2445
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2446
	 */
2447 2448 2449
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2450 2451
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2462 2463 2464 2465 2466 2467 2468 2469

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2470
	object = c->freelist;
2471
	page = c->page;
D
Dave Hansen 已提交
2472
	if (unlikely(!object || !node_match(page, node))) {
2473
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2474 2475
		stat(s, ALLOC_SLOWPATH);
	} else {
2476 2477
		void *next_object = get_freepointer_safe(s, object);

2478
		/*
L
Lucas De Marchi 已提交
2479
		 * The cmpxchg will only match if there was no additional
2480 2481
		 * operation and if we are on the right processor.
		 *
2482 2483
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2484 2485 2486 2487
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2488 2489 2490
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2491
		 */
2492
		if (unlikely(!this_cpu_cmpxchg_double(
2493 2494
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2495
				next_object, next_tid(tid)))) {
2496 2497 2498 2499

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2500
		prefetch_freepointer(s, next_object);
2501
		stat(s, ALLOC_FASTPATH);
2502
	}
2503

2504
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2505
		memset(object, 0, s->object_size);
2506

2507
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2508

2509
	return object;
C
Christoph Lameter 已提交
2510 2511
}

2512 2513 2514 2515 2516 2517
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2518 2519
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2520
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2521

2522 2523
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2524 2525

	return ret;
C
Christoph Lameter 已提交
2526 2527 2528
}
EXPORT_SYMBOL(kmem_cache_alloc);

2529
#ifdef CONFIG_TRACING
2530 2531
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2532
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2533
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2534
	kasan_kmalloc(s, ret, size);
2535 2536 2537
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2538 2539
#endif

C
Christoph Lameter 已提交
2540 2541 2542
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2543
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2544

2545
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2546
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2547 2548

	return ret;
C
Christoph Lameter 已提交
2549 2550 2551
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2552
#ifdef CONFIG_TRACING
2553
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2554
				    gfp_t gfpflags,
2555
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2556
{
2557
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2558 2559 2560

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2561 2562

	kasan_kmalloc(s, ret, size);
2563
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2564
}
2565
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2566
#endif
2567
#endif
E
Eduard - Gabriel Munteanu 已提交
2568

C
Christoph Lameter 已提交
2569
/*
K
Kim Phillips 已提交
2570
 * Slow path handling. This may still be called frequently since objects
2571
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2572
 *
2573 2574 2575
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2576
 */
2577
static void __slab_free(struct kmem_cache *s, struct page *page,
2578
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2579 2580 2581
{
	void *prior;
	void **object = (void *)x;
2582 2583 2584 2585
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2586
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2587

2588
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2589

2590 2591
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2592
		return;
C
Christoph Lameter 已提交
2593

2594
	do {
2595 2596 2597 2598
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2599 2600 2601 2602 2603 2604
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2605
		if ((!new.inuse || !prior) && !was_frozen) {
2606

P
Peter Zijlstra 已提交
2607
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2608 2609

				/*
2610 2611 2612 2613
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2614 2615 2616
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2617
			} else { /* Needs to be taken off a list */
2618

2619
				n = get_node(s, page_to_nid(page));
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2631
		}
C
Christoph Lameter 已提交
2632

2633 2634 2635 2636
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2637

2638
	if (likely(!n)) {
2639 2640 2641 2642 2643

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2644
		if (new.frozen && !was_frozen) {
2645
			put_cpu_partial(s, page, 1);
2646 2647
			stat(s, CPU_PARTIAL_FREE);
		}
2648
		/*
2649 2650 2651
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2652 2653 2654 2655
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2656

2657
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2658 2659
		goto slab_empty;

C
Christoph Lameter 已提交
2660
	/*
2661 2662
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2663
	 */
2664 2665
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2666
			remove_full(s, n, page);
2667 2668
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2669
	}
2670
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2671 2672 2673
	return;

slab_empty:
2674
	if (prior) {
C
Christoph Lameter 已提交
2675
		/*
2676
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2677
		 */
2678
		remove_partial(n, page);
2679
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2680
	} else {
2681
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2682 2683
		remove_full(s, n, page);
	}
2684

2685
	spin_unlock_irqrestore(&n->list_lock, flags);
2686
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2687 2688 2689
	discard_slab(s, page);
}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2701
static __always_inline void slab_free(struct kmem_cache *s,
2702
			struct page *page, void *x, unsigned long addr)
2703 2704
{
	void **object = (void *)x;
2705
	struct kmem_cache_cpu *c;
2706
	unsigned long tid;
2707

2708 2709
	slab_free_hook(s, x);

2710 2711 2712 2713 2714 2715 2716
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2717 2718 2719
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2720 2721
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2722

2723 2724
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2725

2726
	if (likely(page == c->page)) {
2727
		set_freepointer(s, object, c->freelist);
2728

2729
		if (unlikely(!this_cpu_cmpxchg_double(
2730 2731 2732 2733 2734 2735 2736
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2737
		stat(s, FREE_FASTPATH);
2738
	} else
2739
		__slab_free(s, page, x, addr);
2740 2741 2742

}

C
Christoph Lameter 已提交
2743 2744
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2745 2746
	s = cache_from_obj(s, x);
	if (!s)
2747
		return;
2748
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2749
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2750 2751 2752 2753
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2754 2755 2756 2757
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2758 2759 2760 2761
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2762
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2773
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2774
static int slub_min_objects;
C
Christoph Lameter 已提交
2775 2776 2777 2778

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2779 2780 2781 2782
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2783
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2784 2785 2786 2787 2788 2789
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2790
 *
C
Christoph Lameter 已提交
2791 2792 2793 2794
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2795
 *
C
Christoph Lameter 已提交
2796 2797 2798 2799
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2800
 */
2801
static inline int slab_order(int size, int min_objects,
2802
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2803 2804 2805
{
	int order;
	int rem;
2806
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2807

2808
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2809
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2810

2811
	for (order = max(min_order,
2812 2813
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2814

2815
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2816

2817
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2818 2819
			continue;

2820
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2821

2822
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2823 2824 2825
			break;

	}
C
Christoph Lameter 已提交
2826

C
Christoph Lameter 已提交
2827 2828 2829
	return order;
}

2830
static inline int calculate_order(int size, int reserved)
2831 2832 2833 2834
{
	int order;
	int min_objects;
	int fraction;
2835
	int max_objects;
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2846 2847
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2848
	max_objects = order_objects(slub_max_order, size, reserved);
2849 2850
	min_objects = min(min_objects, max_objects);

2851
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2852
		fraction = 16;
2853 2854
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2855
					slub_max_order, fraction, reserved);
2856 2857 2858 2859
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2860
		min_objects--;
2861 2862 2863 2864 2865 2866
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2867
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2868 2869 2870 2871 2872 2873
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2874
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2875
	if (order < MAX_ORDER)
2876 2877 2878 2879
		return order;
	return -ENOSYS;
}

2880
static void
2881
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2882 2883 2884 2885
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2886
#ifdef CONFIG_SLUB_DEBUG
2887
	atomic_long_set(&n->nr_slabs, 0);
2888
	atomic_long_set(&n->total_objects, 0);
2889
	INIT_LIST_HEAD(&n->full);
2890
#endif
C
Christoph Lameter 已提交
2891 2892
}

2893
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2894
{
2895
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2896
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2897

2898
	/*
2899 2900
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2901
	 */
2902 2903
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2904 2905 2906 2907 2908

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2909

2910
	return 1;
2911 2912
}

2913 2914
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2915 2916 2917 2918 2919
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2920 2921
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2922
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2923
 */
2924
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2925 2926 2927 2928
{
	struct page *page;
	struct kmem_cache_node *n;

2929
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2930

2931
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2932 2933

	BUG_ON(!page);
2934
	if (page_to_nid(page) != node) {
2935 2936
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2937 2938
	}

C
Christoph Lameter 已提交
2939 2940
	n = page->freelist;
	BUG_ON(!n);
2941
	page->freelist = get_freepointer(kmem_cache_node, n);
2942
	page->inuse = 1;
2943
	page->frozen = 0;
2944
	kmem_cache_node->node[node] = n;
2945
#ifdef CONFIG_SLUB_DEBUG
2946
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2947
	init_tracking(kmem_cache_node, n);
2948
#endif
2949
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
2950
	init_kmem_cache_node(n);
2951
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2952

2953
	/*
2954 2955
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2956
	 */
2957
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2958 2959 2960 2961 2962
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
2963
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2964

C
Christoph Lameter 已提交
2965 2966
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2967 2968 2969 2970
		s->node[node] = NULL;
	}
}

2971
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2972 2973 2974
{
	int node;

C
Christoph Lameter 已提交
2975
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2976 2977
		struct kmem_cache_node *n;

2978
		if (slab_state == DOWN) {
2979
			early_kmem_cache_node_alloc(node);
2980 2981
			continue;
		}
2982
		n = kmem_cache_alloc_node(kmem_cache_node,
2983
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2984

2985 2986 2987
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2988
		}
2989

C
Christoph Lameter 已提交
2990
		s->node[node] = n;
2991
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2992 2993 2994 2995
	}
	return 1;
}

2996
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2997 2998 2999 3000 3001 3002 3003 3004
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3005 3006 3007 3008
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3009
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3010 3011
{
	unsigned long flags = s->flags;
3012
	unsigned long size = s->object_size;
3013
	int order;
C
Christoph Lameter 已提交
3014

3015 3016 3017 3018 3019 3020 3021 3022
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3023 3024 3025 3026 3027 3028
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3029
			!s->ctor)
C
Christoph Lameter 已提交
3030 3031 3032 3033 3034 3035
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3036
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3037
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3038
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3039
	 */
3040
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3041
		size += sizeof(void *);
C
Christoph Lameter 已提交
3042
#endif
C
Christoph Lameter 已提交
3043 3044

	/*
C
Christoph Lameter 已提交
3045 3046
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3047 3048 3049 3050
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3051
		s->ctor)) {
C
Christoph Lameter 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3064
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3065 3066 3067 3068 3069 3070 3071
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3072
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3073 3074 3075 3076
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3077
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3078 3079 3080
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3081
#endif
C
Christoph Lameter 已提交
3082

C
Christoph Lameter 已提交
3083 3084 3085 3086 3087
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3088
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3089
	s->size = size;
3090 3091 3092
	if (forced_order >= 0)
		order = forced_order;
	else
3093
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3094

3095
	if (order < 0)
C
Christoph Lameter 已提交
3096 3097
		return 0;

3098
	s->allocflags = 0;
3099
	if (order)
3100 3101 3102
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3103
		s->allocflags |= GFP_DMA;
3104 3105 3106 3107

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3108 3109 3110
	/*
	 * Determine the number of objects per slab
	 */
3111 3112
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3113 3114
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3115

3116
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3117 3118
}

3119
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3120
{
3121
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3122
	s->reserved = 0;
C
Christoph Lameter 已提交
3123

3124 3125
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3126

3127
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3128
		goto error;
3129 3130 3131 3132 3133
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3134
		if (get_order(s->size) > get_order(s->object_size)) {
3135 3136 3137 3138 3139 3140
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3141

3142 3143
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3144 3145 3146 3147 3148
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3149 3150 3151 3152
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3168
	 * B) The number of objects in cpu partial slabs to extract from the
3169 3170
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3171
	 */
3172
	if (!kmem_cache_has_cpu_partial(s))
3173 3174
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3175 3176 3177 3178 3179 3180 3181 3182
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3183
#ifdef CONFIG_NUMA
3184
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3185
#endif
3186
	if (!init_kmem_cache_nodes(s))
3187
		goto error;
C
Christoph Lameter 已提交
3188

3189
	if (alloc_kmem_cache_cpus(s))
3190
		return 0;
3191

3192
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3193 3194 3195 3196
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3197 3198
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3199
	return -EINVAL;
C
Christoph Lameter 已提交
3200 3201
}

3202 3203 3204 3205 3206 3207
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3208 3209
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3210 3211
	if (!map)
		return;
3212
	slab_err(s, page, text, s->name);
3213 3214
	slab_lock(page);

3215
	get_map(s, page, map);
3216 3217 3218
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3219
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3220 3221 3222 3223
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3224
	kfree(map);
3225 3226 3227
#endif
}

C
Christoph Lameter 已提交
3228
/*
C
Christoph Lameter 已提交
3229
 * Attempt to free all partial slabs on a node.
3230 3231
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3232
 */
C
Christoph Lameter 已提交
3233
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3234 3235 3236
{
	struct page *page, *h;

3237
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3238
		if (!page->inuse) {
3239
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3240
			discard_slab(s, page);
3241 3242
		} else {
			list_slab_objects(s, page,
3243
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3244
		}
3245
	}
C
Christoph Lameter 已提交
3246 3247 3248
}

/*
C
Christoph Lameter 已提交
3249
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3250
 */
3251
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3252 3253
{
	int node;
C
Christoph Lameter 已提交
3254
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3255 3256 3257

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3258
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3259 3260
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3261 3262
			return 1;
	}
3263
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3264 3265 3266 3267
	free_kmem_cache_nodes(s);
	return 0;
}

3268
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3269
{
3270
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3271 3272 3273 3274 3275 3276 3277 3278
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3279
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3280 3281 3282 3283 3284 3285 3286 3287

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3288
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3289
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3290 3291 3292 3293 3294 3295 3296 3297

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3298
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3299 3300 3301 3302 3303 3304 3305 3306

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3307
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3308
	void *ret;
C
Christoph Lameter 已提交
3309

3310
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3311
		return kmalloc_large(size, flags);
3312

3313
	s = kmalloc_slab(size, flags);
3314 3315

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3316 3317
		return s;

3318
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3319

3320
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3321

3322 3323
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3324
	return ret;
C
Christoph Lameter 已提交
3325 3326 3327
}
EXPORT_SYMBOL(__kmalloc);

3328
#ifdef CONFIG_NUMA
3329 3330
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3331
	struct page *page;
3332
	void *ptr = NULL;
3333

V
Vladimir Davydov 已提交
3334 3335
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3336
	if (page)
3337 3338
		ptr = page_address(page);

3339
	kmalloc_large_node_hook(ptr, size, flags);
3340
	return ptr;
3341 3342
}

C
Christoph Lameter 已提交
3343 3344
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3345
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3346
	void *ret;
C
Christoph Lameter 已提交
3347

3348
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3349 3350
		ret = kmalloc_large_node(size, flags, node);

3351 3352 3353
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3354 3355 3356

		return ret;
	}
3357

3358
	s = kmalloc_slab(size, flags);
3359 3360

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3361 3362
		return s;

3363
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3364

3365
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3366

3367 3368
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3369
	return ret;
C
Christoph Lameter 已提交
3370 3371 3372 3373
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3374
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3375
{
3376
	struct page *page;
C
Christoph Lameter 已提交
3377

3378
	if (unlikely(object == ZERO_SIZE_PTR))
3379 3380
		return 0;

3381 3382
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3383 3384
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3385
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3386
	}
C
Christoph Lameter 已提交
3387

3388
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3389
}
3390 3391 3392 3393 3394 3395 3396 3397 3398

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3399
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3400 3401 3402 3403

void kfree(const void *x)
{
	struct page *page;
3404
	void *object = (void *)x;
C
Christoph Lameter 已提交
3405

3406 3407
	trace_kfree(_RET_IP_, x);

3408
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3409 3410
		return;

3411
	page = virt_to_head_page(x);
3412
	if (unlikely(!PageSlab(page))) {
3413
		BUG_ON(!PageCompound(page));
3414
		kfree_hook(x);
V
Vladimir Davydov 已提交
3415
		__free_kmem_pages(page, compound_order(page));
3416 3417
		return;
	}
3418
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3419 3420 3421
}
EXPORT_SYMBOL(kfree);

3422 3423
#define SHRINK_PROMOTE_MAX 32

3424
/*
3425 3426 3427
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3428 3429 3430 3431
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3432
 */
3433
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3434 3435 3436 3437 3438 3439
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3440 3441
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3442
	unsigned long flags;
3443
	int ret = 0;
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3460
	flush_all(s);
C
Christoph Lameter 已提交
3461
	for_each_kmem_cache_node(s, node, n) {
3462 3463 3464
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3465 3466 3467 3468

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3469
		 * Build lists of slabs to discard or promote.
3470
		 *
C
Christoph Lameter 已提交
3471 3472
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3473 3474
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3485
				n->nr_partial--;
3486 3487
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3488 3489 3490
		}

		/*
3491 3492
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3493
		 */
3494 3495
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3496 3497

		spin_unlock_irqrestore(&n->list_lock, flags);
3498 3499

		/* Release empty slabs */
3500
		list_for_each_entry_safe(page, t, &discard, lru)
3501
			discard_slab(s, page);
3502 3503 3504

		if (slabs_node(s, node))
			ret = 1;
3505 3506
	}

3507
	return ret;
3508 3509
}

3510 3511 3512 3513
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3514
	mutex_lock(&slab_mutex);
3515
	list_for_each_entry(s, &slab_caches, list)
3516
		__kmem_cache_shrink(s, false);
3517
	mutex_unlock(&slab_mutex);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3529
	offline_node = marg->status_change_nid_normal;
3530 3531 3532 3533 3534 3535 3536 3537

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3538
	mutex_lock(&slab_mutex);
3539 3540 3541 3542 3543 3544
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3545
			 * and offline_pages() function shouldn't call this
3546 3547
			 * callback. So, we must fail.
			 */
3548
			BUG_ON(slabs_node(s, offline_node));
3549 3550

			s->node[offline_node] = NULL;
3551
			kmem_cache_free(kmem_cache_node, n);
3552 3553
		}
	}
3554
	mutex_unlock(&slab_mutex);
3555 3556 3557 3558 3559 3560 3561
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3562
	int nid = marg->status_change_nid_normal;
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3573
	 * We are bringing a node online. No memory is available yet. We must
3574 3575 3576
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3577
	mutex_lock(&slab_mutex);
3578 3579 3580 3581 3582 3583
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3584
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3585 3586 3587 3588
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3589
		init_kmem_cache_node(n);
3590 3591 3592
		s->node[nid] = n;
	}
out:
3593
	mutex_unlock(&slab_mutex);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3617 3618 3619 3620
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3621 3622 3623
	return ret;
}

3624 3625 3626 3627
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3628

C
Christoph Lameter 已提交
3629 3630 3631 3632
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3633 3634
/*
 * Used for early kmem_cache structures that were allocated using
3635 3636
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3637 3638
 */

3639
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3640 3641
{
	int node;
3642
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3643
	struct kmem_cache_node *n;
3644

3645
	memcpy(s, static_cache, kmem_cache->object_size);
3646

3647 3648 3649 3650 3651 3652
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3653
	for_each_kmem_cache_node(s, node, n) {
3654 3655
		struct page *p;

C
Christoph Lameter 已提交
3656 3657
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3658

L
Li Zefan 已提交
3659
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3660 3661
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3662 3663
#endif
	}
3664
	slab_init_memcg_params(s);
3665 3666
	list_add(&s->list, &slab_caches);
	return s;
3667 3668
}

C
Christoph Lameter 已提交
3669 3670
void __init kmem_cache_init(void)
{
3671 3672
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3673

3674 3675 3676
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3677 3678
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3679

3680 3681
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3682

3683
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3684 3685 3686 3687

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3688 3689 3690 3691
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3692

3693
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3694

3695 3696 3697 3698 3699
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3700
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3701 3702

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3703
	setup_kmalloc_cache_index_table();
3704
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3705 3706 3707

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3708
#endif
C
Christoph Lameter 已提交
3709

3710
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3711
		cache_line_size(),
C
Christoph Lameter 已提交
3712 3713 3714 3715
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3716 3717 3718 3719
void __init kmem_cache_init_late(void)
{
}

3720
struct kmem_cache *
3721 3722
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3723
{
3724
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3725

3726
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3727 3728
	if (s) {
		s->refcount++;
3729

C
Christoph Lameter 已提交
3730 3731 3732 3733
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3734
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3735
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3736

3737
		for_each_memcg_cache(c, s) {
3738 3739 3740 3741 3742
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3743 3744
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3745
			s = NULL;
3746
		}
3747
	}
C
Christoph Lameter 已提交
3748

3749 3750
	return s;
}
P
Pekka Enberg 已提交
3751

3752
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3753
{
3754 3755 3756 3757 3758
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3759

3760 3761 3762 3763
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3764
	memcg_propagate_slab_attrs(s);
3765 3766 3767
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3768

3769
	return err;
C
Christoph Lameter 已提交
3770 3771 3772 3773
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3774 3775
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3776
 */
3777
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3778 3779 3780
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3781 3782
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3783 3784 3785

	switch (action) {
	case CPU_UP_CANCELED:
3786
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3787
	case CPU_DEAD:
3788
	case CPU_DEAD_FROZEN:
3789
		mutex_lock(&slab_mutex);
3790 3791 3792 3793 3794
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3795
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3796 3797 3798 3799 3800 3801 3802
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3803
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3804
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3805
};
C
Christoph Lameter 已提交
3806 3807 3808

#endif

3809
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3810
{
3811
	struct kmem_cache *s;
3812
	void *ret;
3813

3814
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3815 3816
		return kmalloc_large(size, gfpflags);

3817
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3818

3819
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3820
		return s;
C
Christoph Lameter 已提交
3821

3822
	ret = slab_alloc(s, gfpflags, caller);
3823

L
Lucas De Marchi 已提交
3824
	/* Honor the call site pointer we received. */
3825
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3826 3827

	return ret;
C
Christoph Lameter 已提交
3828 3829
}

3830
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3831
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3832
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3833
{
3834
	struct kmem_cache *s;
3835
	void *ret;
3836

3837
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3838 3839 3840 3841 3842 3843 3844 3845
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3846

3847
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3848

3849
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3850
		return s;
C
Christoph Lameter 已提交
3851

3852
	ret = slab_alloc_node(s, gfpflags, node, caller);
3853

L
Lucas De Marchi 已提交
3854
	/* Honor the call site pointer we received. */
3855
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3856 3857

	return ret;
C
Christoph Lameter 已提交
3858
}
3859
#endif
C
Christoph Lameter 已提交
3860

3861
#ifdef CONFIG_SYSFS
3862 3863 3864 3865 3866 3867 3868 3869 3870
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3871
#endif
3872

3873
#ifdef CONFIG_SLUB_DEBUG
3874 3875
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3876 3877
{
	void *p;
3878
	void *addr = page_address(page);
3879 3880 3881 3882 3883 3884

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3885
	bitmap_zero(map, page->objects);
3886

3887 3888 3889 3890 3891
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3892 3893
	}

3894
	for_each_object(p, s, addr, page->objects)
3895
		if (!test_bit(slab_index(p, s, addr), map))
3896
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3897 3898 3899 3900
				return 0;
	return 1;
}

3901 3902
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3903
{
3904 3905 3906
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3907 3908
}

3909 3910
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3911 3912 3913 3914 3915 3916 3917 3918
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3919
		validate_slab_slab(s, page, map);
3920 3921 3922
		count++;
	}
	if (count != n->nr_partial)
3923 3924
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3925 3926 3927 3928 3929

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3930
		validate_slab_slab(s, page, map);
3931 3932 3933
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3934 3935
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3936 3937 3938 3939 3940 3941

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3942
static long validate_slab_cache(struct kmem_cache *s)
3943 3944 3945
{
	int node;
	unsigned long count = 0;
3946
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3947
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
3948
	struct kmem_cache_node *n;
3949 3950 3951

	if (!map)
		return -ENOMEM;
3952 3953

	flush_all(s);
C
Christoph Lameter 已提交
3954
	for_each_kmem_cache_node(s, node, n)
3955 3956
		count += validate_slab_node(s, n, map);
	kfree(map);
3957 3958
	return count;
}
3959
/*
C
Christoph Lameter 已提交
3960
 * Generate lists of code addresses where slabcache objects are allocated
3961 3962 3963 3964 3965
 * and freed.
 */

struct location {
	unsigned long count;
3966
	unsigned long addr;
3967 3968 3969 3970 3971
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3972
	DECLARE_BITMAP(cpus, NR_CPUS);
3973
	nodemask_t nodes;
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3989
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3990 3991 3992 3993 3994 3995
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3996
	l = (void *)__get_free_pages(flags, order);
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4010
				const struct track *track)
4011 4012 4013
{
	long start, end, pos;
	struct location *l;
4014
	unsigned long caddr;
4015
	unsigned long age = jiffies - track->when;
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4047 4048
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4049 4050
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4051 4052 4053
			return 1;
		}

4054
		if (track->addr < caddr)
4055 4056 4057 4058 4059 4060
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4061
	 * Not found. Insert new tracking element.
4062
	 */
4063
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4064 4065 4066 4067 4068 4069 4070 4071
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4072 4073 4074 4075 4076 4077
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4078 4079
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4080 4081
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4082 4083 4084 4085
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4086
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4087
		unsigned long *map)
4088
{
4089
	void *addr = page_address(page);
4090 4091
	void *p;

4092
	bitmap_zero(map, page->objects);
4093
	get_map(s, page, map);
4094

4095
	for_each_object(p, s, addr, page->objects)
4096 4097
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4098 4099 4100 4101 4102
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4103
	int len = 0;
4104
	unsigned long i;
4105
	struct loc_track t = { 0, 0, NULL };
4106
	int node;
E
Eric Dumazet 已提交
4107 4108
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4109
	struct kmem_cache_node *n;
4110

E
Eric Dumazet 已提交
4111 4112 4113
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4114
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4115
	}
4116 4117 4118
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4119
	for_each_kmem_cache_node(s, node, n) {
4120 4121 4122
		unsigned long flags;
		struct page *page;

4123
		if (!atomic_long_read(&n->nr_slabs))
4124 4125 4126 4127
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4128
			process_slab(&t, s, page, alloc, map);
4129
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4130
			process_slab(&t, s, page, alloc, map);
4131 4132 4133 4134
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4135
		struct location *l = &t.loc[i];
4136

H
Hugh Dickins 已提交
4137
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4138
			break;
4139
		len += sprintf(buf + len, "%7ld ", l->count);
4140 4141

		if (l->addr)
J
Joe Perches 已提交
4142
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4143
		else
4144
			len += sprintf(buf + len, "<not-available>");
4145 4146

		if (l->sum_time != l->min_time) {
4147
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4148 4149 4150
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4151
		} else
4152
			len += sprintf(buf + len, " age=%ld",
4153 4154 4155
				l->min_time);

		if (l->min_pid != l->max_pid)
4156
			len += sprintf(buf + len, " pid=%ld-%ld",
4157 4158
				l->min_pid, l->max_pid);
		else
4159
			len += sprintf(buf + len, " pid=%ld",
4160 4161
				l->min_pid);

R
Rusty Russell 已提交
4162 4163
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4164 4165 4166 4167
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4168

4169
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4170 4171 4172 4173
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4174

4175
		len += sprintf(buf + len, "\n");
4176 4177 4178
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4179
	kfree(map);
4180
	if (!t.count)
4181 4182
		len += sprintf(buf, "No data\n");
	return len;
4183
}
4184
#endif
4185

4186
#ifdef SLUB_RESILIENCY_TEST
4187
static void __init resiliency_test(void)
4188 4189 4190
{
	u8 *p;

4191
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4192

4193 4194 4195
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4196 4197 4198

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4199 4200
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4201 4202 4203 4204 4205 4206

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4207 4208 4209
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4210 4211 4212 4213 4214

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4215 4216 4217
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4218 4219
	validate_slab_cache(kmalloc_caches[6]);

4220
	pr_err("\nB. Corruption after free\n");
4221 4222 4223
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4224
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4225 4226 4227 4228 4229
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4230
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4231 4232 4233 4234 4235
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4236
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4237 4238 4239 4240 4241 4242 4243 4244
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4245
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4246
enum slab_stat_type {
4247 4248 4249 4250 4251
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4252 4253
};

4254
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4255 4256 4257
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4258
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4259

4260 4261
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4262 4263 4264 4265 4266 4267
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4268
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4269 4270
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4271

4272 4273
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4274

4275
		for_each_possible_cpu(cpu) {
4276 4277
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4278
			int node;
4279
			struct page *page;
4280

4281
			page = READ_ONCE(c->page);
4282 4283
			if (!page)
				continue;
4284

4285 4286 4287 4288 4289 4290 4291
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4292

4293 4294 4295
			total += x;
			nodes[node] += x;

4296
			page = READ_ONCE(c->partial);
4297
			if (page) {
L
Li Zefan 已提交
4298 4299 4300 4301 4302 4303 4304
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4305 4306
				total += x;
				nodes[node] += x;
4307
			}
C
Christoph Lameter 已提交
4308 4309 4310
		}
	}

4311
	get_online_mems();
4312
#ifdef CONFIG_SLUB_DEBUG
4313
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4314 4315 4316
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4317

4318 4319 4320 4321 4322
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4323
			else
4324
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4325 4326 4327 4328
			total += x;
			nodes[node] += x;
		}

4329 4330 4331
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4332
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4333

C
Christoph Lameter 已提交
4334
		for_each_kmem_cache_node(s, node, n) {
4335 4336 4337 4338
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4339
			else
4340
				x = n->nr_partial;
C
Christoph Lameter 已提交
4341 4342 4343 4344 4345 4346
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4347
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4348 4349 4350 4351
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4352
	put_online_mems();
C
Christoph Lameter 已提交
4353 4354 4355 4356
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4357
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4358 4359 4360
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4361
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4362

C
Christoph Lameter 已提交
4363
	for_each_kmem_cache_node(s, node, n)
4364
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4365
			return 1;
C
Christoph Lameter 已提交
4366

C
Christoph Lameter 已提交
4367 4368
	return 0;
}
4369
#endif
C
Christoph Lameter 已提交
4370 4371

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4372
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4373 4374 4375 4376 4377 4378 4379 4380

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4381 4382
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4383 4384 4385

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4386
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4402
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4403 4404 4405 4406 4407
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4408
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4409 4410 4411
}
SLAB_ATTR_RO(objs_per_slab);

4412 4413 4414
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4415 4416 4417
	unsigned long order;
	int err;

4418
	err = kstrtoul(buf, 10, &order);
4419 4420
	if (err)
		return err;
4421 4422 4423 4424 4425 4426 4427 4428

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4429 4430
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4431
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4432
}
4433
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4434

4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4446
	err = kstrtoul(buf, 10, &min);
4447 4448 4449
	if (err)
		return err;

4450
	set_min_partial(s, min);
4451 4452 4453 4454
	return length;
}
SLAB_ATTR(min_partial);

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4466
	err = kstrtoul(buf, 10, &objects);
4467 4468
	if (err)
		return err;
4469
	if (objects && !kmem_cache_has_cpu_partial(s))
4470
		return -EINVAL;
4471 4472 4473 4474 4475 4476 4477

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4478 4479
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4480 4481 4482
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4483 4484 4485 4486 4487
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4488
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4489 4490 4491 4492 4493
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4494
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4495 4496 4497 4498 4499
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4500
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4501 4502 4503 4504 4505
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4506
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4507 4508 4509
}
SLAB_ATTR_RO(objects);

4510 4511 4512 4513 4514 4515
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4582 4583 4584 4585 4586 4587
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4588
#ifdef CONFIG_SLUB_DEBUG
4589 4590 4591 4592 4593 4594
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4595 4596 4597 4598 4599 4600
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4610 4611
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4612
		s->flags |= SLAB_DEBUG_FREE;
4613
	}
C
Christoph Lameter 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4626 4627 4628 4629 4630 4631 4632 4633
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4634
	s->flags &= ~SLAB_TRACE;
4635 4636
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4637
		s->flags |= SLAB_TRACE;
4638
	}
C
Christoph Lameter 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4655 4656
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4657
		s->flags |= SLAB_RED_ZONE;
4658
	}
4659
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4676 4677
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4678
		s->flags |= SLAB_POISON;
4679
	}
4680
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4697 4698
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4699
		s->flags |= SLAB_STORE_USER;
4700
	}
4701
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4702 4703 4704 4705
	return length;
}
SLAB_ATTR(store_user);

4706 4707 4708 4709 4710 4711 4712 4713
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4714 4715 4716 4717 4718 4719 4720 4721
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4722 4723
}
SLAB_ATTR(validate);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4751 4752 4753
	if (s->refcount > 1)
		return -EINVAL;

4754 4755 4756 4757 4758 4759
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4760
#endif
4761

4762 4763 4764 4765 4766 4767 4768 4769
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4770 4771 4772
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4773 4774 4775 4776 4777
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4778
#ifdef CONFIG_NUMA
4779
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4780
{
4781
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4782 4783
}

4784
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4785 4786
				const char *buf, size_t length)
{
4787 4788 4789
	unsigned long ratio;
	int err;

4790
	err = kstrtoul(buf, 10, &ratio);
4791 4792 4793
	if (err)
		return err;

4794
	if (ratio <= 100)
4795
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4796 4797 4798

	return length;
}
4799
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4800 4801
#endif

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4814
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4815 4816 4817 4818 4819 4820 4821

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4822
#ifdef CONFIG_SMP
4823 4824
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4825
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4826
	}
4827
#endif
4828 4829 4830 4831
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4832 4833 4834 4835 4836
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4837
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4838 4839
}

4840 4841 4842 4843 4844
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4865
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4866 4867 4868 4869 4870 4871 4872
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4873
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4874
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4875 4876
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4877 4878
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4879 4880
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4881 4882
#endif

P
Pekka Enberg 已提交
4883
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4884 4885 4886 4887
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4888
	&min_partial_attr.attr,
4889
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4890
	&objects_attr.attr,
4891
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4892 4893 4894 4895 4896 4897 4898 4899
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4900
	&shrink_attr.attr,
4901
	&reserved_attr.attr,
4902
	&slabs_cpu_partial_attr.attr,
4903
#ifdef CONFIG_SLUB_DEBUG
4904 4905 4906 4907
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4908 4909 4910
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4911
	&validate_attr.attr,
4912 4913
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4914
#endif
C
Christoph Lameter 已提交
4915 4916 4917 4918
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4919
	&remote_node_defrag_ratio_attr.attr,
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4932
	&alloc_node_mismatch_attr.attr,
4933 4934 4935 4936 4937 4938 4939
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4940
	&deactivate_bypass_attr.attr,
4941
	&order_fallback_attr.attr,
4942 4943
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4944 4945
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4946 4947
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4948
#endif
4949 4950 4951 4952
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4994 4995
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4996
		struct kmem_cache *c;
C
Christoph Lameter 已提交
4997

4998 4999 5000 5001
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5019 5020
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5021 5022 5023
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5024 5025 5026
	return err;
}

5027 5028 5029 5030 5031
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5032
	struct kmem_cache *root_cache;
5033

5034
	if (is_root_cache(s))
5035 5036
		return;

5037
	root_cache = s->memcg_params.root_cache;
5038

5039 5040 5041 5042
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5043
	if (!root_cache->max_attr_size)
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5065
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5066 5067 5068 5069 5070 5071 5072 5073
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5074
		attr->show(root_cache, buf);
5075 5076 5077 5078 5079 5080 5081 5082
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5083 5084 5085 5086 5087
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5088
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5089 5090 5091 5092 5093 5094
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5095
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5107
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5108 5109 5110
	.filter = uevent_filter,
};

5111
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5112

5113 5114 5115 5116
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5117
		return s->memcg_params.root_cache->memcg_kset;
5118 5119 5120 5121
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5122 5123 5124
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5125 5126
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5149 5150
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5151 5152 5153
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5154

C
Christoph Lameter 已提交
5155 5156 5157 5158 5159 5160 5161 5162
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5163
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5164 5165 5166 5167 5168 5169 5170

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5171
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5181
	s->kobj.kset = cache_kset(s);
5182
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5183 5184
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5185 5186

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5187 5188
	if (err)
		goto out_del_kobj;
5189 5190 5191 5192 5193

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5194 5195
			err = -ENOMEM;
			goto out_del_kobj;
5196 5197 5198 5199
		}
	}
#endif

C
Christoph Lameter 已提交
5200 5201 5202 5203 5204
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5205 5206 5207 5208 5209 5210 5211 5212 5213
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5214 5215
}

5216
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5217
{
5218
	if (slab_state < FULL)
5219 5220 5221 5222 5223 5224
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5225 5226 5227
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5228 5229
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5230
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5231 5232 5233 5234
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5235
 * available lest we lose that information.
C
Christoph Lameter 已提交
5236 5237 5238 5239 5240 5241 5242
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5243
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5244 5245 5246 5247 5248

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5249
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5250 5251 5252
		/*
		 * If we have a leftover link then remove it.
		 */
5253 5254
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5270
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5271 5272
	int err;

5273
	mutex_lock(&slab_mutex);
5274

5275
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5276
	if (!slab_kset) {
5277
		mutex_unlock(&slab_mutex);
5278
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5279 5280 5281
		return -ENOSYS;
	}

5282
	slab_state = FULL;
5283

5284
	list_for_each_entry(s, &slab_caches, list) {
5285
		err = sysfs_slab_add(s);
5286
		if (err)
5287 5288
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5289
	}
C
Christoph Lameter 已提交
5290 5291 5292 5293 5294 5295

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5296
		if (err)
5297 5298
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5299 5300 5301
		kfree(al);
	}

5302
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5303 5304 5305 5306 5307
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5308
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5309 5310 5311 5312

/*
 * The /proc/slabinfo ABI
 */
5313
#ifdef CONFIG_SLABINFO
5314
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5315 5316
{
	unsigned long nr_slabs = 0;
5317 5318
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5319
	int node;
C
Christoph Lameter 已提交
5320
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5321

C
Christoph Lameter 已提交
5322
	for_each_kmem_cache_node(s, node, n) {
5323 5324
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5325
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5326 5327
	}

5328 5329 5330 5331 5332 5333
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5334 5335
}

5336
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5337 5338 5339
{
}

5340 5341
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5342
{
5343
	return -EIO;
5344
}
5345
#endif /* CONFIG_SLABINFO */