blk-mq.c 73.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478

479 480 481
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
482
	wbt_done(q->rq_wb, &rq->issue_stat);
483

S
Shaohua Li 已提交
484 485 486
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

487
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
492
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493
	blk_mq_sched_restart(hctx);
494
	blk_queue_exit(q);
495
}
J
Jens Axboe 已提交
496
EXPORT_SYMBOL_GPL(blk_mq_free_request);
497

498
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499
{
M
Ming Lei 已提交
500 501
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
502
	if (rq->end_io) {
J
Jens Axboe 已提交
503
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
505 506 507
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
508
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
509
	}
510
}
511
EXPORT_SYMBOL(__blk_mq_end_request);
512

513
void blk_mq_end_request(struct request *rq, blk_status_t error)
514 515 516
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
517
	__blk_mq_end_request(rq, error);
518
}
519
EXPORT_SYMBOL(blk_mq_end_request);
520

521
static void __blk_mq_complete_request_remote(void *data)
522
{
523
	struct request *rq = data;
524

525
	rq->q->softirq_done_fn(rq);
526 527
}

528
static void __blk_mq_complete_request(struct request *rq)
529 530
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
531
	bool shared = false;
532 533
	int cpu;

534 535 536 537 538 539 540
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
541
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 543 544
		rq->q->softirq_done_fn(rq);
		return;
	}
545 546

	cpu = get_cpu();
C
Christoph Hellwig 已提交
547 548 549 550
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551
		rq->csd.func = __blk_mq_complete_request_remote;
552 553
		rq->csd.info = rq;
		rq->csd.flags = 0;
554
		smp_call_function_single_async(ctx->cpu, &rq->csd);
555
	} else {
556
		rq->q->softirq_done_fn(rq);
557
	}
558 559
	put_cpu();
}
560 561 562 563 564 565 566 567 568

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
569
void blk_mq_complete_request(struct request *rq)
570
{
571 572 573
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
574
		return;
575
	if (!blk_mark_rq_complete(rq))
576
		__blk_mq_complete_request(rq);
577 578
}
EXPORT_SYMBOL(blk_mq_complete_request);
579

580 581 582 583 584 585
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

586
void blk_mq_start_request(struct request *rq)
587 588 589
{
	struct request_queue *q = rq->q;

590 591
	blk_mq_sched_started_request(rq);

592 593
	trace_block_rq_issue(q, rq);

594
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
595
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
596
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
597
		wbt_issue(q->rq_wb, &rq->issue_stat);
598 599
	}

600
	blk_add_timer(rq);
601

602
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
603

604 605 606 607 608
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
609 610 611 612
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
613
	 */
614 615 616 617 618 619 620 621 622 623 624 625
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
626
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
627
	}
628 629 630 631 632 633 634 635 636

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
637
}
638
EXPORT_SYMBOL(blk_mq_start_request);
639

640 641
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
642
 * flag isn't set yet, so there may be race with timeout handler,
643 644 645 646 647 648
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
649
static void __blk_mq_requeue_request(struct request *rq)
650 651 652 653
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
654
	wbt_requeue(q->rq_wb, &rq->issue_stat);
655
	blk_mq_sched_requeue_request(rq);
656

657 658 659 660
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
661 662
}

663
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
664 665 666 667
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
668
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
669 670 671
}
EXPORT_SYMBOL(blk_mq_requeue_request);

672 673 674
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
675
		container_of(work, struct request_queue, requeue_work.work);
676 677 678
	LIST_HEAD(rq_list);
	struct request *rq, *next;

679
	spin_lock_irq(&q->requeue_lock);
680
	list_splice_init(&q->requeue_list, &rq_list);
681
	spin_unlock_irq(&q->requeue_lock);
682 683

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
684
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
685 686
			continue;

687
		rq->rq_flags &= ~RQF_SOFTBARRIER;
688
		list_del_init(&rq->queuelist);
689
		blk_mq_sched_insert_request(rq, true, false, false, true);
690 691 692 693 694
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
695
		blk_mq_sched_insert_request(rq, false, false, false, true);
696 697
	}

698
	blk_mq_run_hw_queues(q, false);
699 700
}

701 702
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
703 704 705 706 707 708 709 710
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
711
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
712 713 714

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
715
		rq->rq_flags |= RQF_SOFTBARRIER;
716 717 718 719 720
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
721 722 723

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
724 725 726 727 728
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
729
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
730 731 732
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

733 734 735
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
736 737
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
738 739 740
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

741 742
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
743 744
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
745
		return tags->rqs[tag];
746
	}
747 748

	return NULL;
749 750 751
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

752
struct blk_mq_timeout_data {
753 754
	unsigned long next;
	unsigned int next_set;
755 756
};

757
void blk_mq_rq_timed_out(struct request *req, bool reserved)
758
{
J
Jens Axboe 已提交
759
	const struct blk_mq_ops *ops = req->q->mq_ops;
760
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
761 762 763 764 765 766 767

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
768
	 * both flags will get cleared. So check here again, and ignore
769 770
	 * a timeout event with a request that isn't active.
	 */
771 772
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
773

774
	if (ops->timeout)
775
		ret = ops->timeout(req, reserved);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
791
}
792

793 794 795 796
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
797
	unsigned long deadline;
798

799
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
800
		return;
801

802 803 804 805 806 807 808 809
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

810 811 812 813 814 815 816 817 818 819 820 821 822
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
823 824 825 826 827 828 829 830 831 832
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
833
			blk_mq_rq_timed_out(rq, reserved);
834 835 836
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
837 838
		data->next_set = 1;
	}
839 840
}

841
static void blk_mq_timeout_work(struct work_struct *work)
842
{
843 844
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
845 846 847 848 849
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
868

869 870 871
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
872
	} else {
873 874
		struct blk_mq_hw_ctx *hctx;

875 876 877 878 879
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
880
	}
881
	blk_queue_exit(q);
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

902 903 904 905
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
906
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907
{
908 909 910 911
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
912

913
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
914
}
915
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
916

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

956 957 958 959
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
960

961
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
962 963
}

964 965
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
966 967 968 969 970 971 972
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

973 974
	might_sleep_if(wait);

975 976
	if (rq->tag != -1)
		goto done;
977

978 979 980
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

981 982
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
983 984 985 986
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
987 988 989
		data.hctx->tags->rqs[rq->tag] = rq;
	}

990 991 992 993
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
994 995
}

996 997
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1052
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1053 1054 1055 1056 1057 1058
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1059
	list_del(&wait->entry);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1090 1091
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1092
{
1093
	struct blk_mq_hw_ctx *hctx;
1094
	struct request *rq;
1095
	int errors, queued;
1096

1097 1098 1099
	if (list_empty(list))
		return false;

1100 1101
	WARN_ON(!list_is_singular(list) && got_budget);

1102 1103 1104
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1105
	errors = queued = 0;
1106
	do {
1107
		struct blk_mq_queue_data bd;
1108
		blk_status_t ret;
1109

1110
		rq = list_first_entry(list, struct request, queuelist);
1111 1112 1113
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1114 1115

			/*
1116 1117
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1118
			 */
1119 1120 1121
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1122
				break;
1123
			}
1124 1125 1126 1127 1128 1129

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

		if (!got_budget) {
			ret = blk_mq_get_dispatch_budget(hctx);
			if (ret == BLK_STS_RESOURCE)
1140
				break;
1141 1142
			if (ret != BLK_STS_OK)
				goto fail_rq;
1143
		}
1144

1145 1146
		list_del_init(&rq->queuelist);

1147
		bd.rq = rq;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1161 1162

		ret = q->mq_ops->queue_rq(hctx, &bd);
1163
		if (ret == BLK_STS_RESOURCE) {
1164
			blk_mq_put_driver_tag_hctx(hctx, rq);
1165
			list_add(&rq->queuelist, list);
1166
			__blk_mq_requeue_request(rq);
1167
			break;
1168 1169
		}

1170
 fail_rq:
1171
		if (unlikely(ret != BLK_STS_OK)) {
1172
			errors++;
1173
			blk_mq_end_request(rq, BLK_STS_IOERR);
1174
			continue;
1175 1176
		}

1177
		queued++;
1178
	} while (!list_empty(list));
1179

1180
	hctx->dispatched[queued_to_index(queued)]++;
1181 1182 1183 1184 1185

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1186
	if (!list_empty(list)) {
1187
		/*
1188 1189
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1190 1191 1192 1193
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1194
		spin_lock(&hctx->lock);
1195
		list_splice_init(list, &hctx->dispatch);
1196
		spin_unlock(&hctx->lock);
1197

1198
		/*
1199 1200 1201
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1202
		 *
1203 1204 1205 1206
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1207
		 *
1208 1209 1210 1211 1212 1213 1214
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1215
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1216
		 *   and dm-rq.
1217
		 */
1218 1219
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1220
			blk_mq_run_hw_queue(hctx, true);
1221
	}
1222

1223
	return (queued + errors) != 0;
1224 1225
}

1226 1227 1228 1229
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1230 1231 1232 1233
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1234 1235 1236
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1237 1238 1239 1240 1241 1242
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1243 1244
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1245
		blk_mq_sched_dispatch_requests(hctx);
1246 1247
		rcu_read_unlock();
	} else {
1248 1249
		might_sleep();

1250
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1251
		blk_mq_sched_dispatch_requests(hctx);
1252
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1253 1254 1255
	}
}

1256 1257 1258 1259 1260 1261 1262 1263
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1264 1265
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1266 1267

	if (--hctx->next_cpu_batch <= 0) {
1268
		int next_cpu;
1269 1270 1271 1272 1273 1274 1275 1276 1277

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1278
	return hctx->next_cpu;
1279 1280
}

1281 1282
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1283
{
1284 1285 1286 1287
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1288 1289
		return;

1290
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1291 1292
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1293
			__blk_mq_run_hw_queue(hctx);
1294
			put_cpu();
1295 1296
			return;
		}
1297

1298
		put_cpu();
1299
	}
1300

1301 1302 1303
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1315
}
O
Omar Sandoval 已提交
1316
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1317

1318
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1319 1320 1321 1322 1323
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1324
		if (!blk_mq_hctx_has_pending(hctx) ||
1325
		    blk_mq_hctx_stopped(hctx))
1326 1327
			continue;

1328
		blk_mq_run_hw_queue(hctx, async);
1329 1330
	}
}
1331
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1353 1354 1355
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1356
 * BLK_STS_RESOURCE is usually returned.
1357 1358 1359 1360 1361
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1362 1363
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1364
	cancel_delayed_work(&hctx->run_work);
1365

1366
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1367
}
1368
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1369

1370 1371 1372
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1373
 * BLK_STS_RESOURCE is usually returned.
1374 1375 1376 1377 1378
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1379 1380
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1381 1382 1383 1384 1385
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1386 1387 1388
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1389 1390 1391
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1392

1393
	blk_mq_run_hw_queue(hctx, false);
1394 1395 1396
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1417
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1418 1419 1420 1421
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1422 1423
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1424 1425 1426
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1427
static void blk_mq_run_work_fn(struct work_struct *work)
1428 1429 1430
{
	struct blk_mq_hw_ctx *hctx;

1431
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1432

1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1441

1442 1443 1444
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1445 1446 1447 1448

	__blk_mq_run_hw_queue(hctx);
}

1449 1450 1451

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1452
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1453
		return;
1454

1455 1456 1457 1458 1459
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1460
	blk_mq_stop_hw_queue(hctx);
1461 1462 1463 1464
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1465 1466 1467
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1468 1469 1470
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1471
{
J
Jens Axboe 已提交
1472 1473
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1474 1475
	lockdep_assert_held(&ctx->lock);

1476 1477
	trace_block_rq_insert(hctx->queue, rq);

1478 1479 1480 1481
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1482
}
1483

1484 1485
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1486 1487 1488
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1489 1490
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1491
	__blk_mq_insert_req_list(hctx, rq, at_head);
1492 1493 1494
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1511 1512
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1524
		BUG_ON(rq->mq_ctx != ctx);
1525
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1526
		__blk_mq_insert_req_list(hctx, rq, false);
1527
	}
1528
	blk_mq_hctx_mark_pending(hctx, ctx);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1565 1566 1567 1568
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1585 1586 1587
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1588 1589 1590 1591 1592
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1593
	blk_init_request_from_bio(rq, bio);
1594

S
Shaohua Li 已提交
1595 1596
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1597
	blk_account_io_start(rq, true);
1598 1599
}

1600 1601 1602 1603 1604 1605 1606
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1607
}
1608

1609 1610
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1611 1612 1613 1614
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1615 1616
}

M
Ming Lei 已提交
1617 1618 1619
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1620 1621 1622 1623
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1624
		.last = true,
1625
	};
1626
	blk_qc_t new_cookie;
1627
	blk_status_t ret;
M
Ming Lei 已提交
1628 1629
	bool run_queue = true;

1630 1631
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1632 1633 1634
		run_queue = false;
		goto insert;
	}
1635

1636
	if (q->elevator)
1637 1638
		goto insert;

M
Ming Lei 已提交
1639
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1640 1641
		goto insert;

1642 1643 1644 1645 1646 1647 1648
	ret = blk_mq_get_dispatch_budget(hctx);
	if (ret == BLK_STS_RESOURCE) {
		blk_mq_put_driver_tag(rq);
		goto insert;
	} else if (ret != BLK_STS_OK)
		goto fail_rq;

1649 1650
	new_cookie = request_to_qc_t(hctx, rq);

1651 1652 1653 1654 1655 1656
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1657 1658
	switch (ret) {
	case BLK_STS_OK:
1659
		*cookie = new_cookie;
1660
		return;
1661 1662 1663 1664
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1665
 fail_rq:
1666
		*cookie = BLK_QC_T_NONE;
1667
		blk_mq_end_request(rq, ret);
1668
		return;
1669
	}
1670

1671
insert:
M
Ming Lei 已提交
1672
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1673 1674
}

1675 1676 1677 1678 1679
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1680
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1681 1682
		rcu_read_unlock();
	} else {
1683 1684 1685 1686
		unsigned int srcu_idx;

		might_sleep();

1687
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1688
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1689
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1690 1691 1692
	}
}

1693
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1694
{
1695
	const int is_sync = op_is_sync(bio->bi_opf);
1696
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1697
	struct blk_mq_alloc_data data = { .flags = 0 };
1698
	struct request *rq;
1699
	unsigned int request_count = 0;
1700
	struct blk_plug *plug;
1701
	struct request *same_queue_rq = NULL;
1702
	blk_qc_t cookie;
J
Jens Axboe 已提交
1703
	unsigned int wb_acct;
1704 1705 1706

	blk_queue_bounce(q, &bio);

1707
	blk_queue_split(q, &bio);
1708

1709
	if (!bio_integrity_prep(bio))
1710
		return BLK_QC_T_NONE;
1711

1712 1713 1714
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1715

1716 1717 1718
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1719 1720
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1721 1722
	trace_block_getrq(q, bio, bio->bi_opf);

1723
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1724 1725
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1726 1727
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1728
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1729 1730 1731
	}

	wbt_track(&rq->issue_stat, wb_acct);
1732

1733
	cookie = request_to_qc_t(data.hctx, rq);
1734

1735
	plug = current->plug;
1736
	if (unlikely(is_flush_fua)) {
1737
		blk_mq_put_ctx(data.ctx);
1738
		blk_mq_bio_to_request(rq, bio);
1739 1740 1741
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1742
		} else {
1743 1744
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1745
		}
1746
	} else if (plug && q->nr_hw_queues == 1) {
1747 1748
		struct request *last = NULL;

1749
		blk_mq_put_ctx(data.ctx);
1750
		blk_mq_bio_to_request(rq, bio);
1751 1752 1753 1754 1755 1756 1757

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1758 1759 1760
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1761
		if (!request_count)
1762
			trace_block_plug(q);
1763 1764
		else
			last = list_entry_rq(plug->mq_list.prev);
1765

1766 1767
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1768 1769
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1770
		}
1771

1772
		list_add_tail(&rq->queuelist, &plug->mq_list);
1773
	} else if (plug && !blk_queue_nomerges(q)) {
1774
		blk_mq_bio_to_request(rq, bio);
1775 1776

		/*
1777
		 * We do limited plugging. If the bio can be merged, do that.
1778 1779
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1780 1781
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1782
		 */
1783 1784 1785 1786 1787 1788
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1789 1790
		blk_mq_put_ctx(data.ctx);

1791 1792 1793
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1794 1795
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1796
		}
1797
	} else if (q->nr_hw_queues > 1 && is_sync) {
1798
		blk_mq_put_ctx(data.ctx);
1799 1800
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1801
	} else if (q->elevator) {
1802
		blk_mq_put_ctx(data.ctx);
1803
		blk_mq_bio_to_request(rq, bio);
1804
		blk_mq_sched_insert_request(rq, false, true, true, true);
1805
	} else {
1806
		blk_mq_put_ctx(data.ctx);
1807 1808
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1809
		blk_mq_run_hw_queue(data.hctx, true);
1810
	}
1811

1812
	return cookie;
1813 1814
}

1815 1816
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1817
{
1818
	struct page *page;
1819

1820
	if (tags->rqs && set->ops->exit_request) {
1821
		int i;
1822

1823
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1824 1825 1826
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1827
				continue;
1828
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1829
			tags->static_rqs[i] = NULL;
1830
		}
1831 1832
	}

1833 1834
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1835
		list_del_init(&page->lru);
1836 1837 1838 1839 1840
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1841 1842
		__free_pages(page, page->private);
	}
1843
}
1844

1845 1846
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1847
	kfree(tags->rqs);
1848
	tags->rqs = NULL;
J
Jens Axboe 已提交
1849 1850
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1851

1852
	blk_mq_free_tags(tags);
1853 1854
}

1855 1856 1857 1858
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1859
{
1860
	struct blk_mq_tags *tags;
1861
	int node;
1862

1863 1864 1865 1866 1867
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1868
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1869 1870
	if (!tags)
		return NULL;
1871

1872
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1873
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1874
				 node);
1875 1876 1877 1878
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1879

J
Jens Axboe 已提交
1880 1881
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1882
				 node);
J
Jens Axboe 已提交
1883 1884 1885 1886 1887 1888
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1902 1903 1904 1905 1906
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1907 1908 1909

	INIT_LIST_HEAD(&tags->page_list);

1910 1911 1912 1913
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1914
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1915
				cache_line_size());
1916
	left = rq_size * depth;
1917

1918
	for (i = 0; i < depth; ) {
1919 1920 1921 1922 1923
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1924
		while (this_order && left < order_to_size(this_order - 1))
1925 1926 1927
			this_order--;

		do {
1928
			page = alloc_pages_node(node,
1929
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1930
				this_order);
1931 1932 1933 1934 1935 1936 1937 1938 1939
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1940
			goto fail;
1941 1942

		page->private = this_order;
1943
		list_add_tail(&page->lru, &tags->page_list);
1944 1945

		p = page_address(page);
1946 1947 1948 1949
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1950
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1951
		entries_per_page = order_to_size(this_order) / rq_size;
1952
		to_do = min(entries_per_page, depth - i);
1953 1954
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1955 1956 1957
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1958
			if (set->ops->init_request) {
1959
				if (set->ops->init_request(set, rq, hctx_idx,
1960
						node)) {
J
Jens Axboe 已提交
1961
					tags->static_rqs[i] = NULL;
1962
					goto fail;
1963
				}
1964 1965
			}

1966 1967 1968 1969
			p += rq_size;
			i++;
		}
	}
1970
	return 0;
1971

1972
fail:
1973 1974
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1975 1976
}

J
Jens Axboe 已提交
1977 1978 1979 1980 1981
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1982
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1983
{
1984
	struct blk_mq_hw_ctx *hctx;
1985 1986 1987
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1988
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1989
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1990 1991 1992 1993 1994 1995 1996 1997 1998

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1999
		return 0;
2000

J
Jens Axboe 已提交
2001 2002 2003
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2004 2005

	blk_mq_run_hw_queue(hctx, true);
2006
	return 0;
2007 2008
}

2009
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2010
{
2011 2012
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2013 2014
}

2015
/* hctx->ctxs will be freed in queue's release handler */
2016 2017 2018 2019
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2020 2021
	blk_mq_debugfs_unregister_hctx(hctx);

2022 2023
	blk_mq_tag_idle(hctx);

2024
	if (set->ops->exit_request)
2025
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2026

2027 2028
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2029 2030 2031
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2032
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2033
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2034

2035
	blk_mq_remove_cpuhp(hctx);
2036
	blk_free_flush_queue(hctx->fq);
2037
	sbitmap_free(&hctx->ctx_map);
2038 2039
}

M
Ming Lei 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2049
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2050 2051 2052
	}
}

2053 2054 2055
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2056
{
2057 2058 2059 2060 2061 2062
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2063
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2064 2065 2066
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2067
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2068

2069
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2070 2071

	hctx->tags = set->tags[hctx_idx];
2072 2073

	/*
2074 2075
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2076
	 */
2077 2078 2079 2080
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2081

2082 2083
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2084
		goto free_ctxs;
2085

2086
	hctx->nr_ctx = 0;
2087

2088 2089 2090
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2091

2092 2093 2094
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2095 2096
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2097
		goto sched_exit_hctx;
2098

2099
	if (set->ops->init_request &&
2100 2101
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2102
		goto free_fq;
2103

2104
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2105
		init_srcu_struct(hctx->queue_rq_srcu);
2106

2107 2108
	blk_mq_debugfs_register_hctx(q, hctx);

2109
	return 0;
2110

2111 2112
 free_fq:
	kfree(hctx->fq);
2113 2114
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2115 2116 2117
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2118
 free_bitmap:
2119
	sbitmap_free(&hctx->ctx_map);
2120 2121 2122
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2123
	blk_mq_remove_cpuhp(hctx);
2124 2125
	return -1;
}
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2141 2142
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2143 2144
			continue;

C
Christoph Hellwig 已提交
2145
		hctx = blk_mq_map_queue(q, i);
2146

2147 2148 2149 2150 2151
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2152
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2153 2154 2155
	}
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2178 2179 2180 2181 2182
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2183 2184
}

2185
static void blk_mq_map_swqueue(struct request_queue *q)
2186
{
2187
	unsigned int i, hctx_idx;
2188 2189
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2190
	struct blk_mq_tag_set *set = q->tag_set;
2191

2192 2193 2194 2195 2196
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2197
	queue_for_each_hw_ctx(q, hctx, i) {
2198
		cpumask_clear(hctx->cpumask);
2199 2200 2201 2202
		hctx->nr_ctx = 0;
	}

	/*
2203 2204 2205
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2206
	 */
2207
	for_each_present_cpu(i) {
2208 2209
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2210 2211
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2212 2213 2214 2215 2216 2217
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2218
			q->mq_map[i] = 0;
2219 2220
		}

2221
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2222
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2223

2224
		cpumask_set_cpu(i, hctx->cpumask);
2225 2226 2227
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2228

2229 2230
	mutex_unlock(&q->sysfs_lock);

2231
	queue_for_each_hw_ctx(q, hctx, i) {
2232
		/*
2233 2234
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2235 2236
		 */
		if (!hctx->nr_ctx) {
2237 2238 2239 2240
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2241 2242 2243
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2244
			hctx->tags = NULL;
2245 2246 2247
			continue;
		}

M
Ming Lei 已提交
2248 2249 2250
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2251 2252 2253 2254 2255
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2256
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2257

2258 2259 2260
		/*
		 * Initialize batch roundrobin counts
		 */
2261 2262 2263
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2264 2265
}

2266 2267 2268 2269
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2270
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2271 2272 2273 2274
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2275
	queue_for_each_hw_ctx(q, hctx, i) {
2276 2277 2278
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2279
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2280 2281 2282
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2283
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2284
		}
2285 2286 2287
	}
}

2288 2289
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2290 2291
{
	struct request_queue *q;
2292

2293 2294
	lockdep_assert_held(&set->tag_list_lock);

2295 2296
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2297
		queue_set_hctx_shared(q, shared);
2298 2299 2300 2301 2302 2303 2304 2305 2306
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2307 2308
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2309 2310 2311 2312 2313 2314
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2315
	mutex_unlock(&set->tag_list_lock);
2316 2317

	synchronize_rcu();
2318 2319 2320 2321 2322 2323 2324 2325
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2326 2327 2328 2329 2330 2331 2332 2333 2334

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2335
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2336

2337 2338 2339
	mutex_unlock(&set->tag_list_lock);
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2352 2353 2354
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2355
		kobject_put(&hctx->kobj);
2356
	}
2357

2358 2359
	q->mq_map = NULL;

2360 2361
	kfree(q->queue_hw_ctx);

2362 2363 2364 2365 2366 2367
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2368 2369 2370
	free_percpu(q->queue_ctx);
}

2371
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2401 2402
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2403
{
K
Keith Busch 已提交
2404 2405
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2406

K
Keith Busch 已提交
2407
	blk_mq_sysfs_unregister(q);
2408
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2409
		int node;
2410

K
Keith Busch 已提交
2411 2412 2413 2414
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2415
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2416
					GFP_KERNEL, node);
2417
		if (!hctxs[i])
K
Keith Busch 已提交
2418
			break;
2419

2420
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2421 2422 2423 2424 2425
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2426

2427
		atomic_set(&hctxs[i]->nr_active, 0);
2428
		hctxs[i]->numa_node = node;
2429
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2430 2431 2432 2433 2434 2435 2436 2437

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2438
	}
K
Keith Busch 已提交
2439 2440 2441 2442
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2443 2444
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2458 2459 2460
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2461
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2462 2463
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2464 2465 2466
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2467 2468
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2469
		goto err_exit;
K
Keith Busch 已提交
2470

2471 2472 2473
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2474 2475 2476 2477 2478
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2479
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2480 2481 2482 2483

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2484

2485
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2486
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2487 2488 2489

	q->nr_queues = nr_cpu_ids;

2490
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2491

2492 2493 2494
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2495 2496
	q->sg_reserved_size = INT_MAX;

2497
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2498 2499 2500
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2501
	blk_queue_make_request(q, blk_mq_make_request);
2502

2503 2504 2505 2506 2507
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2508 2509 2510 2511 2512
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2513 2514
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2515

2516
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2517
	blk_mq_add_queue_tag_set(set, q);
2518
	blk_mq_map_swqueue(q);
2519

2520 2521 2522 2523 2524 2525 2526 2527
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2528
	return q;
2529

2530
err_hctxs:
K
Keith Busch 已提交
2531
	kfree(q->queue_hw_ctx);
2532
err_percpu:
K
Keith Busch 已提交
2533
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2534 2535
err_exit:
	q->mq_ops = NULL;
2536 2537
	return ERR_PTR(-ENOMEM);
}
2538
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2539 2540 2541

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2542
	struct blk_mq_tag_set	*set = q->tag_set;
2543

2544
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2545
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2546 2547 2548
}

/* Basically redo blk_mq_init_queue with queue frozen */
2549
static void blk_mq_queue_reinit(struct request_queue *q)
2550
{
2551
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2552

2553
	blk_mq_debugfs_unregister_hctxs(q);
2554 2555
	blk_mq_sysfs_unregister(q);

2556 2557 2558 2559 2560 2561
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2562
	blk_mq_map_swqueue(q);
2563

2564
	blk_mq_sysfs_register(q);
2565
	blk_mq_debugfs_register_hctxs(q);
2566 2567
}

2568 2569 2570 2571
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2572 2573
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2574 2575 2576 2577 2578 2579
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2580
		blk_mq_free_rq_map(set->tags[i]);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2620 2621 2622 2623 2624 2625 2626 2627
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2628 2629 2630 2631 2632 2633
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2634 2635
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2636 2637
	int ret;

B
Bart Van Assche 已提交
2638 2639
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2640 2641
	if (!set->nr_hw_queues)
		return -EINVAL;
2642
	if (!set->queue_depth)
2643 2644 2645 2646
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2647
	if (!set->ops->queue_rq)
2648 2649
		return -EINVAL;

2650 2651 2652
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2653 2654 2655 2656 2657
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2658

2659 2660 2661 2662 2663 2664 2665 2666 2667
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2668 2669 2670 2671 2672
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2673

K
Keith Busch 已提交
2674
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2675 2676
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2677
		return -ENOMEM;
2678

2679 2680 2681
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2682 2683 2684
	if (!set->mq_map)
		goto out_free_tags;

2685
	ret = blk_mq_update_queue_map(set);
2686 2687 2688 2689 2690
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2691
		goto out_free_mq_map;
2692

2693 2694 2695
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2696
	return 0;
2697 2698 2699 2700 2701

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2702 2703
	kfree(set->tags);
	set->tags = NULL;
2704
	return ret;
2705 2706 2707 2708 2709 2710 2711
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2712 2713
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2714

2715 2716 2717
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2718
	kfree(set->tags);
2719
	set->tags = NULL;
2720 2721 2722
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2723 2724 2725 2726 2727 2728
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2729
	if (!set)
2730 2731
		return -EINVAL;

2732 2733
	blk_mq_freeze_queue(q);

2734 2735
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2736 2737
		if (!hctx->tags)
			continue;
2738 2739 2740 2741
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2742 2743 2744 2745 2746 2747 2748 2749
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2750 2751 2752 2753 2754 2755 2756
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2757 2758
	blk_mq_unfreeze_queue(q);

2759 2760 2761
	return ret;
}

2762 2763
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2764 2765 2766
{
	struct request_queue *q;

2767 2768
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2778
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2779 2780
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2781
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2782 2783 2784 2785 2786
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2787 2788 2789 2790 2791 2792 2793

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2794 2795
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2822
	int bucket;
2823

2824 2825 2826 2827
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2828 2829
}

2830 2831 2832 2833 2834
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2835
	int bucket;
2836 2837 2838 2839 2840

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2841
	if (!blk_poll_stats_enable(q))
2842 2843 2844 2845 2846 2847 2848 2849
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2850 2851
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2852
	 */
2853 2854 2855 2856 2857 2858
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2859 2860 2861 2862

	return ret;
}

2863
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2864
				     struct blk_mq_hw_ctx *hctx,
2865 2866 2867 2868
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2869
	unsigned int nsecs;
2870 2871
	ktime_t kt;

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2890 2891 2892 2893 2894 2895 2896 2897
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2898
	kt = nsecs;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2921 2922 2923 2924 2925
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2926 2927 2928 2929 2930 2931 2932
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2933
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2934 2935
		return true;

J
Jens Axboe 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2979 2980
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2981
	else {
2982
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2983 2984 2985 2986 2987 2988 2989 2990 2991
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2992 2993 2994 2995 2996

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2997 2998
static int __init blk_mq_init(void)
{
2999 3000 3001 3002 3003 3004
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

3005 3006
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3007 3008 3009
	return 0;
}
subsys_initcall(blk_mq_init);