cgroup.c 137.9 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32 33
#include <linux/errno.h>
#include <linux/fs.h>
34
#include <linux/init_task.h>
35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
41
#include <linux/proc_fs.h>
42 43
#include <linux/rcupdate.h>
#include <linux/sched.h>
44
#include <linux/backing-dev.h>
45 46 47 48 49
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
50
#include <linux/sort.h>
51
#include <linux/kmod.h>
52
#include <linux/module.h>
B
Balbir Singh 已提交
53 54
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
55
#include <linux/hash.h>
56
#include <linux/namei.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
62
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
B
Balbir Singh 已提交
63

A
Arun Sharma 已提交
64
#include <linux/atomic.h>
65

T
Tejun Heo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
82
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
83
static DEFINE_MUTEX(cgroup_root_mutex);
84

B
Ben Blum 已提交
85 86 87 88 89 90
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
91
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
92
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 94 95
#include <linux/cgroup_subsys.h>
};

96 97
#define MAX_CGROUP_ROOT_NAMELEN 64

98 99 100 101 102 103 104 105 106 107 108 109 110 111
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

112 113 114
	/* Unique id for this hierarchy. */
	int hierarchy_id;

115 116 117 118 119 120 121 122 123 124 125 126
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

127
	/* A list running through the active hierarchies */
128 129 130 131
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
132

133
	/* The path to use for release notifications. */
134
	char release_agent_path[PATH_MAX];
135 136 137

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
138 139 140 141 142 143 144 145 146
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
160
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

179
/*
L
Lucas De Marchi 已提交
180
 * cgroup_event represents events which userspace want to receive.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
208

209 210 211
/* The list of hierarchy roots */

static LIST_HEAD(roots);
212
static int root_count;
213

214 215 216 217
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

218 219 220 221
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
222 223 224
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
225
 */
226
static int need_forkexit_callback __read_mostly;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

242
/* convenient tests for these bits */
243
inline int cgroup_is_removed(const struct cgroup *cgrp)
244
{
245
	return test_bit(CGRP_REMOVED, &cgrp->flags);
246 247 248 249 250 251 252
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

253
static int cgroup_is_releasable(const struct cgroup *cgrp)
254 255
{
	const int bits =
256 257 258
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
259 260
}

261
static int notify_on_release(const struct cgroup *cgrp)
262
{
263
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 265
}

266 267 268 269 270
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

271 272 273 274 275 276 277
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

278 279
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
280 281
list_for_each_entry(_root, &roots, root_list)

282 283 284
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
285
static DEFINE_RAW_SPINLOCK(release_list_lock);
286 287
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288
static void check_for_release(struct cgroup *cgrp);
289

290 291 292 293 294 295
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
296
	struct list_head cgrp_link_list;
297
	struct cgroup *cgrp;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

316 317
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
318

319 320 321 322 323 324
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

325 326 327 328 329
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

349 350 351 352
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
353
static int use_task_css_set_links __read_mostly;
354

355
static void __put_css_set(struct css_set *cg, int taskexit)
356
{
K
KOSAKI Motohiro 已提交
357 358
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
359 360 361 362 363 364 365 366 367 368 369 370
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
371

372 373 374 375 376 377 378 379 380
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
381 382
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
383
			if (taskexit)
384 385
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
386
		}
387 388

		kfree(link);
389
	}
390 391

	write_unlock(&css_set_lock);
392
	kfree_rcu(cg, rcu_head);
393 394
}

395 396 397 398 399
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
400
	atomic_inc(&cg->refcount);
401 402 403 404
}

static inline void put_css_set(struct css_set *cg)
{
405
	__put_css_set(cg, 0);
406 407
}

408 409
static inline void put_css_set_taskexit(struct css_set *cg)
{
410
	__put_css_set(cg, 1);
411 412
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

485 486 487
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
488
 * css_set is suitable.
489 490 491 492
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
493
 * cgrp: the cgroup that we're moving into
494 495 496 497 498 499
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
500
	struct cgroup *cgrp,
501
	struct cgroup_subsys_state *template[])
502 503
{
	int i;
504
	struct cgroupfs_root *root = cgrp->root;
505 506 507
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
508

B
Ben Blum 已提交
509 510 511 512 513
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
514
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
515
		if (root->subsys_bits & (1UL << i)) {
516 517 518
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
519
			template[i] = cgrp->subsys[i];
520 521 522 523 524 525 526
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

527 528
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
529 530 531 532 533
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
534
	}
535 536 537 538 539

	/* No existing cgroup group matched */
	return NULL;
}

540 541 542 543 544 545 546 547 548 549 550
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

551 552
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
553
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554 555 556 557 558 559 560 561 562 563
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
564
			free_cg_links(tmp);
565 566
			return -ENOMEM;
		}
567
		list_add(&link->cgrp_link_list, tmp);
568 569 570 571
	}
	return 0;
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
587
	link->cgrp = cgrp;
588
	atomic_inc(&cgrp->count);
589
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
590 591 592 593 594
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
595 596
}

597 598 599 600 601 602 603 604
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
605
	struct css_set *oldcg, struct cgroup *cgrp)
606 607 608 609 610 611
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

612
	struct hlist_head *hhead;
613
	struct cg_cgroup_link *link;
614

615 616
	/* First see if we already have a cgroup group that matches
	 * the desired set */
617
	read_lock(&css_set_lock);
618
	res = find_existing_css_set(oldcg, cgrp, template);
619 620
	if (res)
		get_css_set(res);
621
	read_unlock(&css_set_lock);
622 623 624 625 626 627 628 629 630 631 632 633 634 635

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

636
	atomic_set(&res->refcount, 1);
637 638
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
639
	INIT_HLIST_NODE(&res->hlist);
640 641 642 643 644 645 646

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
647 648 649 650 651 652
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
653 654 655 656

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
657 658 659 660 661

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

662 663 664
	write_unlock(&css_set_lock);

	return res;
665 666
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

702 703 704 705 706 707 708 709 710 711
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
712
 * cgroup_attach_task() can increment it again.  Because a count of zero
713 714 715 716 717 718 719 720 721 722 723 724 725
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
726 727
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
728 729 730 731 732 733 734 735 736 737 738
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
739
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
740
 * another.  It does so using cgroup_mutex, however there are
741 742 743
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
744
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745 746 747 748
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
749
 * update of a tasks cgroup pointer by cgroup_attach_task()
750 751 752 753 754 755 756 757 758 759
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
760
EXPORT_SYMBOL_GPL(cgroup_lock);
761 762 763 764 765 766 767 768 769 770

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
771
EXPORT_SYMBOL_GPL(cgroup_unlock);
772 773 774 775 776 777 778 779

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

780
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
781
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783
static int cgroup_populate_dir(struct cgroup *cgrp);
784
static const struct inode_operations cgroup_dir_inode_operations;
785
static const struct file_operations proc_cgroupstats_operations;
786 787

static struct backing_dev_info cgroup_backing_dev_info = {
788
	.name		= "cgroup",
789
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
790
};
791

K
KAMEZAWA Hiroyuki 已提交
792 793 794
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
795
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
796 797 798 799
{
	struct inode *inode = new_inode(sb);

	if (inode) {
800
		inode->i_ino = get_next_ino();
801
		inode->i_mode = mode;
802 803
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
804 805 806 807 808 809
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

810 811 812 813
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
814
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
815 816
{
	struct cgroup_subsys *ss;
817 818
	int ret = 0;

819
	for_each_subsys(cgrp->root, ss)
820
		if (ss->pre_destroy) {
821
			ret = ss->pre_destroy(cgrp);
822
			if (ret)
823
				break;
824
		}
825

826
	return ret;
827 828
}

829 830 831 832
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
833
		struct cgroup *cgrp = dentry->d_fsdata;
834
		struct cgroup_subsys *ss;
835
		BUG_ON(!(cgroup_is_removed(cgrp)));
836 837 838 839 840 841 842
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
843 844 845 846 847

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
848
		for_each_subsys(cgrp->root, ss)
849
			ss->destroy(cgrp);
850 851 852 853

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

854 855 856 857
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
858 859
		deactivate_super(cgrp->root->sb);

860 861 862 863 864 865
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

866
		kfree_rcu(cgrp, rcu_head);
867 868 869 870
	}
	iput(inode);
}

871 872 873 874 875
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
N
Nick Piggin 已提交
890
	spin_lock(&dentry->d_lock);
891 892 893
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
N
Nick Piggin 已提交
894 895

		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 897 898 899 900
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
901
			dget_dlock(d);
N
Nick Piggin 已提交
902 903
			spin_unlock(&d->d_lock);
			spin_unlock(&dentry->d_lock);
904 905 906
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
N
Nick Piggin 已提交
907 908 909
			spin_lock(&dentry->d_lock);
		} else
			spin_unlock(&d->d_lock);
910 911
		node = dentry->d_subdirs.next;
	}
N
Nick Piggin 已提交
912
	spin_unlock(&dentry->d_lock);
913 914 915 916 917 918 919
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
920 921
	struct dentry *parent;

922 923
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
924 925
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
926
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
928 929
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
930 931 932
	remove_dir(dentry);
}

933 934 935 936 937 938
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
939
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
940
 */
941
static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942

943
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
944
{
945
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 947 948
		wake_up_all(&cgroup_rmdir_waitq);
}

949 950 951 952 953 954 955 956 957 958 959
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
960
/*
B
Ben Blum 已提交
961 962 963
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
964
 */
965 966 967 968
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
969
	struct cgroup *cgrp = &root->top_cgroup;
970 971
	int i;

B
Ben Blum 已提交
972
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
973
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
974

975 976 977 978
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
979
		unsigned long bit = 1UL << i;
980 981 982
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
983 984 985 986 987 988
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
989 990 991 992 993 994 995 996 997 998
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
999
	if (root->number_of_cgroups > 1)
1000 1001 1002 1003 1004 1005 1006 1007
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1008
			BUG_ON(ss == NULL);
1009
			BUG_ON(cgrp->subsys[i]);
1010 1011
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012
			mutex_lock(&ss->hierarchy_mutex);
1013 1014
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
1015
			list_move(&ss->sibling, &root->subsys_list);
1016
			ss->root = root;
1017
			if (ss->bind)
1018
				ss->bind(cgrp);
1019
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1020
			/* refcount was already taken, and we're keeping it */
1021 1022
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1023
			BUG_ON(ss == NULL);
1024 1025
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026
			mutex_lock(&ss->hierarchy_mutex);
1027
			if (ss->bind)
1028
				ss->bind(dummytop);
1029
			dummytop->subsys[i]->cgroup = dummytop;
1030
			cgrp->subsys[i] = NULL;
1031
			subsys[i]->root = &rootnode;
1032
			list_move(&ss->sibling, &rootnode.subsys_list);
1033
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1034 1035
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1036 1037
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1038
			BUG_ON(ss == NULL);
1039
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1040 1041 1042 1043 1044 1045 1046 1047
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1048 1049
		} else {
			/* Subsystem state shouldn't exist */
1050
			BUG_ON(cgrp->subsys[i]);
1051 1052 1053 1054 1055 1056 1057 1058
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

1059
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1060
{
1061
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1062 1063
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1064
	mutex_lock(&cgroup_root_mutex);
1065 1066 1067 1068
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1069 1070
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 1072
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1073 1074
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1075
	mutex_unlock(&cgroup_root_mutex);
1076 1077 1078 1079 1080 1081
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1082
	char *release_agent;
1083
	bool clone_children;
1084
	char *name;
1085 1086
	/* User explicitly requested empty subsystem */
	bool none;
1087 1088

	struct cgroupfs_root *new_root;
1089

1090 1091
};

B
Ben Blum 已提交
1092 1093
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1094 1095 1096
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1097
 */
B
Ben Blum 已提交
1098
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1099
{
1100 1101
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1102
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1103 1104
	int i;
	bool module_pin_failed = false;
1105

B
Ben Blum 已提交
1106 1107
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1108 1109 1110
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1111

1112
	memset(opts, 0, sizeof(*opts));
1113 1114 1115 1116

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1117
		if (!strcmp(token, "none")) {
1118 1119
			/* Explicitly have no subsystems */
			opts->none = true;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1130
			set_bit(ROOT_NOPREFIX, &opts->flags);
1131 1132 1133
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1134
			opts->clone_children = true;
1135 1136 1137
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1138 1139 1140
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1141
			opts->release_agent =
1142
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 1144
			if (!opts->release_agent)
				return -ENOMEM;
1145 1146 1147
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1165
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1166 1167 1168
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1196 1197
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1198
	 */
1199
	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1200 1201 1202 1203 1204 1205 1206
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1207 1208 1209
		}
	}

1210 1211
	/* Consistency checks */

1212 1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1221 1222 1223 1224 1225 1226 1227 1228 1229

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1230
	if (!opts->subsys_bits && !opts->name)
1231 1232
		return -EINVAL;

B
Ben Blum 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1266 1267 1268
	return 0;
}

B
Ben Blum 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1281 1282 1283 1284
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1285
	struct cgroup *cgrp = &root->top_cgroup;
1286 1287
	struct cgroup_sb_opts opts;

1288
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1290
	mutex_lock(&cgroup_root_mutex);
1291 1292 1293 1294 1295 1296

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

B
Ben Blum 已提交
1297 1298 1299
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1300
		ret = -EINVAL;
B
Ben Blum 已提交
1301
		drop_parsed_module_refcounts(opts.subsys_bits);
1302 1303 1304
		goto out_unlock;
	}

1305
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1306 1307
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1308
		goto out_unlock;
B
Ben Blum 已提交
1309
	}
1310 1311

	/* (re)populate subsystem files */
1312
	cgroup_populate_dir(cgrp);
1313

1314 1315
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1316
 out_unlock:
1317
	kfree(opts.release_agent);
1318
	kfree(opts.name);
T
Tejun Heo 已提交
1319
	mutex_unlock(&cgroup_root_mutex);
1320
	mutex_unlock(&cgroup_mutex);
1321
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 1323 1324
	return ret;
}

1325
static const struct super_operations cgroup_ops = {
1326 1327 1328 1329 1330 1331
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1332 1333 1334 1335 1336 1337
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1338 1339
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1340 1341
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1342
}
1343

1344 1345
static void init_cgroup_root(struct cgroupfs_root *root)
{
1346
	struct cgroup *cgrp = &root->top_cgroup;
1347 1348 1349
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1350 1351
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1352
	init_cgroup_housekeeping(cgrp);
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1380 1381
static int cgroup_test_super(struct super_block *sb, void *data)
{
1382
	struct cgroup_sb_opts *opts = data;
1383 1384
	struct cgroupfs_root *root = sb->s_fs_info;

1385 1386 1387
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1388

1389 1390 1391 1392 1393 1394
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1395 1396 1397 1398 1399
		return 0;

	return 1;
}

1400 1401 1402 1403
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1404
	if (!opts->subsys_bits && !opts->none)
1405 1406 1407 1408 1409 1410
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1411 1412 1413 1414
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1415
	init_cgroup_root(root);
1416

1417 1418 1419 1420 1421 1422
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1423 1424
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 1426 1427
	return root;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1440 1441 1442
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1443 1444 1445 1446 1447 1448
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1449
	BUG_ON(!opts->subsys_bits && !opts->none);
1450 1451 1452 1453 1454

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1455 1456
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1468 1469
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1470
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1471 1472
	};

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
A
Al Viro 已提交
1490 1491
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1492 1493 1494
	return 0;
}

A
Al Viro 已提交
1495
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1496
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1497
			 void *data)
1498 1499
{
	struct cgroup_sb_opts opts;
1500
	struct cgroupfs_root *root;
1501 1502
	int ret = 0;
	struct super_block *sb;
1503
	struct cgroupfs_root *new_root;
T
Tejun Heo 已提交
1504
	struct inode *inode;
1505 1506

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1507
	mutex_lock(&cgroup_mutex);
1508
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1509
	mutex_unlock(&cgroup_mutex);
1510 1511
	if (ret)
		goto out_err;
1512

1513 1514 1515 1516 1517 1518 1519
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1520
		goto drop_modules;
1521
	}
1522
	opts.new_root = new_root;
1523

1524 1525
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1526
	if (IS_ERR(sb)) {
1527
		ret = PTR_ERR(sb);
1528
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1529
		goto drop_modules;
1530 1531
	}

1532 1533 1534 1535 1536
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1537
		struct cgroup *root_cgrp = &root->top_cgroup;
1538
		struct cgroupfs_root *existing_root;
1539
		const struct cred *cred;
1540
		int i;
1541 1542 1543 1544 1545 1546

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1547
		inode = sb->s_root->d_inode;
1548

1549
		mutex_lock(&inode->i_mutex);
1550
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1551
		mutex_lock(&cgroup_root_mutex);
1552

T
Tejun Heo 已提交
1553 1554 1555 1556 1557 1558
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1559

1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
T
Tejun Heo 已提交
1568 1569
		if (ret)
			goto unlock_drop;
1570

1571 1572
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
1573
			free_cg_links(&tmp_cg_links);
T
Tejun Heo 已提交
1574
			goto unlock_drop;
1575
		}
B
Ben Blum 已提交
1576 1577 1578 1579 1580
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1581 1582 1583 1584 1585

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1586
		root_count++;
1587

1588
		sb->s_root->d_fsdata = root_cgrp;
1589 1590
		root->top_cgroup.dentry = sb->s_root;

1591 1592 1593
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1594 1595 1596
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1597
			struct css_set *cg;
1598

1599 1600
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1601
		}
1602 1603 1604 1605
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1606 1607
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1608 1609
		BUG_ON(root->number_of_cgroups != 1);

1610
		cred = override_creds(&init_cred);
1611
		cgroup_populate_dir(root_cgrp);
1612
		revert_creds(cred);
T
Tejun Heo 已提交
1613
		mutex_unlock(&cgroup_root_mutex);
1614
		mutex_unlock(&cgroup_mutex);
1615
		mutex_unlock(&inode->i_mutex);
1616 1617 1618 1619 1620
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1621
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1622 1623
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1624 1625
	}

1626 1627
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1628
	return dget(sb->s_root);
1629

T
Tejun Heo 已提交
1630 1631 1632 1633
 unlock_drop:
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1634
 drop_new_super:
1635
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1636 1637
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1638 1639 1640
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1641
	return ERR_PTR(ret);
1642 1643 1644 1645
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1646
	struct cgroup *cgrp = &root->top_cgroup;
1647
	int ret;
K
KOSAKI Motohiro 已提交
1648 1649
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1650 1651 1652 1653

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1654 1655
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1656 1657

	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1658
	mutex_lock(&cgroup_root_mutex);
1659 1660 1661 1662 1663 1664

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1665 1666 1667 1668 1669
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1670 1671 1672

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1673
		list_del(&link->cg_link_list);
1674
		list_del(&link->cgrp_link_list);
1675 1676 1677 1678
		kfree(link);
	}
	write_unlock(&css_set_lock);

1679 1680 1681 1682
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1683

T
Tejun Heo 已提交
1684
	mutex_unlock(&cgroup_root_mutex);
1685 1686 1687
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1688
	cgroup_drop_root(root);
1689 1690 1691 1692
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1693
	.mount = cgroup_mount,
1694 1695 1696
	.kill_sb = cgroup_kill_sb,
};

1697 1698
static struct kobject *cgroup_kobj;

1699
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1700 1701 1702 1703 1704 1705 1706 1707 1708
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1709 1710 1711 1712 1713 1714
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1715 1716 1717
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1718
 */
1719
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1720 1721
{
	char *start;
1722 1723
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      cgroup_lock_is_held());
1724

1725
	if (!dentry || cgrp == dummytop) {
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1738
		int len = dentry->d_name.len;
1739

1740 1741
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1742
		memcpy(start, dentry->d_name.name, len);
1743 1744
		cgrp = cgrp->parent;
		if (!cgrp)
1745
			break;
1746 1747 1748

		dentry = rcu_dereference_check(cgrp->dentry,
					       cgroup_lock_is_held());
1749
		if (!cgrp->parent)
1750 1751 1752 1753 1754 1755 1756 1757
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1758
EXPORT_SYMBOL_GPL(cgroup_path);
1759

1760 1761 1762
/*
 * Control Group taskset
 */
1763 1764 1765
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
1766
	struct css_set		*cg;
1767 1768
};

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1840 1841 1842 1843 1844
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
1845
 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1846
 */
1847 1848
static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
				struct task_struct *tsk, struct css_set *newcg)
B
Ben Blum 已提交
1849 1850 1851 1852
{
	struct css_set *oldcg;

	/*
1853 1854 1855
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1856
	 */
1857
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
B
Ben Blum 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	oldcg = tsk->cgroups;

	task_lock(tsk);
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
}

L
Li Zefan 已提交
1880 1881 1882 1883
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1884
 *
1885 1886
 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
 * @tsk during call.
1887
 */
1888
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1889
{
B
Ben Blum 已提交
1890
	int retval;
1891
	struct cgroup_subsys *ss, *failed_ss = NULL;
1892 1893
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1894
	struct cgroup_taskset tset = { };
1895
	struct css_set *newcg;
1896

1897 1898 1899
	/* @tsk either already exited or can't exit until the end */
	if (tsk->flags & PF_EXITING)
		return -ESRCH;
1900 1901

	/* Nothing to do if the task is already in that cgroup */
1902
	oldcgrp = task_cgroup_from_root(tsk, root);
1903
	if (cgrp == oldcgrp)
1904 1905
		return 0;

1906 1907 1908
	tset.single.task = tsk;
	tset.single.cgrp = oldcgrp;

1909 1910
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1911
			retval = ss->can_attach(cgrp, &tset);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1922 1923 1924
		}
	}

1925 1926 1927
	newcg = find_css_set(tsk->cgroups, cgrp);
	if (!newcg) {
		retval = -ENOMEM;
1928
		goto out;
1929 1930 1931
	}

	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1932

1933
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1934
		if (ss->attach)
1935
			ss->attach(cgrp, &tset);
1936
	}
B
Ben Blum 已提交
1937

1938
	synchronize_rcu();
1939 1940 1941 1942 1943

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1944
	cgroup_wakeup_rmdir_waiter(cgrp);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
1957
				ss->cancel_attach(cgrp, &tset);
1958 1959 1960
		}
	}
	return retval;
1961 1962
}

1963
/**
M
Michael S. Tsirkin 已提交
1964 1965
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
1966 1967
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
1968
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1969 1970 1971 1972 1973 1974
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
1975 1976 1977
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
1978 1979 1980 1981 1982 1983 1984
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
1985
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1986

B
Ben Blum 已提交
1987 1988 1989 1990 1991
/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
1992 1993
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 * task_lock of each thread in leader's threadgroup individually in turn.
B
Ben Blum 已提交
1994
 */
1995
static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
B
Ben Blum 已提交
1996 1997 1998 1999 2000 2001 2002
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
2003
	struct task_and_cgroup *tc;
2004
	struct flex_array *group;
2005
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
2006 2007 2008 2009 2010

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
2011 2012
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
2013 2014
	 */
	group_size = get_nr_threads(leader);
2015
	/* flex_array supports very large thread-groups better than kmalloc. */
2016
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2017 2018
	if (!group)
		return -ENOMEM;
2019 2020 2021 2022
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2023 2024 2025

	tsk = leader;
	i = 0;
2026 2027 2028 2029 2030 2031
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2032
	do {
2033 2034
		struct task_and_cgroup ent;

2035 2036 2037 2038
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2039 2040
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2041 2042
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2043 2044 2045
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2046 2047 2048 2049
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2050
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2051
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2052 2053
		i++;
	} while_each_thread(leader, tsk);
2054
	rcu_read_unlock();
B
Ben Blum 已提交
2055 2056
	/* remember the number of threads in the array for later. */
	group_size = i;
2057 2058
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2059

2060 2061
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2062
	if (!group_size)
2063
		goto out_free_group_list;
2064

B
Ben Blum 已提交
2065 2066 2067 2068 2069
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
2070
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2083
		tc = flex_array_get(group, i);
2084 2085 2086 2087
		tc->cg = find_css_set(tc->task->cgroups, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2088 2089 2090 2091
		}
	}

	/*
2092 2093 2094
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2095 2096
	 */
	for (i = 0; i < group_size; i++) {
2097
		tc = flex_array_get(group, i);
2098
		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
B
Ben Blum 已提交
2099 2100 2101 2102
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2103
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2104 2105 2106
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
2107
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2108 2109 2110 2111 2112 2113 2114 2115
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
2116 2117 2118 2119 2120 2121 2122 2123
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
B
Ben Blum 已提交
2124 2125 2126 2127
	}
out_cancel_attach:
	if (retval) {
		for_each_subsys(root, ss) {
2128
			if (ss == failed_ss)
B
Ben Blum 已提交
2129 2130
				break;
			if (ss->cancel_attach)
2131
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2132 2133 2134
		}
	}
out_free_group_list:
2135
	flex_array_free(group);
B
Ben Blum 已提交
2136 2137 2138 2139 2140
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2141 2142
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2143
 */
B
Ben Blum 已提交
2144
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2145 2146
{
	struct task_struct *tsk;
2147
	const struct cred *cred = current_cred(), *tcred;
2148 2149
	int ret;

B
Ben Blum 已提交
2150 2151 2152
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2153 2154
retry_find_task:
	rcu_read_lock();
2155
	if (pid) {
2156
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2157 2158
		if (!tsk) {
			rcu_read_unlock();
2159 2160
			ret= -ESRCH;
			goto out_unlock_cgroup;
2161
		}
B
Ben Blum 已提交
2162 2163 2164 2165
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2166 2167 2168 2169 2170
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
2171 2172
			ret = -EACCES;
			goto out_unlock_cgroup;
2173
		}
2174 2175
	} else
		tsk = current;
2176 2177

	if (threadgroup)
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		tsk = tsk->group_leader;
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
B
Ben Blum 已提交
2196
		ret = cgroup_attach_proc(cgrp, tsk);
2197
	} else
B
Ben Blum 已提交
2198
		ret = cgroup_attach_task(cgrp, tsk);
2199 2200
	threadgroup_unlock(tsk);

2201
	put_task_struct(tsk);
2202
out_unlock_cgroup:
B
Ben Blum 已提交
2203
	cgroup_unlock();
2204 2205 2206
	return ret;
}

2207
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2208 2209 2210 2211 2212
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2213
{
2214
	return attach_task_by_pid(cgrp, tgid, true);
2215 2216
}

2217 2218 2219 2220
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2221 2222
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2223
 */
2224
bool cgroup_lock_live_group(struct cgroup *cgrp)
2225 2226 2227 2228 2229 2230 2231 2232
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2233
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2234 2235 2236 2237 2238

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2239 2240
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2241 2242
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2243
	mutex_lock(&cgroup_root_mutex);
2244
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2245
	mutex_unlock(&cgroup_root_mutex);
2246
	cgroup_unlock();
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2257
	cgroup_unlock();
2258 2259 2260
	return 0;
}

2261 2262 2263
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2264
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2265 2266 2267
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2268
{
2269
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2281
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2282
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2283 2284 2285 2286
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2287
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2288 2289 2290 2291
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2292 2293 2294 2295 2296
	if (!retval)
		retval = nbytes;
	return retval;
}

2297 2298 2299 2300 2301
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2302
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2317 2318 2319 2320
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2321 2322

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2323
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2324 2325
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2326
out:
2327 2328 2329 2330 2331
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2332 2333 2334 2335
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2336
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2337

2338
	if (cgroup_is_removed(cgrp))
2339
		return -ENODEV;
2340
	if (cft->write)
2341
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2342 2343
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2344 2345
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2346 2347 2348 2349
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2350
	return -EINVAL;
2351 2352
}

2353 2354 2355 2356
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2357
{
2358
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2359
	u64 val = cft->read_u64(cgrp, cft);
2360 2361 2362 2363 2364
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2365 2366 2367 2368 2369
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2370
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2371 2372 2373 2374 2375 2376
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2377 2378 2379 2380
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2381
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2382

2383
	if (cgroup_is_removed(cgrp))
2384 2385 2386
		return -ENODEV;

	if (cft->read)
2387
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2388 2389
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2390 2391
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2392 2393 2394
	return -EINVAL;
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2415 2416 2417 2418 2419 2420 2421 2422
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2423 2424
}

2425
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2426 2427 2428 2429 2430 2431
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2432
static const struct file_operations cgroup_seqfile_operations = {
2433
	.read = seq_read,
2434
	.write = cgroup_file_write,
2435 2436 2437 2438
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2439 2440 2441 2442 2443 2444 2445 2446 2447
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2448

2449
	if (cft->read_map || cft->read_seq_string) {
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2491
static const struct file_operations cgroup_file_operations = {
2492 2493 2494 2495 2496 2497 2498
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2499
static const struct inode_operations cgroup_dir_inode_operations = {
2500
	.lookup = cgroup_lookup,
2501 2502 2503 2504 2505
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2506 2507 2508 2509 2510 2511 2512 2513
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2524
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2525 2526
				struct super_block *sb)
{
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2547
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2558 2559 2560 2561 2562
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2563
 */
2564
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
A
Al Viro 已提交
2565
				umode_t mode)
2566 2567 2568 2569
{
	struct dentry *parent;
	int error = 0;

2570 2571
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2572
	if (!error) {
2573
		dentry->d_fsdata = cgrp;
2574
		inc_nlink(parent->d_inode);
2575
		rcu_assign_pointer(cgrp->dentry, dentry);
2576 2577 2578 2579 2580 2581 2582
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2592
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2593
{
A
Al Viro 已提交
2594
	umode_t mode = 0;
L
Li Zefan 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2610
int cgroup_add_file(struct cgroup *cgrp,
2611 2612 2613
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2614
	struct dentry *dir = cgrp->dentry;
2615 2616
	struct dentry *dentry;
	int error;
A
Al Viro 已提交
2617
	umode_t mode;
2618 2619

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2620
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2621 2622 2623 2624 2625 2626 2627
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2628 2629
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2630
						cgrp->root->sb);
2631 2632 2633 2634 2635 2636 2637
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2638
EXPORT_SYMBOL_GPL(cgroup_add_file);
2639

2640
int cgroup_add_files(struct cgroup *cgrp,
2641 2642 2643 2644 2645 2646
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2647
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2648 2649 2650 2651 2652
		if (err)
			return err;
	}
	return 0;
}
2653
EXPORT_SYMBOL_GPL(cgroup_add_files);
2654

L
Li Zefan 已提交
2655 2656 2657 2658 2659 2660
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2661
int cgroup_task_count(const struct cgroup *cgrp)
2662 2663
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2664
	struct cg_cgroup_link *link;
2665 2666

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2667
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2668
		count += atomic_read(&link->cg->refcount);
2669 2670
	}
	read_unlock(&css_set_lock);
2671 2672 2673
	return count;
}

2674 2675 2676 2677
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2678
static void cgroup_advance_iter(struct cgroup *cgrp,
2679
				struct cgroup_iter *it)
2680 2681 2682 2683 2684 2685 2686 2687
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2688
		if (l == &cgrp->css_sets) {
2689 2690 2691
			it->cg_link = NULL;
			return;
		}
2692
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2693 2694 2695 2696 2697 2698
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2699 2700 2701 2702 2703 2704
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2705
static void cgroup_enable_task_cg_lists(void)
2706 2707 2708 2709
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2718 2719
	do_each_thread(g, p) {
		task_lock(p);
2720 2721 2722 2723 2724 2725
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2726 2727 2728
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
2729
	read_unlock(&tasklist_lock);
2730 2731 2732
	write_unlock(&css_set_lock);
}

2733
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2734
	__acquires(css_set_lock)
2735 2736 2737 2738 2739 2740
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2741 2742 2743
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2744
	read_lock(&css_set_lock);
2745 2746
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2747 2748
}

2749
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2750 2751 2752 2753
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2754
	struct cg_cgroup_link *link;
2755 2756 2757 2758 2759 2760 2761

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2762 2763
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2764 2765
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2766
		cgroup_advance_iter(cgrp, it);
2767 2768 2769 2770 2771 2772
	} else {
		it->task = l;
	}
	return res;
}

2773
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2774
	__releases(css_set_lock)
2775 2776 2777 2778
{
	read_unlock(&css_set_lock);
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2916
			struct task_struct *q = heap->ptrs[i];
2917
			if (i == 0) {
2918 2919
				latest_time = q->start_time;
				latest_task = q;
2920 2921
			}
			/* Process the task per the caller's callback */
2922 2923
			scan->process_task(q, scan);
			put_task_struct(q);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2939
/*
2940
 * Stuff for reading the 'tasks'/'procs' files.
2941 2942 2943 2944 2945 2946 2947 2948
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3017
/*
3018 3019 3020 3021
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3022
 */
3023 3024 3025
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3026
{
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3056
		newlist = pidlist_resize(list, dest);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3079 3080
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3105
	l->key.ns = get_pid_ns(ns);
3106 3107 3108 3109 3110 3111 3112 3113
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3114 3115 3116
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3117 3118
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3119 3120 3121 3122
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3123 3124
	struct cgroup_iter it;
	struct task_struct *tsk;
3125 3126 3127 3128 3129 3130 3131 3132 3133
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3134
	array = pidlist_allocate(length);
3135 3136 3137
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3138 3139
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3140
		if (unlikely(n == length))
3141
			break;
3142
		/* get tgid or pid for procs or tasks file respectively */
3143 3144 3145 3146
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3147 3148
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3149
	}
3150
	cgroup_iter_end(cgrp, &it);
3151 3152 3153
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3154
	if (type == CGROUP_FILE_PROCS)
3155
		length = pidlist_uniq(&array, length);
3156 3157
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3158
		pidlist_free(array);
3159
		return -ENOMEM;
3160
	}
3161
	/* store array, freeing old if necessary - lock already held */
3162
	pidlist_free(l->list);
3163 3164 3165 3166
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3167
	*lp = l;
3168
	return 0;
3169 3170
}

B
Balbir Singh 已提交
3171
/**
L
Li Zefan 已提交
3172
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3173 3174 3175
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3176 3177 3178
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3179 3180 3181 3182
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3183
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3184 3185
	struct cgroup_iter it;
	struct task_struct *tsk;
3186

B
Balbir Singh 已提交
3187
	/*
3188 3189
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3190
	 */
3191 3192
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3193 3194 3195
		 goto err;

	ret = 0;
3196
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3197

3198 3199
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3219
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3220 3221 3222 3223 3224

err:
	return ret;
}

3225

3226
/*
3227
 * seq_file methods for the tasks/procs files. The seq_file position is the
3228
 * next pid to display; the seq_file iterator is a pointer to the pid
3229
 * in the cgroup->l->list array.
3230
 */
3231

3232
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3233
{
3234 3235 3236 3237 3238 3239
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3240
	struct cgroup_pidlist *l = s->private;
3241 3242 3243
	int index = 0, pid = *pos;
	int *iter;

3244
	down_read(&l->mutex);
3245
	if (pid) {
3246
		int end = l->length;
S
Stephen Rothwell 已提交
3247

3248 3249
		while (index < end) {
			int mid = (index + end) / 2;
3250
			if (l->list[mid] == pid) {
3251 3252
				index = mid;
				break;
3253
			} else if (l->list[mid] <= pid)
3254 3255 3256 3257 3258 3259
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3260
	if (index >= l->length)
3261 3262
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3263
	iter = l->list + index;
3264 3265 3266 3267
	*pos = *iter;
	return iter;
}

3268
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3269
{
3270 3271
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3272 3273
}

3274
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3275
{
3276 3277 3278
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3292
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3293 3294 3295
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3296

3297 3298 3299 3300 3301 3302 3303 3304 3305
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3306 3307
};

3308
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3309
{
3310 3311 3312 3313 3314 3315 3316
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3317 3318 3319
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3320 3321 3322
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3323
		pidlist_free(l->list);
3324 3325 3326 3327
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3328
	}
3329
	mutex_unlock(&l->owner->pidlist_mutex);
3330
	up_write(&l->mutex);
3331 3332
}

3333
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3334
{
3335
	struct cgroup_pidlist *l;
3336 3337
	if (!(file->f_mode & FMODE_READ))
		return 0;
3338 3339 3340 3341 3342 3343
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3344 3345 3346
	return seq_release(inode, file);
}

3347
static const struct file_operations cgroup_pidlist_operations = {
3348 3349 3350
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3351
	.release = cgroup_pidlist_release,
3352 3353
};

3354
/*
3355 3356 3357
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3358
 */
3359
/* helper function for the two below it */
3360
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3361
{
3362
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3363
	struct cgroup_pidlist *l;
3364
	int retval;
3365

3366
	/* Nothing to do for write-only files */
3367 3368 3369
	if (!(file->f_mode & FMODE_READ))
		return 0;

3370
	/* have the array populated */
3371
	retval = pidlist_array_load(cgrp, type, &l);
3372 3373 3374 3375
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3376

3377
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3378
	if (retval) {
3379
		cgroup_release_pid_array(l);
3380
		return retval;
3381
	}
3382
	((struct seq_file *)file->private_data)->private = l;
3383 3384
	return 0;
}
3385 3386
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3387
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3388 3389 3390
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3391
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3392
}
3393

3394
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3395 3396
					    struct cftype *cft)
{
3397
	return notify_on_release(cgrp);
3398 3399
}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3427
	dput(cgrp->dentry);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3444
		__remove_wait_queue(event->wqh, &event->wait);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3522 3523
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3549 3550 3551 3552 3553 3554 3555
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3597 3598 3599
/*
 * for the common functions, 'private' gives the type of file
 */
3600 3601
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3602 3603 3604 3605
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3606
		.write_u64 = cgroup_tasks_write,
3607
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3608
		.mode = S_IRUGO | S_IWUSR,
3609
	},
3610 3611 3612
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3613
		.write_u64 = cgroup_procs_write,
3614
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3615
		.mode = S_IRUGO | S_IWUSR,
3616
	},
3617 3618
	{
		.name = "notify_on_release",
3619
		.read_u64 = cgroup_read_notify_on_release,
3620
		.write_u64 = cgroup_write_notify_on_release,
3621
	},
3622 3623 3624 3625 3626
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3627 3628 3629 3630 3631
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3632 3633 3634 3635
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
3636 3637 3638
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
3639 3640
};

3641
static int cgroup_populate_dir(struct cgroup *cgrp)
3642 3643 3644 3645 3646
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
3647
	cgroup_clear_directory(cgrp->dentry);
3648

3649
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3650 3651 3652
	if (err < 0)
		return err;

3653 3654
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3655 3656 3657
			return err;
	}

3658 3659
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3660 3661
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3673 3674 3675 3676 3677 3678

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3679
			       struct cgroup *cgrp)
3680
{
3681
	css->cgroup = cgrp;
P
Paul Menage 已提交
3682
	atomic_set(&css->refcnt, 1);
3683
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3684
	css->id = NULL;
3685
	if (cgrp == dummytop)
3686
		set_bit(CSS_ROOT, &css->flags);
3687 3688
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3689 3690
}

3691 3692 3693 3694 3695
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3696 3697 3698 3699
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3700 3701
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3702 3703
		if (ss == NULL)
			continue;
3704
		if (ss->root == root)
3705
			mutex_lock(&ss->hierarchy_mutex);
3706 3707 3708 3709 3710 3711 3712 3713 3714
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3715 3716
		if (ss == NULL)
			continue;
3717 3718 3719 3720 3721
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3722
/*
L
Li Zefan 已提交
3723 3724 3725 3726
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3727
 *
L
Li Zefan 已提交
3728
 * Must be called with the mutex on the parent inode held
3729 3730
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
3731
			     umode_t mode)
3732
{
3733
	struct cgroup *cgrp;
3734 3735 3736 3737 3738
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3739 3740
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3752
	init_cgroup_housekeeping(cgrp);
3753

3754 3755 3756
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3757

3758 3759 3760
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3761 3762 3763
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3764
	for_each_subsys(root, ss) {
3765
		struct cgroup_subsys_state *css = ss->create(cgrp);
3766

3767 3768 3769 3770
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3771
		init_cgroup_css(css, ss, cgrp);
3772 3773 3774
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3775
				goto err_destroy;
3776
		}
K
KAMEZAWA Hiroyuki 已提交
3777
		/* At error, ->destroy() callback has to free assigned ID. */
3778
		if (clone_children(parent) && ss->post_clone)
3779
			ss->post_clone(cgrp);
3780 3781
	}

3782
	cgroup_lock_hierarchy(root);
3783
	list_add(&cgrp->sibling, &cgrp->parent->children);
3784
	cgroup_unlock_hierarchy(root);
3785 3786
	root->number_of_cgroups++;

3787
	err = cgroup_create_dir(cgrp, dentry, mode);
3788 3789 3790 3791
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3792
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3793

3794
	err = cgroup_populate_dir(cgrp);
3795 3796 3797
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3798
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3799 3800 3801 3802 3803

	return 0;

 err_remove:

3804
	cgroup_lock_hierarchy(root);
3805
	list_del(&cgrp->sibling);
3806
	cgroup_unlock_hierarchy(root);
3807 3808 3809 3810 3811
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3812
		if (cgrp->subsys[ss->subsys_id])
3813
			ss->destroy(cgrp);
3814 3815 3816 3817 3818 3819 3820
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3821
	kfree(cgrp);
3822 3823 3824
	return err;
}

3825
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3826 3827 3828 3829 3830 3831 3832
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3833
static int cgroup_has_css_refs(struct cgroup *cgrp)
3834 3835 3836
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3837
	 * cgroup, if the css refcount is also 1, then there should
3838 3839 3840 3841 3842 3843 3844
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3845 3846 3847 3848 3849
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3850 3851 3852
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3853 3854
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3855
			continue;
3856
		css = cgrp->subsys[ss->subsys_id];
3857 3858 3859 3860 3861 3862
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3863
		if (css && (atomic_read(&css->refcnt) > 1))
3864 3865 3866 3867 3868
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3884
		while (1) {
P
Paul Menage 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3898 3899 3900 3901
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3922 3923
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3924
	struct cgroup *cgrp = dentry->d_fsdata;
3925 3926
	struct dentry *d;
	struct cgroup *parent;
3927
	DEFINE_WAIT(wait);
3928
	struct cgroup_event *event, *tmp;
3929
	int ret;
3930 3931

	/* the vfs holds both inode->i_mutex already */
3932
again:
3933
	mutex_lock(&cgroup_mutex);
3934
	if (atomic_read(&cgrp->count) != 0) {
3935 3936 3937
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3938
	if (!list_empty(&cgrp->children)) {
3939 3940 3941
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3942
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3955
	/*
L
Li Zefan 已提交
3956 3957
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3958
	 */
3959
	ret = cgroup_call_pre_destroy(cgrp);
3960 3961
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3962
		return ret;
3963
	}
3964

3965 3966
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3967
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3968
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3969 3970 3971
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3972 3973 3974
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3975 3976 3977 3978 3979 3980
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3981 3982 3983 3984 3985 3986 3987 3988 3989
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3990

3991
	raw_spin_lock(&release_list_lock);
3992 3993
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
3994
		list_del_init(&cgrp->release_list);
3995
	raw_spin_unlock(&release_list_lock);
3996 3997 3998

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3999
	list_del_init(&cgrp->sibling);
4000 4001
	cgroup_unlock_hierarchy(cgrp->root);

4002
	d = dget(cgrp->dentry);
4003 4004 4005 4006

	cgroup_d_remove_dir(d);
	dput(d);

4007
	set_bit(CGRP_RELEASABLE, &parent->flags);
4008 4009
	check_for_release(parent);

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4024 4025 4026 4027
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4028
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4029 4030
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4031 4032

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4033 4034

	/* Create the top cgroup state for this subsystem */
4035
	list_add(&ss->sibling, &rootnode.subsys_list);
4036
	ss->root = &rootnode;
4037
	css = ss->create(dummytop);
4038 4039 4040 4041
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4042
	/* Update the init_css_set to contain a subsys
4043
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4044 4045 4046
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4047 4048 4049

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4050 4051 4052 4053 4054
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4055
	mutex_init(&ss->hierarchy_mutex);
4056
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4057
	ss->active = 1;
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4069
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
4126
	css = ss->create(dummytop);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
4144
			ss->destroy(dummytop);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4187
}
4188
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4189

B
Ben Blum 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4218
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
4242
	ss->destroy(dummytop);
B
Ben Blum 已提交
4243 4244 4245 4246 4247 4248
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4249
/**
L
Li Zefan 已提交
4250 4251 4252 4253
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4254 4255 4256 4257
 */
int __init cgroup_init_early(void)
{
	int i;
4258
	atomic_set(&init_css_set.refcount, 1);
4259 4260
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4261
	INIT_HLIST_NODE(&init_css_set.hlist);
4262
	css_set_count = 1;
4263
	init_cgroup_root(&rootnode);
4264 4265 4266 4267
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4268
	init_css_set_link.cgrp = dummytop;
4269
	list_add(&init_css_set_link.cgrp_link_list,
4270 4271 4272
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4273

4274 4275 4276
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4277 4278
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4279 4280 4281 4282 4283 4284 4285
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4286
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4298 4299 4300 4301
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4302 4303 4304 4305 4306
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4307
	struct hlist_head *hhead;
4308 4309 4310 4311

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4312

B
Ben Blum 已提交
4313 4314
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4315 4316 4317
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4318
		if (ss->use_id)
4319
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4320 4321
	}

4322 4323 4324
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4325
	BUG_ON(!init_root_id(&rootnode));
4326 4327 4328 4329 4330 4331 4332

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4333
	err = register_filesystem(&cgroup_fs_type);
4334 4335
	if (err < 0) {
		kobject_put(cgroup_kobj);
4336
		goto out;
4337
	}
4338

L
Li Zefan 已提交
4339
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4340

4341
out:
4342 4343 4344
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4345 4346
	return err;
}
4347

4348 4349 4350 4351 4352 4353
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4354
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4384
	for_each_active_root(root) {
4385
		struct cgroup_subsys *ss;
4386
		struct cgroup *cgrp;
4387 4388
		int count = 0;

4389
		seq_printf(m, "%d:", root->hierarchy_id);
4390 4391
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4392 4393 4394
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4395
		seq_putc(m, ':');
4396
		cgrp = task_cgroup_from_root(tsk, root);
4397
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4419
const struct file_operations proc_cgroup_operations = {
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4431
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4432 4433 4434 4435 4436
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4437 4438 4439
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4440 4441
		if (ss == NULL)
			continue;
4442 4443
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4444
			   ss->root->number_of_cgroups, !ss->disabled);
4445 4446 4447 4448 4449 4450 4451
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4452
	return single_open(file, proc_cgroupstats_show, NULL);
4453 4454
}

4455
static const struct file_operations proc_cgroupstats_operations = {
4456 4457 4458 4459 4460 4461
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4462 4463
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4464
 * @child: pointer to task_struct of forking parent process.
4465 4466 4467 4468 4469
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
 * it was not made under the protection of RCU, cgroup_mutex or
 * threadgroup_change_begin(), so it might no longer be a valid
 * cgroup pointer.  cgroup_attach_task() might have already changed
 * current->cgroups, allowing the previously referenced cgroup
 * group to be removed and freed.
 *
 * Outside the pointer validity we also need to process the css_set
 * inheritance between threadgoup_change_begin() and
 * threadgoup_change_end(), this way there is no leak in any process
 * wide migration performed by cgroup_attach_proc() that could otherwise
 * miss a thread because it is too early or too late in the fork stage.
4481 4482 4483 4484 4485 4486
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4487 4488 4489 4490 4491 4492
	/*
	 * We don't need to task_lock() current because current->cgroups
	 * can't be changed concurrently here. The parent obviously hasn't
	 * exited and called cgroup_exit(), and we are synchronized against
	 * cgroup migration through threadgroup_change_begin().
	 */
4493 4494 4495
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	INIT_LIST_HEAD(&child->cg_list);
4496 4497 4498
}

/**
L
Li Zefan 已提交
4499 4500 4501 4502 4503 4504
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4505 4506 4507 4508 4509
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4510 4511 4512 4513 4514 4515
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4516 4517
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
4518
				ss->fork(child);
4519 4520 4521 4522
		}
	}
}

4523
/**
L
Li Zefan 已提交
4524 4525 4526 4527 4528 4529 4530 4531
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4532 4533
void cgroup_post_fork(struct task_struct *child)
{
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4545 4546
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
		if (list_empty(&child->cg_list)) {
			/*
			 * It's safe to use child->cgroups without task_lock()
			 * here because we are protected through
			 * threadgroup_change_begin() against concurrent
			 * css_set change in cgroup_task_migrate(). Also
			 * the task can't exit at that point until
			 * wake_up_new_task() is called, so we are protected
			 * against cgroup_exit() setting child->cgroup to
			 * init_css_set.
			 */
4558
			list_add(&child->cg_list, &child->cgroups->tasks);
4559
		}
4560 4561 4562
		write_unlock(&css_set_lock);
	}
}
4563 4564 4565
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4566
 * @run_callback: run exit callbacks?
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4595 4596
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4597 4598 4599
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4600
	struct css_set *cg;
4601
	int i;
4602 4603 4604 4605 4606 4607 4608 4609 4610

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4611
			list_del_init(&tsk->cg_list);
4612 4613 4614
		write_unlock(&css_set_lock);
	}

4615 4616
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4617 4618
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
4631
				ss->exit(cgrp, old_cgrp, tsk);
4632 4633 4634
			}
		}
	}
4635
	task_unlock(tsk);
4636

4637
	if (cg)
4638
		put_css_set_taskexit(cg);
4639
}
4640

L
Li Zefan 已提交
4641
/**
4642
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4643
 * @cgrp: the cgroup in question
4644
 * @task: the task in question
L
Li Zefan 已提交
4645
 *
4646 4647
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4648 4649 4650 4651 4652 4653
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4654
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4655 4656 4657 4658
{
	int ret;
	struct cgroup *target;

4659
	if (cgrp == dummytop)
4660 4661
		return 1;

4662
	target = task_cgroup_from_root(task, cgrp->root);
4663 4664 4665
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4666 4667
	return ret;
}
4668

4669
static void check_for_release(struct cgroup *cgrp)
4670 4671 4672
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4673 4674
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4675 4676 4677 4678
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
4679
		raw_spin_lock(&release_list_lock);
4680 4681 4682
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4683 4684
			need_schedule_work = 1;
		}
4685
		raw_spin_unlock(&release_list_lock);
4686 4687 4688 4689 4690
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4691 4692
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4693
{
4694
	struct cgroup *cgrp = css->cgroup;
4695
	int val;
4696
	rcu_read_lock();
4697
	val = atomic_sub_return(count, &css->refcnt);
4698
	if (val == 1) {
4699 4700 4701 4702
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4703
		cgroup_wakeup_rmdir_waiter(cgrp);
4704 4705
	}
	rcu_read_unlock();
4706
	WARN_ON_ONCE(val < 1);
4707
}
B
Ben Blum 已提交
4708
EXPORT_SYMBOL_GPL(__css_put);
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
4737
	raw_spin_lock(&release_list_lock);
4738 4739 4740
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4741
		char *pathbuf = NULL, *agentbuf = NULL;
4742
		struct cgroup *cgrp = list_entry(release_list.next,
4743 4744
						    struct cgroup,
						    release_list);
4745
		list_del_init(&cgrp->release_list);
4746
		raw_spin_unlock(&release_list_lock);
4747
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4748 4749 4750 4751 4752 4753 4754
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4755 4756

		i = 0;
4757 4758
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4773 4774 4775
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4776
		raw_spin_lock(&release_list_lock);
4777
	}
4778
	raw_spin_unlock(&release_list_lock);
4779 4780
	mutex_unlock(&cgroup_mutex);
}
4781 4782 4783 4784 4785 4786 4787 4788 4789

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4790 4791 4792 4793 4794
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
4818 4819 4820 4821 4822 4823 4824
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
4825
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4826 4827 4828 4829 4830

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4831
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4832 4833 4834

unsigned short css_depth(struct cgroup_subsys_state *css)
{
4835 4836
	struct css_id *cssid;

4837
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4838 4839 4840 4841 4842

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
4843
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
4844

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
4858
bool css_is_ancestor(struct cgroup_subsys_state *child,
4859
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4860
{
4861 4862 4863
	struct css_id *child_id;
	struct css_id *root_id;
	bool ret = true;
K
KAMEZAWA Hiroyuki 已提交
4864

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	rcu_read_lock();
	child_id  = rcu_dereference(child->id);
	root_id = rcu_dereference(root->id);
	if (!child_id
	    || !root_id
	    || (child_id->depth < root_id->depth)
	    || (child_id->stack[root_id->depth] != root_id->id))
		ret = false;
	rcu_read_unlock();
	return ret;
K
KAMEZAWA Hiroyuki 已提交
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
4888
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4889
	idr_remove(&ss->idr, id->id);
4890
	spin_unlock(&ss->id_lock);
4891
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
4892
}
B
Ben Blum 已提交
4893
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
4916
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4917 4918
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4919
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
4934
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4935
	idr_remove(&ss->idr, myid);
4936
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4937 4938 4939 4940 4941 4942
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4943 4944
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4945 4946 4947
{
	struct css_id *newid;

4948
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
4966
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
4967 4968 4969 4970 4971

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
4972
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5010
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
5043
		spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5044
		tmp = idr_get_next(&ss->idr, &tmpid);
5045
		spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5085
#ifdef CONFIG_CGROUP_DEBUG
5086
static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5087 5088 5089 5090 5091 5092 5093 5094 5095
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5096
static void debug_destroy(struct cgroup *cont)
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5145 5146
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */