spapr.c 77.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "sysemu/sysemu.h"
29
#include "sysemu/numa.h"
30
#include "hw/hw.h"
31
#include "hw/fw-path-provider.h"
32
#include "elf.h"
P
Paolo Bonzini 已提交
33
#include "net/net.h"
A
Andrew Jones 已提交
34
#include "sysemu/device_tree.h"
35
#include "sysemu/block-backend.h"
36 37
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
B
Bharata B Rao 已提交
38
#include "sysemu/device_tree.h"
39
#include "kvm_ppc.h"
40
#include "migration/migration.h"
41
#include "mmu-hash64.h"
42
#include "qom/cpu.h"
43 44

#include "hw/boards.h"
P
Paolo Bonzini 已提交
45
#include "hw/ppc/ppc.h"
46 47
#include "hw/loader.h"

P
Paolo Bonzini 已提交
48 49 50 51
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
52
#include "hw/pci/msi.h"
53

54
#include "hw/pci/pci.h"
55 56
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
57

58
#include "exec/address-spaces.h"
59
#include "hw/usb.h"
60
#include "qemu/config-file.h"
61
#include "qemu/error-report.h"
62
#include "trace.h"
63
#include "hw/nmi.h"
A
Avi Kivity 已提交
64

65
#include "hw/compat.h"
D
David Gibson 已提交
66
#include "qemu-common.h"
67

68 69
#include <libfdt.h>

70 71 72 73 74 75 76 77 78 79
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
80
#define FDT_MAX_SIZE            0x100000
81
#define RTAS_MAX_SIZE           0x10000
82
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
83 84
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
85 86
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
87

88
#define MIN_RMA_SLOF            128UL
89 90 91

#define TIMEBASE_FREQ           512000000ULL

92 93
#define PHANDLE_XICP            0x00001111

94 95
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

96
static XICSState *try_create_xics(const char *type, int nr_servers,
97
                                  int nr_irqs, Error **errp)
98
{
99
    Error *err = NULL;
100 101 102 103 104
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
105 106 107 108
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
109 110
        return NULL;
    }
111
    return XICS_COMMON(dev);
112 113
}

114
static XICSState *xics_system_init(MachineState *machine,
115
                                   int nr_servers, int nr_irqs, Error **errp)
116 117 118
{
    XICSState *icp = NULL;

119
    if (kvm_enabled()) {
120 121
        Error *err = NULL;

122
        if (machine_kernel_irqchip_allowed(machine)) {
123
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124
        }
125
        if (machine_kernel_irqchip_required(machine) && !icp) {
126 127 128 129
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
130 131 132 133
        }
    }

    if (!icp) {
134
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
135 136 137 138 139
    }

    return icp;
}

140 141 142 143 144 145 146 147
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

148
    if (cpu->cpu_version) {
149
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
150 151 152 153 154
        if (ret < 0) {
            return ret;
        }
    }

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

194
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
195
{
196 197
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
198 199
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
200
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
201

202 203 204 205
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
206

207
        if ((index % smt) != 0) {
208 209 210
            continue;
        }

211
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212

213 214 215 216 217 218 219 220 221
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222
        if (offset < 0) {
223 224 225 226
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
227 228
        }

229 230
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
231 232 233
        if (ret < 0) {
            return ret;
        }
234

235 236 237 238 239
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

240
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
241
                                     ppc_get_compat_smt_threads(cpu));
242 243 244
        if (ret < 0) {
            return ret;
        }
245 246 247 248
    }
    return ret;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

283 284
static hwaddr spapr_node0_size(void)
{
285 286
    MachineState *machine = MACHINE(qdev_get_machine());

287 288 289 290
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
291 292
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
293 294 295
            }
        }
    }
296
    return machine->ram_size;
297 298
}

299 300 301 302 303 304 305 306 307 308
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

309 310 311 312
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
313

314
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
315 316
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
317
                                   bool little_endian,
318 319
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
320 321 322 323
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324 325
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
326
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
328
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
329
    char *buf;
330

331 332 333 334 335 336 337 338 339 340 341
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

342
    fdt = g_malloc0(FDT_MAX_SIZE);
343 344
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

345 346 347 348 349 350
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
351 352 353 354 355
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
356
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
357
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
A
Alexey Kardashevskiy 已提交
380 381 382
    if (qemu_uuid_set) {
        _FDT((fdt_property_string(fdt, "system-id", buf)));
    }
383 384
    g_free(buf);

S
Sam Bobroff 已提交
385 386 387 388 389
    if (qemu_get_vm_name()) {
        _FDT((fdt_property_string(fdt, "ibm,partition-name",
                                  qemu_get_vm_name())));
    }

390 391 392 393 394 395
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

396 397 398
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

399 400 401 402 403
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
404 405 406
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
407

408
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
409 410 411
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
412
    }
413 414 415
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
416 417 418
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
419

420 421
    _FDT((fdt_end_node(fdt)));

422 423 424
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

425 426 427
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
428 429 430 431 432 433
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
434

435 436 437
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

438
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
439 440
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
441

442 443 444 445
    if (msi_supported) {
        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
    }

446
    /*
447
     * According to PAPR, rtas ibm,os-term does not guarantee a return
448 449 450 451 452 453 454
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

455 456
    _FDT((fdt_end_node(fdt)));

457
    /* interrupt controller */
458
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
459 460 461 462 463 464 465 466

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
467 468 469
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
470 471 472

    _FDT((fdt_end_node(fdt)));

473 474 475 476 477 478 479
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
480 481
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
482 483 484

    _FDT((fdt_end_node(fdt)));

485 486 487
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

508 509 510
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

511 512 513
    return fdt;
}

514
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
515 516 517 518 519
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
520
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
537
    return off;
538 539
}

540
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
541
{
542
    MachineState *machine = MACHINE(spapr);
543 544 545 546 547 548 549 550
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
551
        ramnode.node_mem = machine->ram_size;
552
        nodes = &ramnode;
553
    }
554

555 556 557 558
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
559
        if (mem_start >= machine->ram_size) {
560 561
            node_size = 0;
        } else {
562
            node_size = nodes[i].node_mem;
563 564
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
565 566
            }
        }
567 568
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
569
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
570 571 572
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
573 574 575 576 577 578 579 580 581 582 583 584
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
585 586 587 588 589
    }

    return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
603
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
604 605
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    /* Note: we keep CI large pages off for now because a 64K capable guest
     * provisioned with large pages might otherwise try to map a qemu
     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
     * even if that qemu runs on a 4k host.
     *
     * We can later add this bit back when we are confident this is not
     * an issue (!HV KVM or 64K host)
     */
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
    uint8_t *pa_features;
    size_t pa_size;

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
652
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

690 691 692 693 694 695 696 697 698 699 700 701 702
    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
    if (env->mmu_model == POWERPC_MMU_2_06) {
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
    }
    if (env->ci_large_pages) {
        pa_features[3] |= 0x20;
    }
    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));

703
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
704
                           cs->cpu_index / vcpus_per_socket)));
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

751 752 753 754 755 756 757 758 759 760 761
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
762
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
763
    uint32_t *int_buf, *cur_index, buf_len;
764
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
765

766 767 768 769 770 771 772
    /*
     * Don't create the node if there are no DR LMBs.
     */
    if (!nr_lmbs) {
        return 0;
    }

773 774 775 776 777 778
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        sPAPRDRConnectorClass *drck;
805
        uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        uint32_t *dynamic_memory = cur_index;

        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                       addr/lmb_size);
        g_assert(drc);
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

        dynamic_memory[0] = cpu_to_be32(addr >> 32);
        dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
        dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
        dynamic_memory[3] = cpu_to_be32(0); /* reserved */
        dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
        if (addr < machine->ram_size ||
                    memory_region_present(get_system_memory(), addr)) {
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
        } else {
            dynamic_memory[5] = cpu_to_be32(0);
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
834
    int_buf[0] = cpu_to_be32(nr_nodes);
835 836
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
837
    for (i = 0; i < nr_nodes; i++) {
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
                                 bool cpu_update, bool memory_update)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
    if (cpu_update) {
        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
    }

879
    /* Generate ibm,dynamic-reconfiguration-memory node if required */
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    if (memory_update && smc->dr_lmb_enabled) {
        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

900
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
901 902 903
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
904
{
905
    MachineState *machine = MACHINE(qdev_get_machine());
B
Bharata B Rao 已提交
906
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
907
    const char *boot_device = machine->boot_order;
908 909 910
    int ret, i;
    size_t cb = 0;
    char *bootlist;
911
    void *fdt;
912
    sPAPRPHBState *phb;
913

914
    fdt = g_malloc(FDT_MAX_SIZE);
915 916 917

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
918

919 920 921 922
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
923 924
    }

925 926 927 928 929 930
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

931 932 933 934 935 936 937 938
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
            fprintf(stderr, "could not set up rng device in the fdt\n");
            exit(1);
        }
    }

939
    QLIST_FOREACH(phb, &spapr->phbs, list) {
940
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
941 942 943 944 945 946 947
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

948 949 950 951 952 953
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

954 955
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

972 973 974 975 976 977 978 979 980
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

981
    if (!spapr->has_graphics) {
982 983
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
984

B
Bharata B Rao 已提交
985 986 987 988
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

989 990
    _FDT((fdt_pack(fdt)));

991
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
992 993
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
994 995 996
        exit(1);
    }

A
Andrew Jones 已提交
997
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
998
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
999

G
Gonglei 已提交
1000
    g_free(bootlist);
1001
    g_free(fdt);
1002 1003 1004 1005 1006 1007 1008
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1009
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1010
{
1011 1012
    CPUPPCState *env = &cpu->env;

1013 1014 1015 1016
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1017
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1018
    }
1019 1020
}

1021 1022 1023 1024 1025 1026
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/*
 * Get the fd to access the kernel htab, re-opening it if necessary
 */
static int get_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        return spapr->htab_fd;
    }

    spapr->htab_fd = kvmppc_get_htab_fd(false);
    if (spapr->htab_fd < 0) {
        error_report("Unable to open fd for reading hash table from KVM: %s",
                     strerror(errno));
    }

    return spapr->htab_fd;
}

static void close_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        close(spapr->htab_fd);
    }
    spapr->htab_fd = -1;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
    int shift;

    /* We aim for a hash table of size 1/128 the size of RAM (rounded
     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
     * that's much more than is needed for Linux guests */
    shift = ctz64(pow2ceil(ramsize)) - 7;
    shift = MAX(shift, 18); /* Minimum architected size */
    shift = MIN(shift, 46); /* Maximum architected size */
    return shift;
}

1066 1067
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
                                 Error **errp)
1068
{
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    long rc;

    /* Clean up any HPT info from a previous boot */
    g_free(spapr->htab);
    spapr->htab = NULL;
    spapr->htab_shift = 0;
    close_htab_fd(spapr);

    rc = kvmppc_reset_htab(shift);
    if (rc < 0) {
        /* kernel-side HPT needed, but couldn't allocate one */
        error_setg_errno(errp, errno,
                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
                         shift);
        /* This is almost certainly fatal, but if the caller really
         * wants to carry on with shift == 0, it's welcome to try */
    } else if (rc > 0) {
        /* kernel-side HPT allocated */
        if (rc != shift) {
            error_setg(errp,
                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
                       shift, rc);
1091 1092
        }

1093
        spapr->htab_shift = shift;
1094
        kvmppc_kern_htab = true;
1095
    } else {
1096 1097 1098
        /* kernel-side HPT not needed, allocate in userspace instead */
        size_t size = 1ULL << shift;
        int i;
1099

1100 1101 1102 1103 1104
        spapr->htab = qemu_memalign(size, size);
        if (!spapr->htab) {
            error_setg_errno(errp, errno,
                             "Could not allocate HPT of order %d", shift);
            return;
1105 1106
        }

1107 1108 1109
        memset(spapr->htab, 0, size);
        spapr->htab_shift = shift;
        kvmppc_kern_htab = false;
1110

1111 1112
        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
            DIRTY_HPTE(HPTE(spapr->htab, i));
1113
        }
1114
    }
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

1134
static void ppc_spapr_reset(void)
1135
{
1136 1137
    MachineState *machine = MACHINE(qdev_get_machine());
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1138
    PowerPCCPU *first_ppc_cpu;
1139
    uint32_t rtas_limit;
1140

1141 1142 1143
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    /* Allocate and/or reset the hash page table */
    spapr_reallocate_hpt(spapr,
                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
                         &error_fatal);

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
    }
1154

1155
    qemu_devices_reset();
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

1166 1167 1168 1169
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

1170 1171 1172 1173
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

1174
    /* Set up the entry state */
1175 1176 1177 1178
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1179
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1180 1181 1182

}

1183 1184
static void spapr_cpu_reset(void *opaque)
{
1185
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1186
    PowerPCCPU *cpu = opaque;
1187
    CPUState *cs = CPU(cpu);
1188
    CPUPPCState *env = &cpu->env;
1189

1190
    cpu_reset(cs);
1191 1192 1193 1194

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
1195
    cs->halted = 1;
1196 1197

    env->spr[SPR_HIOR] = 0;
1198

1199
    env->external_htab = (uint8_t *)spapr->htab;
1200
    env->htab_base = -1;
1201 1202 1203 1204 1205 1206
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
1207
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1208
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1209
        (spapr->htab_shift - 18);
1210 1211
}

1212
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1213
{
1214
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1215
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1216

P
Paolo Bonzini 已提交
1217
    if (dinfo) {
1218 1219
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1220 1221 1222 1223 1224 1225 1226
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1227
static void spapr_rtc_create(sPAPRMachineState *spapr)
1228 1229 1230 1231 1232
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1233 1234 1235

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1236 1237
}

1238
/* Returns whether we want to use VGA or not */
1239
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1240
{
1241 1242
    switch (vga_interface_type) {
    case VGA_NONE:
1243 1244 1245
        return false;
    case VGA_DEVICE:
        return true;
1246
    case VGA_STD:
1247
    case VGA_VIRTIO:
1248
        return pci_vga_init(pci_bus) != NULL;
1249
    default:
1250 1251 1252
        error_setg(errp,
                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
        return false;
1253 1254 1255
    }
}

1256 1257
static int spapr_post_load(void *opaque, int version_id)
{
1258
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1259 1260
    int err = 0;

S
Stefan Weil 已提交
1261
    /* In earlier versions, there was no separate qdev for the PAPR
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1277 1278
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1279
    .version_id = 3,
1280
    .minimum_version_id = 1,
1281
    .post_load = spapr_post_load,
1282
    .fields = (VMStateField[]) {
1283 1284
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1285 1286

        /* RTC offset */
1287
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1288

1289
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1290 1291 1292 1293 1294 1295
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1296
    sPAPRMachineState *spapr = opaque;
1297 1298 1299 1300

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1301 1302 1303 1304 1305 1306 1307 1308
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());
    }


1309 1310 1311
    return 0;
}

1312
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1313 1314
                                 int64_t max_ns)
{
1315
    bool has_timeout = max_ns != -1;
1316 1317
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1318
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1334
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1349 1350
            if (has_timeout &&
                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1364
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1365
                                int64_t max_ns)
1366 1367 1368 1369 1370
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1371
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1387
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1388 1389 1390 1391 1392 1393 1394 1395 1396
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1397
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1416
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1438
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1439 1440
}

1441 1442 1443
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1444 1445
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1446
    sPAPRMachineState *spapr = opaque;
1447
    int fd;
1448
    int rc = 0;
1449 1450 1451 1452

    /* Iteration header */
    qemu_put_be32(f, 0);

1453 1454 1455
    if (!spapr->htab) {
        assert(kvm_enabled());

1456 1457 1458
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1459 1460
        }

1461
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1462 1463 1464 1465
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1466 1467
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1468
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1469 1470 1471 1472 1473 1474 1475
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1476
    return rc;
1477 1478 1479 1480
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1481
    sPAPRMachineState *spapr = opaque;
1482
    int fd;
1483 1484 1485 1486

    /* Iteration header */
    qemu_put_be32(f, 0);

1487 1488 1489 1490 1491
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1492 1493 1494
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1495 1496
        }

1497
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1498 1499 1500
        if (rc < 0) {
            return rc;
        }
1501
        close_htab_fd(spapr);
1502
    } else {
1503 1504 1505
        if (spapr->htab_first_pass) {
            htab_save_first_pass(f, spapr, -1);
        }
1506 1507
        htab_save_later_pass(f, spapr, -1);
    }
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1519
    sPAPRMachineState *spapr = opaque;
1520
    uint32_t section_hdr;
1521
    int fd = -1;
1522 1523

    if (version_id < 1 || version_id > 1) {
1524
        error_report("htab_load() bad version");
1525 1526 1527 1528 1529 1530
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
1531
        Error *local_err = NULL;
1532 1533 1534 1535 1536

        /* First section gives the htab size */
        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
        if (local_err) {
            error_report_err(local_err);
1537 1538 1539 1540 1541
            return -EINVAL;
        }
        return 0;
    }

1542 1543 1544 1545 1546
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
1547 1548
            error_report("Unable to open fd to restore KVM hash table: %s",
                         strerror(errno));
1549 1550 1551
        }
    }

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1565
        if ((index + n_valid + n_invalid) >
1566 1567
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
1568 1569 1570
            error_report(
                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
                index, n_valid, n_invalid, spapr->htab_shift);
1571 1572 1573
            return -EINVAL;
        }

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1592 1593 1594
        }
    }

1595 1596 1597 1598 1599
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1600 1601 1602 1603 1604 1605
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1606
    .save_live_complete_precopy = htab_save_complete,
1607 1608 1609
    .load_state = htab_load,
};

1610 1611 1612 1613 1614 1615 1616
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1617 1618
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
                           Error **errp)
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

    /* PAPR always has exception vectors in RAM not ROM. To ensure this,
     * MSR[IP] should never be set.
     */
    env->msr_mask &= ~(1 << 6);

    /* Tell KVM that we're in PAPR mode */
    if (kvm_enabled()) {
        kvmppc_set_papr(cpu);
    }

    if (cpu->max_compat) {
1636 1637 1638 1639 1640 1641 1642
        Error *local_err = NULL;

        ppc_set_compat(cpu, cpu->max_compat, &local_err);
        if (local_err) {
            error_propagate(errp, local_err);
            return;
        }
1643 1644 1645 1646 1647 1648 1649
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

D
David Gibson 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1672
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1673 1674 1675 1676 1677 1678
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1679
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
1691
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
D
David Gibson 已提交
1692 1693 1694
{
    int i;

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
    }

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
D
David Gibson 已提交
1709 1710 1711 1712
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1713 1714 1715 1716 1717 1718
            error_setg(errp,
                       "Node %d memory size 0x%" PRIx64
                       " is not aligned to %llu MiB",
                       i, numa_info[i].node_mem,
                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
            return;
D
David Gibson 已提交
1719 1720 1721 1722
        }
    }
}

1723
/* pSeries LPAR / sPAPR hardware init */
1724
static void ppc_spapr_init(MachineState *machine)
1725
{
1726
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1727
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1728 1729 1730
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1731
    PowerPCCPU *cpu;
1732
    PCIHostState *phb;
1733
    int i;
A
Avi Kivity 已提交
1734 1735
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1736 1737
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1738
    hwaddr rma_alloc_size;
1739
    hwaddr node0_size = spapr_node0_size();
1740 1741
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1742
    long load_limit, fw_size;
1743
    bool kernel_le = false;
1744
    char *filename;
1745

1746 1747
    msi_supported = true;

1748 1749
    QLIST_INIT(&spapr->phbs);

1750 1751
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1752
    /* Allocate RMA if necessary */
1753
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1754 1755

    if (rma_alloc_size == -1) {
1756
        error_report("Unable to create RMA");
1757 1758
        exit(1);
    }
1759

1760
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1761
        spapr->rma_size = rma_alloc_size;
1762
    } else {
1763
        spapr->rma_size = node0_size;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1778 1779
    }

1780
    if (spapr->rma_size > node0_size) {
1781 1782
        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
                     spapr->rma_size);
1783 1784 1785
        exit(1);
    }

1786 1787
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1788

1789
    /* Set up Interrupt Controller before we create the VCPUs */
1790
    spapr->icp = xics_system_init(machine,
1791
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1792
                                               smp_threads),
1793
                                  XICS_IRQS, &error_fatal);
1794

D
David Gibson 已提交
1795
    if (smc->dr_lmb_enabled) {
1796
        spapr_validate_node_memory(machine, &error_fatal);
D
David Gibson 已提交
1797 1798
    }

1799
    /* init CPUs */
1800 1801
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1802 1803
    }
    for (i = 0; i < smp_cpus; i++) {
1804
        cpu = cpu_ppc_init(machine->cpu_model);
1805
        if (cpu == NULL) {
1806
            error_report("Unable to find PowerPC CPU definition");
1807 1808
            exit(1);
        }
1809
        spapr_cpu_init(spapr, cpu, &error_fatal);
1810 1811
    }

1812 1813 1814
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
1815
        kvmppc_enable_set_mode_hcall();
1816 1817
    }

1818
    /* allocate RAM */
1819
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1820
                                         machine->ram_size);
1821
    memory_region_add_subregion(sysmem, 0, ram);
1822

1823 1824 1825 1826 1827 1828 1829 1830
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1831 1832 1833 1834 1835
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;

        if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1836 1837
            error_report("Specified number of memory slots %"
                         PRIu64" exceeds max supported %d",
1838
                         machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1839
            exit(1);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
1850 1851 1852 1853
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

1854
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1855
    if (!filename) {
1856
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1857 1858
        exit(1);
    }
1859 1860 1861
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1862
        error_report("Could not load LPAR rtas '%s'", filename);
1863 1864
        exit(1);
    }
1865
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1866 1867
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1868 1869
        exit(1);
    }
1870
    g_free(filename);
1871

1872 1873 1874
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1875
    /* Set up the RTC RTAS interfaces */
1876
    spapr_rtc_create(spapr);
1877

1878
    /* Set up VIO bus */
1879 1880
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1881
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1882
        if (serial_hds[i]) {
1883
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1884 1885
        }
    }
1886

D
David Gibson 已提交
1887 1888 1889
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1890
    /* Set up PCI */
1891 1892
    spapr_pci_rtas_init();

1893
    phb = spapr_create_phb(spapr, 0);
1894

P
Paolo Bonzini 已提交
1895
    for (i = 0; i < nb_nics; i++) {
1896 1897 1898
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1899
            nd->model = g_strdup("ibmveth");
1900 1901 1902
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1903
            spapr_vlan_create(spapr->vio_bus, nd);
1904
        } else {
1905
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1906 1907 1908
        }
    }

1909
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1910
        spapr_vscsi_create(spapr->vio_bus);
1911 1912
    }

1913
    /* Graphics */
1914
    if (spapr_vga_init(phb->bus, &error_fatal)) {
1915
        spapr->has_graphics = true;
1916
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1917 1918
    }

1919
    if (machine->usb) {
1920 1921 1922 1923 1924
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
1925

1926
        if (spapr->has_graphics) {
1927 1928 1929 1930
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1931 1932 1933
        }
    }

1934
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1935 1936 1937
        error_report(
            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
            MIN_RMA_SLOF);
1938 1939 1940
        exit(1);
    }

1941 1942 1943 1944
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1945 1946
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
                               0, 0);
1947
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1948 1949
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
1950 1951
                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
                                   0, 0);
1952 1953
            kernel_le = kernel_size > 0;
        }
1954
        if (kernel_size < 0) {
1955 1956
            error_report("error loading %s: %s",
                         kernel_filename, load_elf_strerror(kernel_size));
1957 1958 1959 1960 1961
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1962 1963 1964 1965
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1966
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1967
                                              load_limit - initrd_base);
1968
            if (initrd_size < 0) {
1969 1970
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
1971 1972 1973 1974 1975 1976
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1977
    }
1978

1979 1980 1981 1982
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1983
    if (!filename) {
1984
        error_report("Could not find LPAR firmware '%s'", bios_name);
1985 1986
        exit(1);
    }
1987
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1988 1989
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1990 1991 1992 1993
        exit(1);
    }
    g_free(filename);

1994 1995 1996
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1997 1998 1999 2000
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2001
    /* Prepare the device tree */
2002
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2003
                                            kernel_size, kernel_le,
2004 2005
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
2006
    assert(spapr->fdt_skel != NULL);
2007

2008 2009 2010 2011
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2012
    qemu_register_boot_set(spapr_boot_set, spapr);
2013 2014
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2033
/*
2034
 * Implementation of an interface to adjust firmware path
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2090 2091
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2092
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2093

2094
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2095 2096 2097 2098
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2099
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2100

2101 2102
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2103 2104 2105 2106
}

static void spapr_machine_initfn(Object *obj)
{
2107 2108 2109
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->htab_fd = -1;
E
Eduardo Habkost 已提交
2110 2111
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2112 2113 2114
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
2115 2116
}

2117 2118 2119 2120 2121 2122 2123
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

B
Bharata B Rao 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
                           uint32_t node, Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;

    /*
     * Check for DRC connectors and send hotplug notification to the
     * guest only in case of hotplugged memory. This allows cold plugged
     * memory to be specified at boot time.
     */
    if (!dev->hotplugged) {
        return;
    }

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }
2172
    spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
B
Bharata B Rao 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2193
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

    spapr_add_lmbs(dev, addr, size, node, &error_abort);

out:
    error_propagate(errp, local_err);
}

static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2216
        int node;
B
Bharata B Rao 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        spapr_memory_plug(hotplug_dev, dev, node, errp);
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        error_setg(errp, "Memory hot unplug not supported by sPAPR");
    }
}

static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
                                             DeviceState *dev)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2270 2271 2272 2273 2274 2275 2276
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2277 2278 2279
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2280
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2281
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2282
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
2283
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2284

2285
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2286 2287 2288 2289 2290 2291

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
2292 2293 2294
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
2295
    mc->max_cpus = MAX_CPUMASK_BITS;
2296
    mc->no_parallel = 1;
2297
    mc->default_boot_order = "";
2298
    mc->default_ram_size = 512 * M_BYTE;
2299
    mc->kvm_type = spapr_kvm_type;
2300
    mc->has_dynamic_sysbus = true;
2301
    mc->pci_allow_0_address = true;
B
Bharata B Rao 已提交
2302 2303 2304
    mc->get_hotplug_handler = spapr_get_hotpug_handler;
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
2305
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2306

2307
    smc->dr_lmb_enabled = true;
2308
    fwc->get_dev_path = spapr_get_fw_dev_path;
2309
    nc->nmi_monitor_handler = spapr_nmi;
2310 2311 2312 2313 2314
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
2315
    .abstract      = true,
2316
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
2317
    .instance_init = spapr_machine_initfn,
2318
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
2319
    .class_size    = sizeof(sPAPRMachineClass),
2320
    .class_init    = spapr_machine_class_init,
2321 2322
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
2323
        { TYPE_NMI },
B
Bharata B Rao 已提交
2324
        { TYPE_HOTPLUG_HANDLER },
2325 2326
        { }
    },
2327 2328
};

2329
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
2330 2331 2332 2333 2334
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
2335 2336 2337 2338
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
    machine_init(spapr_machine_register_##suffix)

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/*
 * pseries-2.6
 */
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_6, "2.6", true);

2371 2372 2373
/*
 * pseries-2.5
 */
2374 2375 2376
#define SPAPR_COMPAT_2_5 \
        HW_COMPAT_2_5

D
David Gibson 已提交
2377
static void spapr_machine_2_5_instance_options(MachineState *machine)
2378
{
D
David Gibson 已提交
2379 2380 2381 2382
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
2383 2384
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

2385
    spapr_machine_2_6_class_options(mc);
2386
    smc->use_ohci_by_default = true;
2387
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2388 2389
}

2390
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2391 2392 2393 2394

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
2395
#define SPAPR_COMPAT_2_4 \
2396
        SPAPR_COMPAT_2_5 \
C
Cornelia Huck 已提交
2397 2398
        HW_COMPAT_2_4

D
David Gibson 已提交
2399
static void spapr_machine_2_4_instance_options(MachineState *machine)
2400
{
D
David Gibson 已提交
2401 2402
    spapr_machine_2_5_instance_options(machine);
}
2403

D
David Gibson 已提交
2404 2405
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
2406 2407 2408 2409
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
2410
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2411 2412
}

2413
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2414 2415 2416 2417

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
2418
#define SPAPR_COMPAT_2_3 \
C
Cornelia Huck 已提交
2419
        SPAPR_COMPAT_2_4 \
2420 2421 2422 2423 2424 2425
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
2426

D
David Gibson 已提交
2427
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
2428
{
D
David Gibson 已提交
2429
    spapr_machine_2_4_instance_options(machine);
2430
    savevm_skip_section_footers();
2431
    global_state_set_optional();
2432
    savevm_skip_configuration();
J
Jason Wang 已提交
2433 2434
}

D
David Gibson 已提交
2435
static void spapr_machine_2_3_class_options(MachineClass *mc)
2436
{
2437
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
2438
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2439
}
2440
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2441

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        SPAPR_COMPAT_2_3 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
2455
static void spapr_machine_2_2_instance_options(MachineState *machine)
2456
{
D
David Gibson 已提交
2457
    spapr_machine_2_3_instance_options(machine);
2458
    machine->suppress_vmdesc = true;
2459 2460
}

D
David Gibson 已提交
2461
static void spapr_machine_2_2_class_options(MachineClass *mc)
2462
{
2463
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
2464
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2465
}
2466
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2467

2468 2469 2470 2471 2472 2473
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
2474

D
David Gibson 已提交
2475
static void spapr_machine_2_1_instance_options(MachineState *machine)
2476
{
D
David Gibson 已提交
2477
    spapr_machine_2_2_instance_options(machine);
2478
}
J
Jason Wang 已提交
2479

D
David Gibson 已提交
2480
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
2481
{
2482
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
2483
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
2484
}
2485
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
2486

2487
static void spapr_machine_register_types(void)
2488
{
2489
    type_register_static(&spapr_machine_info);
2490 2491
}

2492
type_init(spapr_machine_register_types)