fib_trie.c 64.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <net/net_namespace.h>
77 78 79 80 81 82
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
83
#include <net/switchdev.h>
D
David Ahern 已提交
84
#include <trace/events/fib.h>
85 86
#include "fib_lookup.h"

R
Robert Olsson 已提交
87
#define MAX_STAT_DEPTH 32
88

89 90
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
91 92 93

typedef unsigned int t_key;

94 95 96
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
97

98
struct key_vector {
99 100
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
101
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
102
	unsigned char slen;
A
Alexander Duyck 已提交
103
	union {
104
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
105
		struct hlist_head leaf;
106
		/* This array is valid if (pos | bits) > 0 (TNODE) */
107
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
108
	};
109 110
};

111
struct tnode {
112
	struct rcu_head rcu;
113 114
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
115
	struct key_vector __rcu *parent;
116
	struct key_vector kv[1];
117
#define tn_bits kv[0].bits
118 119 120
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
121 122
#define LEAF_SIZE	TNODE_SIZE(1)

123 124 125 126 127 128 129
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
130
	unsigned int resize_node_skipped;
131 132 133 134 135 136 137 138 139
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
140
	unsigned int prefixes;
R
Robert Olsson 已提交
141
	unsigned int nodesizes[MAX_STAT_DEPTH];
142
};
143 144

struct trie {
145
	struct key_vector kv[1];
146
#ifdef CONFIG_IP_FIB_TRIE_STATS
147
	struct trie_use_stats __percpu *stats;
148 149 150
#endif
};

151
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
152 153 154 155 156 157 158 159
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
160

161
static struct kmem_cache *fn_alias_kmem __read_mostly;
162
static struct kmem_cache *trie_leaf_kmem __read_mostly;
163

164 165 166 167 168
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

169
/* caller must hold RTNL */
170
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
172

173
/* caller must hold RCU read lock or RTNL */
174
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
176

177
/* wrapper for rcu_assign_pointer */
178
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
179
{
A
Alexander Duyck 已提交
180
	if (n)
181
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
182 183
}

184
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185 186 187

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
188
 */
189
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
190
{
191
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
192
}
R
Robert Olsson 已提交
193

194 195
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

196 197 198 199
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

200 201 202
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

203 204 205
	return index >> kv->pos;
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
264

265 266
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
267
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
268
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
269 270

static void __alias_free_mem(struct rcu_head *head)
271
{
R
Robert Olsson 已提交
272 273
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
274 275
}

R
Robert Olsson 已提交
276
static inline void alias_free_mem_rcu(struct fib_alias *fa)
277
{
R
Robert Olsson 已提交
278 279
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
280

281
#define TNODE_KMALLOC_MAX \
282
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283
#define TNODE_VMALLOC_MAX \
284
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
285

286
static void __node_free_rcu(struct rcu_head *head)
287
{
288
	struct tnode *n = container_of(head, struct tnode, rcu);
289

290
	if (!n->tn_bits)
291
		kmem_cache_free(trie_leaf_kmem, n);
292
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
293 294 295
		kfree(n);
	else
		vfree(n);
296 297
}

298
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
299

300
static struct tnode *tnode_alloc(int bits)
301
{
302 303 304 305 306 307 308 309 310
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
311
	if (size <= PAGE_SIZE)
312
		return kzalloc(size, GFP_KERNEL);
313
	else
314
		return vzalloc(size);
315
}
R
Robert Olsson 已提交
316

317
static inline void empty_child_inc(struct key_vector *n)
318
{
319
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
320 321
}

322
static inline void empty_child_dec(struct key_vector *n)
323
{
324
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
325 326
}

327
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
328
{
329 330
	struct key_vector *l;
	struct tnode *kv;
331

332
	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
333 334 335 336
	if (!kv)
		return NULL;

	/* initialize key vector */
337
	l = kv->kv;
338 339 340 341 342 343 344 345 346
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
347 348 349
	return l;
}

350
static struct key_vector *tnode_new(t_key key, int pos, int bits)
351
{
352
	unsigned int shift = pos + bits;
353 354
	struct key_vector *tn;
	struct tnode *tnode;
355 356 357

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
358

359
	tnode = tnode_alloc(bits);
360 361 362
	if (!tnode)
		return NULL;

363 364 365
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
		 sizeof(struct key_vector *) << bits);

366
	if (bits == KEYLENGTH)
367
		tnode->full_children = 1;
368
	else
369
		tnode->empty_children = 1ul << bits;
370

371
	tn = tnode->kv;
372 373 374 375 376
	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

377 378 379
	return tn;
}

380
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
381 382
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
383
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
384
{
385
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
386 387
}

388 389 390
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
391 392
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
393
{
394
	struct key_vector *chi = get_child(tn, i);
395
	int isfull, wasfull;
396

397
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
398

399
	/* update emptyChildren, overflow into fullChildren */
400
	if (!n && chi)
401
		empty_child_inc(tn);
402
	if (n && !chi)
403
		empty_child_dec(tn);
404

405
	/* update fullChildren */
406
	wasfull = tnode_full(tn, chi);
407
	isfull = tnode_full(tn, n);
408

409
	if (wasfull && !isfull)
410
		tn_info(tn)->full_children--;
411
	else if (!wasfull && isfull)
412
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
413

414 415 416
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

417
	rcu_assign_pointer(tn->tnode[i], n);
418 419
}

420
static void update_children(struct key_vector *tn)
421 422 423 424
{
	unsigned long i;

	/* update all of the child parent pointers */
425
	for (i = child_length(tn); i;) {
426
		struct key_vector *inode = get_child(tn, --i);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

442 443
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
444
{
445 446
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
447
	else
448
		put_child(tp, get_index(key, tp), n);
449 450
}

451
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
452
{
453
	tn_info(tn)->rcu.next = NULL;
454 455
}

456 457
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
458
{
459 460
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
461
}
E
Eric Dumazet 已提交
462

463
static void tnode_free(struct key_vector *tn)
464
{
465
	struct callback_head *head = &tn_info(tn)->rcu;
466 467 468

	while (head) {
		head = head->next;
469
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
470 471
		node_free(tn);

472
		tn = container_of(head, struct tnode, rcu)->kv;
473 474 475 476 477
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
478 479 480
	}
}

481 482 483
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
484
{
485
	struct key_vector *tp = node_parent(oldtnode);
486 487 488 489
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
490
	put_child_root(tp, tn->key, tn);
491 492 493 494 495 496 497 498

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
499
	for (i = child_length(tn); i;) {
500
		struct key_vector *inode = get_child(tn, --i);
501 502 503

		/* resize child node */
		if (tnode_full(tn, inode))
504
			tn = resize(t, inode);
505
	}
506

507
	return tp;
508 509
}

510 511
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
512
{
513
	struct key_vector *tn;
514
	unsigned long i;
515
	t_key m;
516

S
Stephen Hemminger 已提交
517
	pr_debug("In inflate\n");
518

519
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
520
	if (!tn)
521
		goto notnode;
522

523 524 525
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

526 527 528 529
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
530
	 */
531
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
532
		struct key_vector *inode = get_child(oldtnode, --i);
533
		struct key_vector *node0, *node1;
534
		unsigned long j, k;
535

536
		/* An empty child */
537
		if (!inode)
538 539 540
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
541
		if (!tnode_full(oldtnode, inode)) {
542
			put_child(tn, get_index(inode->key, tn), inode);
543 544 545
			continue;
		}

546 547 548
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

549 550
		/* An internal node with two children */
		if (inode->bits == 1) {
551 552
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
553
			continue;
554 555
		}

O
Olof Johansson 已提交
556
		/* We will replace this node 'inode' with two new
557
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
558 559 560 561 562
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
563
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
564 565
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
566 567 568
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
569
		 */
570 571 572
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
573
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
574

575
		tnode_free_append(tn, node1);
576 577 578 579 580
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
581
		for (k = child_length(inode), j = k / 2; j;) {
582 583 584 585
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
586
		}
587

588 589 590
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
591

592 593 594 595
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
596

597
	/* setup the parent pointers into and out of this node */
598
	return replace(t, oldtnode, tn);
599
nomem:
600 601
	/* all pointers should be clean so we are done */
	tnode_free(tn);
602 603
notnode:
	return NULL;
604 605
}

606 607
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
608
{
609
	struct key_vector *tn;
610
	unsigned long i;
611

S
Stephen Hemminger 已提交
612
	pr_debug("In halve\n");
613

614
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
615
	if (!tn)
616
		goto notnode;
617

618 619 620
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

621 622 623 624
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
625
	 */
626
	for (i = child_length(oldtnode); i;) {
627 628
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
629
		struct key_vector *inode;
630

631 632 633 634 635
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
636

637
		/* Two nonempty children */
638
		inode = tnode_new(node0->key, oldtnode->pos, 1);
639 640
		if (!inode)
			goto nomem;
641
		tnode_free_append(tn, inode);
642

643 644 645 646 647 648 649
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
650
	}
651

652
	/* setup the parent pointers into and out of this node */
653 654 655 656 657 658
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
659 660
}

661 662
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
663
{
664
	struct key_vector *n, *tp;
665 666 667
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
668
	for (n = NULL, i = child_length(oldtnode); !n && i;)
669
		n = get_child(oldtnode, --i);
670 671 672

	/* compress one level */
	tp = node_parent(oldtnode);
673
	put_child_root(tp, oldtnode->key, n);
674 675 676 677
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
678 679

	return tp;
680 681
}

682
static unsigned char update_suffix(struct key_vector *tn)
683 684 685 686 687 688 689 690 691
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
692
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
693
		struct key_vector *n = get_child(tn, i);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

717 718 719 720 721 722 723 724
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
725
 * child_length() and instead of multiplying by 2 (since the
726 727 728 729
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
730
 * The left-hand side may look a bit weird: child_length(tn)
731 732 733 734 735 736 737 738 739
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
740
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
741 742
 *     tn->full_children;
 *
743
 * new_child_length = child_length(tn) * 2;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
760
 * 100 * (child_length(tn) - tn->empty_children +
761 762 763
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
764
 * 100 * (child_length(tn) - tn->empty_children +
765
 *    tn->full_children) >=
766
 *      inflate_threshold * child_length(tn) * 2
767 768
 *
 * shorten again:
769
 * 50 * (tn->full_children + child_length(tn) -
770
 *    tn->empty_children) >= inflate_threshold *
771
 *    child_length(tn)
772 773
 *
 */
774
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
775
{
776
	unsigned long used = child_length(tn);
777 778 779
	unsigned long threshold = used;

	/* Keep root node larger */
780
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
781 782
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
783

784 785 786
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
787 788
}

789
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
790
{
791
	unsigned long used = child_length(tn);
792 793 794
	unsigned long threshold = used;

	/* Keep root node larger */
795
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
796
	used -= tn_info(tn)->empty_children;
797

798 799 800 801 802
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

803
static inline bool should_collapse(struct key_vector *tn)
804
{
805
	unsigned long used = child_length(tn);
806

807
	used -= tn_info(tn)->empty_children;
808 809

	/* account for bits == KEYLENGTH case */
810
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
811 812 813 814
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
815 816
}

817
#define MAX_WORK 10
818
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
819
{
820 821 822
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
823
	struct key_vector *tp = node_parent(tn);
824
	unsigned long cindex = get_index(tn->key, tp);
825
	int max_work = MAX_WORK;
826 827 828 829

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

830 831 832 833
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
834
	BUG_ON(tn != get_child(tp, cindex));
835

836 837
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
838
	 */
839
	while (should_inflate(tp, tn) && max_work) {
840 841
		tp = inflate(t, tn);
		if (!tp) {
842
#ifdef CONFIG_IP_FIB_TRIE_STATS
843
			this_cpu_inc(stats->resize_node_skipped);
844 845 846
#endif
			break;
		}
847

848
		max_work--;
849
		tn = get_child(tp, cindex);
850 851
	}

852 853 854
	/* update parent in case inflate failed */
	tp = node_parent(tn);

855 856
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
857
		return tp;
858

859
	/* Halve as long as the number of empty children in this
860 861
	 * node is above threshold.
	 */
862
	while (should_halve(tp, tn) && max_work) {
863 864
		tp = halve(t, tn);
		if (!tp) {
865
#ifdef CONFIG_IP_FIB_TRIE_STATS
866
			this_cpu_inc(stats->resize_node_skipped);
867 868 869 870
#endif
			break;
		}

871
		max_work--;
872
		tn = get_child(tp, cindex);
873
	}
874 875

	/* Only one child remains */
876 877 878
	if (should_collapse(tn))
		return collapse(t, tn);

879
	/* update parent in case halve failed */
880
	tp = node_parent(tn);
881 882 883

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
884
		return tp;
885 886 887 888 889

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

890
		if (slen > tp->slen)
891
			tp->slen = slen;
892
	}
893

894
	return tp;
895 896
}

897
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
898
{
899
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
900 901 902 903 904 905
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

906
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
907
{
908 909 910
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
911
	while (tn->slen < l->slen) {
912 913 914 915 916
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
917
/* rcu_read_lock needs to be hold by caller from readside */
918 919
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
920
{
921 922 923 924 925 926 927 928 929
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
930

931
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
932 933 934 935 936 937

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
938
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
939
		 *     we have a mismatch in skip bits and failed
940 941
		 *   else
		 *     we know the value is cindex
942 943 944 945
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
946
		 */
947 948 949 950
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
951

952 953
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
954

955
	*tp = pn;
956

A
Alexander Duyck 已提交
957
	return n;
958 959
}

960 961 962
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
963
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
964
					u8 tos, u32 prio, u32 tb_id)
965 966 967 968 969 970
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

971
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
972 973 974 975
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
976 977 978 979
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
980 981 982 983 984 985 986 987 988
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

989
static void trie_rebalance(struct trie *t, struct key_vector *tn)
990
{
991 992
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
993 994
}

995
static int fib_insert_node(struct trie *t, struct key_vector *tp,
996
			   struct fib_alias *new, t_key key)
997
{
998
	struct key_vector *n, *l;
999

1000
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
1001
	if (!l)
1002
		goto noleaf;
1003 1004

	/* retrieve child from parent node */
1005
	n = get_child(tp, get_index(key, tp));
1006

1007 1008 1009 1010 1011 1012 1013
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1014
		struct key_vector *tn;
1015

1016
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1017 1018
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1019

1020 1021 1022
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1023

1024
		/* start adding routes into the node */
1025
		put_child_root(tp, key, tn);
1026
		node_set_parent(n, tn);
1027

1028
		/* parent now has a NULL spot where the leaf can go */
1029
		tp = tn;
1030
	}
O
Olof Johansson 已提交
1031

1032
	/* Case 3: n is NULL, and will just insert a new leaf */
1033
	NODE_INIT_PARENT(l, tp);
1034
	put_child_root(tp, key, l);
1035 1036 1037
	trie_rebalance(t, tp);

	return 0;
1038 1039 1040 1041
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1042 1043
}

1044 1045
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1046 1047 1048 1049 1050 1051 1052
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1053
	} else {
1054 1055 1056 1057 1058
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1059 1060 1061
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1062 1063 1064 1065 1066 1067 1068
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1069
	}
R
Robert Olsson 已提交
1070

1071 1072 1073 1074 1075 1076 1077
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1078 1079
}

1080
/* Caller must hold RTNL. */
1081
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1082
{
1083
	struct trie *t = (struct trie *)tb->tb_data;
1084
	struct fib_alias *fa, *new_fa;
1085
	struct key_vector *l, *tp;
1086
	unsigned int nlflags = 0;
1087
	struct fib_info *fi;
A
Alexander Duyck 已提交
1088 1089
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1090
	u8 tos = cfg->fc_tos;
1091
	u32 key;
1092 1093
	int err;

1094
	if (plen > KEYLENGTH)
1095 1096
		return -EINVAL;

1097
	key = ntohl(cfg->fc_dst);
1098

1099
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1100

1101
	if ((plen < KEYLENGTH) && (key << plen))
1102 1103
		return -EINVAL;

1104 1105 1106
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1107
		goto err;
1108
	}
1109

1110
	l = fib_find_node(t, &tp, key);
1111 1112
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1113 1114 1115 1116 1117 1118

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1119 1120
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1121 1122
	 */

1123 1124 1125
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1126 1127

		err = -EEXIST;
1128
		if (cfg->fc_nlflags & NLM_F_EXCL)
1129 1130
			goto out;

1131 1132 1133 1134 1135 1136 1137
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1138
		hlist_for_each_entry_from(fa, fa_list) {
1139 1140 1141
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1152
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1153 1154 1155
			struct fib_info *fi_drop;
			u8 state;

1156 1157 1158 1159
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1160
				goto out;
1161
			}
R
Robert Olsson 已提交
1162
			err = -ENOBUFS;
1163
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1164
			if (!new_fa)
R
Robert Olsson 已提交
1165
				goto out;
1166 1167

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1168 1169
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1170
			new_fa->fa_type = cfg->fc_type;
1171
			state = fa->fa_state;
1172
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1173
			new_fa->fa_slen = fa->fa_slen;
1174
			new_fa->tb_id = tb->tb_id;
1175
			new_fa->fa_default = -1;
1176

1177 1178 1179 1180 1181
			err = switchdev_fib_ipv4_add(key, plen, fi,
						     new_fa->fa_tos,
						     cfg->fc_type,
						     cfg->fc_nlflags,
						     tb->tb_id);
1182
			if (err) {
1183
				switchdev_fib_ipv4_abort(fi);
1184 1185 1186 1187
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1188
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1189

R
Robert Olsson 已提交
1190
			alias_free_mem_rcu(fa);
1191 1192 1193

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1194
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1195 1196
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1197

O
Olof Johansson 已提交
1198
			goto succeeded;
1199 1200 1201 1202 1203
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1204 1205
		if (fa_match)
			goto out;
1206

1207 1208 1209
		if (cfg->fc_nlflags & NLM_F_APPEND)
			nlflags = NLM_F_APPEND;
		else
1210
			fa = fa_first;
1211 1212
	}
	err = -ENOENT;
1213
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1214 1215 1216
		goto out;

	err = -ENOBUFS;
1217
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1218
	if (!new_fa)
1219 1220 1221 1222
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1223
	new_fa->fa_type = cfg->fc_type;
1224
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1225
	new_fa->fa_slen = slen;
1226
	new_fa->tb_id = tb->tb_id;
1227
	new_fa->fa_default = -1;
1228

1229
	/* (Optionally) offload fib entry to switch hardware. */
1230 1231
	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
				     cfg->fc_nlflags, tb->tb_id);
1232
	if (err) {
1233
		switchdev_fib_ipv4_abort(fi);
1234 1235 1236
		goto out_free_new_fa;
	}

1237
	/* Insert new entry to the list. */
1238 1239
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1240
		goto out_sw_fib_del;
1241

1242 1243 1244
	if (!plen)
		tb->tb_num_default++;

1245
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1246
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1247
		  &cfg->fc_nlinfo, nlflags);
1248 1249
succeeded:
	return 0;
1250

1251
out_sw_fib_del:
1252
	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1253 1254
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1255 1256
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1257
err:
1258 1259 1260
	return err;
}

1261
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1262 1263 1264 1265 1266 1267
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1268
/* should be called with rcu_read_lock */
1269
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1270
		     struct fib_result *res, int fib_flags)
1271
{
1272
	struct trie *t = (struct trie *) tb->tb_data;
1273 1274 1275
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1276
	const t_key key = ntohl(flp->daddr);
1277
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1278
	struct fib_alias *fa;
1279
	unsigned long index;
1280
	t_key cindex;
O
Olof Johansson 已提交
1281

D
David Ahern 已提交
1282 1283
	trace_fib_table_lookup(tb->tb_id, flp);

1284 1285 1286 1287
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1288
	if (!n)
1289
		return -EAGAIN;
1290 1291

#ifdef CONFIG_IP_FIB_TRIE_STATS
1292
	this_cpu_inc(stats->gets);
1293 1294
#endif

1295 1296
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1297
		index = get_cindex(key, n);
1298 1299 1300 1301 1302 1303

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1304
		 *   if (index >= (1ul << bits))
1305
		 *     we have a mismatch in skip bits and failed
1306 1307
		 *   else
		 *     we know the value is cindex
1308 1309 1310 1311
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1312
		 */
1313
		if (index >= (1ul << n->bits))
1314
			break;
1315

1316 1317
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1318
			goto found;
1319

1320 1321
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1322
		 */
1323
		if (n->slen > n->pos) {
1324 1325
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1326
		}
1327

1328
		n = get_child_rcu(n, index);
1329 1330 1331
		if (unlikely(!n))
			goto backtrace;
	}
1332

1333 1334 1335
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1336
		struct key_vector __rcu **cptr = n->tnode;
1337

1338 1339 1340
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1341
		 */
1342
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1343
			goto backtrace;
O
Olof Johansson 已提交
1344

1345 1346 1347
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1348

1349 1350 1351
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1352 1353
		 */

1354
		while ((n = rcu_dereference(*cptr)) == NULL) {
1355 1356
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1357 1358
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1359
#endif
1360 1361 1362 1363 1364 1365 1366 1367
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1368 1369 1370 1371 1372
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1373
					return -EAGAIN;
1374 1375 1376 1377
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1378
				pn = node_parent_rcu(pn);
1379 1380 1381 1382 1383 1384 1385
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1386
			cptr = &pn->tnode[cindex];
1387
		}
1388
	}
1389

1390
found:
1391 1392 1393
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1394
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1395 1396 1397
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1398

1399
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1400
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1401
			continue;
A
Alexander Duyck 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1411
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1412
			this_cpu_inc(stats->semantic_match_passed);
1413
#endif
A
Alexander Duyck 已提交
1414 1415 1416 1417 1418 1419
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1420
			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
A
Alexander Duyck 已提交
1421 1422 1423

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
1424 1425 1426 1427 1428
			if (in_dev &&
			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
			    nh->nh_flags & RTNH_F_LINKDOWN &&
			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
				continue;
1429 1430 1431 1432 1433
			if (!(flp->flowi4_flags & FLOWI_FLAG_VRFSRC)) {
				if (flp->flowi4_oif &&
				    flp->flowi4_oif != nh->nh_oif)
					continue;
			}
A
Alexander Duyck 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1445
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1446
			this_cpu_inc(stats->semantic_match_passed);
1447
#endif
D
David Ahern 已提交
1448 1449
			trace_fib_table_lookup_nh(nh);

A
Alexander Duyck 已提交
1450
			return err;
1451
		}
1452
	}
1453
#ifdef CONFIG_IP_FIB_TRIE_STATS
1454
	this_cpu_inc(stats->semantic_match_miss);
1455 1456
#endif
	goto backtrace;
1457
}
1458
EXPORT_SYMBOL_GPL(fib_table_lookup);
1459

1460 1461
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1474
		put_child_root(tp, l->key, NULL);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1490
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1491 1492 1493
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1494
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1495 1496
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1497 1498
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1499

A
Alexander Duyck 已提交
1500
	if (plen > KEYLENGTH)
1501 1502
		return -EINVAL;

1503
	key = ntohl(cfg->fc_dst);
1504

1505
	if ((plen < KEYLENGTH) && (key << plen))
1506 1507
		return -EINVAL;

1508
	l = fib_find_node(t, &tp, key);
1509
	if (!l)
1510 1511
		return -ESRCH;

1512
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1513 1514 1515
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1516
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1517 1518

	fa_to_delete = NULL;
1519
	hlist_for_each_entry_from(fa, fa_list) {
1520 1521
		struct fib_info *fi = fa->fa_info;

1522 1523 1524
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1525 1526
			break;

1527 1528
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1529
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1530 1531
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1532 1533 1534
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1535 1536 1537 1538 1539
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1540 1541
	if (!fa_to_delete)
		return -ESRCH;
1542

1543 1544
	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
			       cfg->fc_type, tb->tb_id);
1545

1546
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1547
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1548

1549 1550 1551
	if (!plen)
		tb->tb_num_default--;

1552
	fib_remove_alias(t, tp, l, fa_to_delete);
1553

1554
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1555
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1556

1557 1558
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1559
	return 0;
1560 1561
}

1562
/* Scan for the next leaf starting at the provided key value */
1563
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1564
{
1565
	struct key_vector *pn, *n = *tn;
1566
	unsigned long cindex;
1567

1568
	/* this loop is meant to try and find the key in the trie */
1569
	do {
1570 1571
		/* record parent and next child index */
		pn = n;
1572
		cindex = key ? get_index(key, pn) : 0;
1573 1574 1575

		if (cindex >> pn->bits)
			break;
1576

1577
		/* descend into the next child */
1578
		n = get_child_rcu(pn, cindex++);
1579 1580 1581 1582 1583 1584 1585
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1586

1587
	/* this loop will search for the next leaf with a greater key */
1588
	while (!IS_TRIE(pn)) {
1589 1590 1591
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1592

1593 1594 1595 1596
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1597

1598
		/* grab the next available node */
1599
		n = get_child_rcu(pn, cindex++);
1600 1601
		if (!n)
			continue;
1602

1603 1604 1605
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1606

1607 1608 1609 1610
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1611

1612 1613 1614 1615
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1616
	*tn = pn;
1617
	return n;
1618 1619
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1734 1735 1736 1737
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1738 1739 1740
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1741 1742
	struct fib_alias *fa;

1743 1744
	/* walk trie in reverse order */
	for (;;) {
1745
		unsigned char slen = 0;
1746
		struct key_vector *n;
1747

1748 1749
		if (!(cindex--)) {
			t_key pkey = pn->key;
1750

1751 1752 1753
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1754

1755 1756
			/* resize completed node */
			pn = resize(t, pn);
1757
			cindex = get_index(pkey, pn);
1758

1759 1760
			continue;
		}
1761

1762 1763 1764 1765
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1766

1767 1768 1769 1770
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1771

1772
			continue;
1773
		}
1774

1775 1776 1777
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1790
			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1791
				continue;
1792

1793 1794 1795
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1796
		}
1797 1798 1799 1800 1801 1802 1803 1804

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1805
	}
1806 1807
}

1808
/* Caller must hold RTNL. */
1809
int fib_table_flush(struct fib_table *tb)
1810
{
1811
	struct trie *t = (struct trie *)tb->tb_data;
1812 1813
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1814 1815
	struct hlist_node *tmp;
	struct fib_alias *fa;
1816
	int found = 0;
1817

1818 1819 1820 1821
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1822

1823 1824
		if (!(cindex--)) {
			t_key pkey = pn->key;
1825

1826 1827 1828
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1829

1830 1831 1832
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1833

1834 1835
			continue;
		}
1836

1837 1838 1839 1840
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1841

1842 1843 1844 1845
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1846

1847 1848
			continue;
		}
1849

1850 1851
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1852

1853 1854 1855 1856
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1857

1858 1859 1860
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1861 1862 1863 1864
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1865 1866
		}

1867 1868
		/* update leaf slen */
		n->slen = slen;
1869

1870 1871 1872 1873
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		}
1874
	}
1875

S
Stephen Hemminger 已提交
1876
	pr_debug("trie_flush found=%d\n", found);
1877 1878 1879
	return found;
}

1880
static void __trie_free_rcu(struct rcu_head *head)
1881
{
1882
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1883 1884 1885
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1886 1887
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1888
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1889 1890 1891
	kfree(tb);
}

1892 1893 1894 1895 1896
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1897
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1898
			     struct sk_buff *skb, struct netlink_callback *cb)
1899
{
A
Alexander Duyck 已提交
1900
	__be32 xkey = htonl(l->key);
1901
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1902
	int i, s_i;
1903

A
Alexander Duyck 已提交
1904
	s_i = cb->args[4];
1905 1906
	i = 0;

R
Robert Olsson 已提交
1907
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1908
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1909 1910 1911 1912 1913
		if (i < s_i) {
			i++;
			continue;
		}

1914 1915 1916 1917 1918
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1919
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1920 1921 1922 1923
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1924
				  xkey,
1925
				  KEYLENGTH - fa->fa_slen,
1926
				  fa->fa_tos,
1927
				  fa->fa_info, NLM_F_MULTI) < 0) {
1928
			cb->args[4] = i;
1929 1930
			return -1;
		}
1931
		i++;
1932
	}
1933

1934
	cb->args[4] = i;
1935 1936 1937
	return skb->len;
}

1938
/* rcu_read_lock needs to be hold by caller from readside */
1939 1940
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1941
{
1942
	struct trie *t = (struct trie *)tb->tb_data;
1943
	struct key_vector *l, *tp = t->kv;
1944 1945 1946
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1947 1948
	int count = cb->args[2];
	t_key key = cb->args[3];
1949

1950
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1951
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1952 1953
			cb->args[3] = key;
			cb->args[2] = count;
1954
			return -1;
1955
		}
1956

1957
		++count;
1958 1959
		key = l->key + 1;

1960 1961
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1962 1963 1964 1965

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1966
	}
1967 1968 1969 1970

	cb->args[3] = key;
	cb->args[2] = count;

1971 1972 1973
	return skb->len;
}

1974
void __init fib_trie_init(void)
1975
{
1976 1977
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1978 1979 1980
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1981
					   LEAF_SIZE,
1982
					   0, SLAB_PANIC, NULL);
1983
}
1984

1985
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1986 1987 1988
{
	struct fib_table *tb;
	struct trie *t;
1989 1990 1991 1992
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1993

1994
	tb = kzalloc(sz, GFP_KERNEL);
1995
	if (!tb)
1996 1997 1998
		return NULL;

	tb->tb_id = id;
1999
	tb->tb_num_default = 0;
2000 2001 2002 2003
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
2004 2005

	t = (struct trie *) tb->tb_data;
2006 2007
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
2008 2009 2010 2011 2012 2013 2014
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
2015 2016 2017 2018

	return tb;
}

2019 2020 2021
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2022
	struct seq_net_private p;
2023
	struct fib_table *tb;
2024
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2025 2026
	unsigned int index;
	unsigned int depth;
2027
};
2028

2029
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2030
{
2031
	unsigned long cindex = iter->index;
2032 2033
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2034

2035 2036
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2037

2038 2039 2040 2041 2042 2043 2044
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2045
			if (IS_LEAF(n)) {
2046 2047
				iter->tnode = pn;
				iter->index = cindex;
2048 2049
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2050
				iter->tnode = n;
2051 2052 2053
				iter->index = 0;
				++iter->depth;
			}
2054

2055 2056
			return n;
		}
2057

2058 2059 2060 2061
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2062
		--iter->depth;
2063
	}
2064

2065 2066 2067 2068
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2069
	return NULL;
2070 2071
}

2072 2073
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2074
{
2075
	struct key_vector *n, *pn;
2076

S
Stephen Hemminger 已提交
2077
	if (!t)
2078 2079
		return NULL;

2080
	pn = t->kv;
2081
	n = rcu_dereference(pn->tnode[0]);
2082
	if (!n)
2083
		return NULL;
2084

2085
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2086
		iter->tnode = n;
2087 2088 2089
		iter->index = 0;
		iter->depth = 1;
	} else {
2090
		iter->tnode = pn;
2091 2092
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2093
	}
2094 2095

	return n;
2096
}
O
Olof Johansson 已提交
2097

2098 2099
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2100
	struct key_vector *n;
2101
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2102

2103
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2104

2105
	rcu_read_lock();
2106
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2107
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2108
			struct fib_alias *fa;
2109

2110 2111 2112 2113
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2114

A
Alexander Duyck 已提交
2115
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2116
				++s->prefixes;
2117 2118
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2119 2120
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2121
			s->nullpointers += tn_info(n)->empty_children;
2122 2123
		}
	}
R
Robert Olsson 已提交
2124
	rcu_read_unlock();
2125 2126
}

2127 2128 2129 2130
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2131
{
E
Eric Dumazet 已提交
2132
	unsigned int i, max, pointers, bytes, avdepth;
2133

2134 2135 2136 2137
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2138

2139 2140
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2141
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2142

2143
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2144
	bytes = LEAF_SIZE * stat->leaves;
2145 2146

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2147
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2148

2149
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2150
	bytes += TNODE_SIZE(0) * stat->tnodes;
2151

R
Robert Olsson 已提交
2152 2153
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2154
		max--;
2155

2156
	pointers = 0;
2157
	for (i = 1; i < max; i++)
2158
		if (stat->nodesizes[i] != 0) {
2159
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2160 2161 2162
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2163
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2164

2165
	bytes += sizeof(struct key_vector *) * pointers;
2166 2167
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2168
}
R
Robert Olsson 已提交
2169

2170
#ifdef CONFIG_IP_FIB_TRIE_STATS
2171
static void trie_show_usage(struct seq_file *seq,
2172
			    const struct trie_use_stats __percpu *stats)
2173
{
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2189
	seq_printf(seq, "\nCounters:\n---------\n");
2190 2191
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2192
	seq_printf(seq, "semantic match passed = %u\n",
2193 2194 2195 2196
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2197
}
2198 2199
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2200
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2201
{
2202 2203 2204 2205 2206 2207
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2208
}
2209

2210

2211 2212
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2213
	struct net *net = (struct net *)seq->private;
2214
	unsigned int h;
2215

2216
	seq_printf(seq,
2217 2218
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2219
		   LEAF_SIZE, TNODE_SIZE(0));
2220

2221 2222 2223 2224
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2225
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2226 2227
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2228

2229 2230 2231 2232 2233 2234 2235 2236
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2237
			trie_show_usage(seq, t->stats);
2238 2239 2240
#endif
		}
	}
2241

2242
	return 0;
2243 2244
}

2245
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2246
{
2247
	return single_open_net(inode, file, fib_triestat_seq_show);
2248 2249
}

2250
static const struct file_operations fib_triestat_fops = {
2251 2252 2253 2254
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2255
	.release = single_release_net,
2256 2257
};

2258
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2259
{
2260 2261
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2262
	loff_t idx = 0;
2263
	unsigned int h;
2264

2265 2266 2267
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2268

2269
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2270
			struct key_vector *n;
2271 2272 2273 2274 2275 2276 2277 2278 2279

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2280
	}
2281

2282 2283 2284
	return NULL;
}

2285
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2286
	__acquires(RCU)
2287
{
2288
	rcu_read_lock();
2289
	return fib_trie_get_idx(seq, *pos);
2290 2291
}

2292
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2293
{
2294
	struct fib_trie_iter *iter = seq->private;
2295
	struct net *net = seq_file_net(seq);
2296 2297 2298
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2299
	struct key_vector *n;
2300

2301
	++*pos;
2302 2303 2304 2305
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2306

2307 2308
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2309
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2310 2311 2312 2313 2314
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2315

2316 2317 2318
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2319
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2320 2321 2322 2323 2324
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2325
	return NULL;
2326 2327 2328 2329

found:
	iter->tb = tb;
	return n;
2330
}
2331

2332
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2333
	__releases(RCU)
2334
{
2335 2336
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2337

2338 2339
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2340 2341
	while (n-- > 0)
		seq_puts(seq, "   ");
2342
}
2343

2344
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2345
{
S
Stephen Hemminger 已提交
2346
	switch (s) {
2347 2348 2349 2350 2351 2352
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2353
		snprintf(buf, len, "scope=%d", s);
2354 2355 2356
		return buf;
	}
}
2357

2358
static const char *const rtn_type_names[__RTN_MAX] = {
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2372

E
Eric Dumazet 已提交
2373
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2374 2375 2376
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2377
	snprintf(buf, len, "type %u", t);
2378
	return buf;
2379 2380
}

2381 2382
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2383
{
2384
	const struct fib_trie_iter *iter = seq->private;
2385
	struct key_vector *n = v;
2386

2387
	if (IS_TRIE(node_parent_rcu(n)))
2388
		fib_table_print(seq, iter->tb);
2389

2390
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2391
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2392

2393 2394 2395
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2396 2397
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2398
	} else {
A
Alexander Duyck 已提交
2399
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2400
		struct fib_alias *fa;
2401 2402

		seq_indent(seq, iter->depth);
2403
		seq_printf(seq, "  |-- %pI4\n", &val);
2404

A
Alexander Duyck 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2418
		}
2419
	}
2420

2421 2422 2423
	return 0;
}

2424
static const struct seq_operations fib_trie_seq_ops = {
2425 2426 2427 2428
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2429 2430
};

2431
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2432
{
2433 2434
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2435 2436
}

2437
static const struct file_operations fib_trie_fops = {
2438 2439 2440 2441
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2442
	.release = seq_release_net,
2443 2444
};

2445 2446
struct fib_route_iter {
	struct seq_net_private p;
2447
	struct fib_table *main_tb;
2448
	struct key_vector *tnode;
2449 2450 2451 2452
	loff_t	pos;
	t_key	key;
};

2453 2454
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2455
{
2456
	struct fib_table *tb = iter->main_tb;
2457
	struct key_vector *l, **tp = &iter->tnode;
2458 2459
	struct trie *t;
	t_key key;
2460

2461 2462
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2463
		pos -= iter->pos;
2464 2465 2466
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2467
		iter->tnode = t->kv;
2468
		iter->pos = 0;
2469
		key = 0;
2470 2471
	}

2472 2473
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2474
		iter->pos++;
2475

2476
		if (--pos <= 0)
2477 2478 2479 2480 2481 2482 2483
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2484 2485 2486
	}

	if (l)
2487
		iter->key = key;	/* remember it */
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2499
	struct trie *t;
2500 2501

	rcu_read_lock();
2502

2503
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2504 2505 2506
	if (!tb)
		return NULL;

2507 2508 2509 2510 2511 2512
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2513
	iter->tnode = t->kv;
2514 2515 2516 2517
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2518 2519 2520 2521 2522
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2523
	struct key_vector *l = NULL;
2524
	t_key key = iter->key;
2525 2526

	++*pos;
2527 2528 2529 2530 2531 2532 2533

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2534
		iter->pos++;
2535 2536
	} else {
		iter->pos = 0;
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2548
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2549
{
E
Eric Dumazet 已提交
2550
	unsigned int flags = 0;
2551

E
Eric Dumazet 已提交
2552 2553
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2554 2555
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2556
	if (mask == htonl(0xFFFFFFFF))
2557 2558 2559
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2560 2561
}

2562 2563 2564
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2565
 *	and needs to be same as fib_hash output to avoid breaking
2566 2567 2568
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2569
{
2570 2571
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2572
	struct fib_alias *fa;
2573
	struct key_vector *l = v;
2574
	__be32 prefix;
2575

2576 2577 2578 2579 2580 2581
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2582

2583 2584
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2585 2586 2587 2588
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2589

A
Alexander Duyck 已提交
2590 2591 2592
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2593

2594 2595 2596
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2618

A
Alexander Duyck 已提交
2619
		seq_pad(seq, '\n');
2620 2621 2622 2623 2624
	}

	return 0;
}

2625
static const struct seq_operations fib_route_seq_ops = {
2626 2627 2628
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2629
	.show   = fib_route_seq_show,
2630 2631
};

2632
static int fib_route_seq_open(struct inode *inode, struct file *file)
2633
{
2634
	return seq_open_net(inode, file, &fib_route_seq_ops,
2635
			    sizeof(struct fib_route_iter));
2636 2637
}

2638
static const struct file_operations fib_route_fops = {
2639 2640 2641 2642
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2643
	.release = seq_release_net,
2644 2645
};

2646
int __net_init fib_proc_init(struct net *net)
2647
{
2648
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2649 2650
		goto out1;

2651 2652
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2653 2654
		goto out2;

2655
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2656 2657
		goto out3;

2658
	return 0;
2659 2660

out3:
2661
	remove_proc_entry("fib_triestat", net->proc_net);
2662
out2:
2663
	remove_proc_entry("fib_trie", net->proc_net);
2664 2665
out1:
	return -ENOMEM;
2666 2667
}

2668
void __net_exit fib_proc_exit(struct net *net)
2669
{
2670 2671 2672
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2673 2674 2675
}

#endif /* CONFIG_PROC_FS */