intel_lrc.c 62.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309 310
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
311 312
}

313 314 315 316 317 318 319 320 321
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

322
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323
{
324
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 326
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327
	u32 *reg_state = ce->lrc_reg_state;
328

329
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
330

331 332 333 334 335
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
336
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
337
		execlists_update_context_pdps(ppgtt, reg_state);
338 339

	return ce->lrc_desc;
340 341
}

342
static void execlists_submit_ports(struct intel_engine_cs *engine)
343
{
344 345
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
346 347 348 349
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

350
	GEM_BUG_ON(port[0].count > 1);
351 352 353 354
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
355
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
356
	port[0].count++;
357 358 359 360 361 362

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
363
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
364
		port[1].count = 1;
365 366 367
	} else {
		desc[1] = 0;
	}
368
	GEM_BUG_ON(desc[0] == desc[1]);
369 370 371 372 373 374 375 376 377 378

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

379
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
380
{
381
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
382
		i915_gem_context_force_single_submission(ctx));
383
}
384

385 386 387 388 389
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
390

391 392
	if (ctx_single_port_submission(prev))
		return false;
393

394
	return true;
395 396
}

397
static void execlists_dequeue(struct intel_engine_cs *engine)
398
{
399
	struct drm_i915_gem_request *last;
400
	struct execlist_port *port = engine->execlist_port;
401
	struct rb_node *rb;
402 403 404 405 406 407
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
408
		 * as we resubmit the request. See gen8_emit_breadcrumb()
409 410 411 412
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
413

414
	GEM_BUG_ON(port[1].request);
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
435
	 */
436

437
	spin_lock_irq(&engine->timeline->lock);
438 439 440 441 442
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

443 444 445
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
446
		 *
447 448 449 450
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
451
		 */
452 453 454 455 456 457 458 459 460 461 462 463 464
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
465 466
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
467 468 469 470 471 472 473
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
474

475 476 477 478 479
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

480
		__i915_gem_request_submit(cursor);
481
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
482 483 484 485 486
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
487
		engine->execlist_first = rb;
488
	}
489
	spin_unlock_irq(&engine->timeline->lock);
490

491 492
	if (submit)
		execlists_submit_ports(engine);
493 494
}

495
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
496
{
497
	return !engine->execlist_port[0].request;
498 499
}

500
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
501
{
502
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
503

504
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
505 506
}

507
/*
508 509 510
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
511
static void intel_lrc_irq_handler(unsigned long data)
512
{
513
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
514
	struct execlist_port *port = engine->execlist_port;
515
	struct drm_i915_private *dev_priv = engine->i915;
516

517 518 519 520 521 522 523 524 525
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

526
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
527

528 529 530 531 532
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
533 534 535 536
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
537
		unsigned int head, tail;
538

539 540 541 542 543 544 545 546 547 548 549
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
550 551 552 553 554 555 556 557
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
			unsigned int status;

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

576
			status = readl(buf + 2 * head);
577 578 579
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

580
			/* Check the context/desc id for this event matches */
581
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
582
					 port[0].context_id);
583

584 585 586
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
587
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
588 589 590
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

591
				trace_i915_gem_request_out(port[0].request);
592 593 594 595
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
596

597 598
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
599
		}
600

601
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
602
		       csb_mmio);
603 604
	}

605 606
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
607

608
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

637
static void execlists_submit_request(struct drm_i915_gem_request *request)
638
{
639
	struct intel_engine_cs *engine = request->engine;
640
	unsigned long flags;
641

642 643
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
644

645
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
646
		engine->execlist_first = &request->priotree.node;
647
		if (execlists_elsp_ready(engine))
648 649
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
650

651
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
652 653
}

654 655 656
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
657 658 659 660
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
661 662

	if (engine != locked) {
663 664
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
665 666 667 668 669 670 671
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
672
	struct intel_engine_cs *engine;
673 674 675 676 677 678 679
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

680 681
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

706 707 708 709 710 711 712
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
713 714
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
715
		}
716

717
		list_safe_reset_next(dep, p, dfs_link);
718 719
	}

720 721 722
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

723 724 725 726 727 728 729 730 731 732 733 734
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
735 736 737 738 739
		if (!RB_EMPTY_NODE(&pt->node)) {
			rb_erase(&pt->node, &engine->execlist_queue);
			if (insert_request(pt, &engine->execlist_queue))
				engine->execlist_first = &pt->node;
		}
740 741
	}

742
	spin_unlock_irq(&engine->timeline->lock);
743 744 745 746

	/* XXX Do we need to preempt to make room for us and our deps? */
}

747 748
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
749
{
750
	struct intel_context *ce = &ctx->engine[engine->id];
751
	unsigned int flags;
752
	void *vaddr;
753
	int ret;
754

755
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
756

757
	if (ce->pin_count++)
758
		return 0;
759
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
760

761 762 763 764 765
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
766
	GEM_BUG_ON(!ce->state);
767

768
	flags = PIN_GLOBAL | PIN_HIGH;
769 770
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
771 772

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
773
	if (ret)
774
		goto err;
775

776
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
777 778
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
779
		goto unpin_vma;
780 781
	}

782
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
783
	if (ret)
784
		goto unpin_map;
785

786
	intel_lr_context_descriptor_update(ctx, engine);
787

788 789
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
790
		i915_ggtt_offset(ce->ring->vma);
791

C
Chris Wilson 已提交
792
	ce->state->obj->mm.dirty = true;
793

794
	i915_gem_context_get(ctx);
795
	return 0;
796

797
unpin_map:
798 799 800
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
801
err:
802
	ce->pin_count = 0;
803 804 805
	return ret;
}

806 807
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
808
{
809
	struct intel_context *ce = &ctx->engine[engine->id];
810

811
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
812
	GEM_BUG_ON(ce->pin_count == 0);
813

814
	if (--ce->pin_count)
815
		return;
816

817
	intel_ring_unpin(ce->ring);
818

819 820
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
821

822
	i915_gem_context_put(ctx);
823 824
}

825
static int execlists_request_alloc(struct drm_i915_gem_request *request)
826 827 828
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
829
	u32 *cs;
830 831
	int ret;

832 833
	GEM_BUG_ON(!ce->pin_count);

834 835 836 837 838 839
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

840
	GEM_BUG_ON(!ce->ring);
841 842 843 844 845 846 847 848 849 850
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
851
			goto err;
852 853
	}

854 855 856
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
857
		goto err_unreserve;
858
	}
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
881
err:
882 883 884
	return ret;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
901 902
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
903
{
904 905 906 907 908 909 910 911 912
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

913 914 915 916
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
917 918 919 920 921 922 923

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
924 925
}

926 927 928 929 930 931
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
932
 *
933 934
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
935
 *
936 937 938 939
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
940
 */
941
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
942
{
943
	/* WaDisableCtxRestoreArbitration:bdw,chv */
944
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
945

946
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
947 948
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
949

950 951
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
952 953 954 955 956 957 958
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
959

960
	/* Pad to end of cacheline */
961 962
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
963 964 965 966 967 968 969

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

970
	return batch;
971 972
}

973 974 975
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
976
 *
977
 *  The number of DWORDS written are returned using this field.
978 979 980 981
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
982
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
983
{
984
	/* WaDisableCtxRestoreArbitration:bdw,chv */
985 986
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
987

988
	return batch;
989 990
}

991
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
992
{
993
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
994
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
995

996
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
997 998 999 1000 1001
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1002

1003 1004
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1005
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1006 1007 1008 1009 1010 1011 1012
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1013
	}
1014

1015
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1030 1031 1032 1033 1034 1035
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1036 1037
	}

1038
	/* Pad to end of cacheline */
1039 1040
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1041

1042
	return batch;
1043 1044
}

1045
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1046
{
1047
	*batch++ = MI_BATCH_BUFFER_END;
1048

1049
	return batch;
1050 1051
}

1052 1053 1054
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1055
{
1056 1057 1058
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1059

1060
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1061 1062
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1063

1064
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1065 1066 1067
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1068 1069
	}

1070 1071 1072 1073 1074
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1075
	return 0;
1076 1077 1078 1079

err:
	i915_gem_object_put(obj);
	return err;
1080 1081
}

1082
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1083
{
1084
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1085 1086
}

1087 1088
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1089
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1090
{
1091
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1092 1093 1094
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1095
	struct page *page;
1096 1097
	void *batch, *batch_ptr;
	unsigned int i;
1098
	int ret;
1099

1100 1101
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1114
		return 0;
1115
	}
1116

1117
	ret = lrc_setup_wa_ctx(engine);
1118 1119 1120 1121 1122
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1123
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1124
	batch = batch_ptr = kmap_atomic(page);
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1139 1140
	}

1141 1142
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1143 1144
	kunmap_atomic(batch);
	if (ret)
1145
		lrc_destroy_wa_ctx(engine);
1146 1147 1148 1149

	return ret;
}

1150
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1151
{
1152
	struct drm_i915_private *dev_priv = engine->i915;
1153 1154
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1155 1156 1157 1158 1159
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1160

1161
	intel_engine_reset_breadcrumbs(engine);
1162
	intel_engine_init_hangcheck(engine);
1163

1164 1165
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1166
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1167 1168 1169
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1170

1171
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1172

1173
	/* After a GPU reset, we may have requests to replay */
1174
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
		if (!port[n].request)
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
				 port[n].request->global_seqno);

		/* Discard the current inflight count */
		port[n].count = 0;
1186
	}
1187

1188 1189 1190
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine))
		execlists_submit_ports(engine);

1191
	return 0;
1192 1193
}

1194
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1195
{
1196
	struct drm_i915_private *dev_priv = engine->i915;
1197 1198
	int ret;

1199
	ret = gen8_init_common_ring(engine);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1213
	return init_workarounds_ring(engine);
1214 1215
}

1216
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1217 1218 1219
{
	int ret;

1220
	ret = gen8_init_common_ring(engine);
1221 1222 1223
	if (ret)
		return ret;

1224
	return init_workarounds_ring(engine);
1225 1226
}

1227 1228 1229 1230
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1245

1246 1247 1248 1249 1250 1251 1252
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1253
	ce = &request->ctx->engine[engine->id];
1254 1255 1256
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1257
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1258 1259
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1260
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1273 1274

	/* Reset WaIdleLiteRestore:bdw,skl as well */
1275 1276 1277
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1278
	assert_ring_tail_valid(request->ring, request->tail);
1279 1280
}

1281 1282 1283
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1284
	struct intel_engine_cs *engine = req->engine;
1285
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1286 1287
	u32 *cs;
	int i;
1288

1289 1290 1291
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1292

1293
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1294
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1295 1296
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1297 1298 1299 1300
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1301 1302
	}

1303 1304
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1305 1306 1307 1308

	return 0;
}

1309
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1310
			      u64 offset, u32 len,
1311
			      const unsigned int flags)
1312
{
1313
	u32 *cs;
1314 1315
	int ret;

1316 1317 1318 1319
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1320 1321
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1322
	if (req->ctx->ppgtt &&
1323 1324 1325 1326 1327 1328
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1329

1330
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1331 1332
	}

1333 1334 1335
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1336 1337

	/* FIXME(BDW): Address space and security selectors. */
1338 1339 1340
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1341 1342 1343 1344
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1345 1346 1347 1348

	return 0;
}

1349
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1350
{
1351
	struct drm_i915_private *dev_priv = engine->i915;
1352 1353 1354
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1355 1356
}

1357
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1358
{
1359
	struct drm_i915_private *dev_priv = engine->i915;
1360
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1361 1362
}

1363
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1364
{
1365
	u32 cmd, *cs;
1366

1367 1368 1369
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1370 1371 1372

	cmd = MI_FLUSH_DW + 1;

1373 1374 1375 1376 1377 1378 1379
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1380
	if (mode & EMIT_INVALIDATE) {
1381
		cmd |= MI_INVALIDATE_TLB;
1382
		if (request->engine->id == VCS)
1383
			cmd |= MI_INVALIDATE_BSD;
1384 1385
	}

1386 1387 1388 1389 1390
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1391 1392 1393 1394

	return 0;
}

1395
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1396
				  u32 mode)
1397
{
1398
	struct intel_engine_cs *engine = request->engine;
1399 1400
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1401
	bool vf_flush_wa = false, dc_flush_wa = false;
1402
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1403
	int len;
1404 1405 1406

	flags |= PIPE_CONTROL_CS_STALL;

1407
	if (mode & EMIT_FLUSH) {
1408 1409
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1410
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1411
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1412 1413
	}

1414
	if (mode & EMIT_INVALIDATE) {
1415 1416 1417 1418 1419 1420 1421 1422 1423
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1424 1425 1426 1427
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1428
		if (IS_GEN9(request->i915))
1429
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1430 1431 1432 1433

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1434
	}
1435

M
Mika Kuoppala 已提交
1436 1437 1438 1439 1440 1441 1442 1443
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1444 1445 1446
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1447

1448 1449
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1450

1451 1452 1453
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1454

1455
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1456

1457 1458
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1459

1460
	intel_ring_advance(request, cs);
1461 1462 1463 1464

	return 0;
}

1465 1466 1467 1468 1469
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1470
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1471
{
1472 1473 1474
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1475
}
1476

1477
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1478
{
1479 1480
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1481

1482 1483 1484 1485 1486 1487 1488
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1489
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1490

1491
	gen8_emit_wa_tail(request, cs);
1492
}
1493

1494 1495
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1496
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1497
					u32 *cs)
1498
{
1499 1500 1501
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1502 1503 1504 1505
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1506 1507 1508 1509 1510 1511
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1512
	/* We're thrashing one dword of HWS. */
1513 1514 1515 1516
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1517
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1518

1519
	gen8_emit_wa_tail(request, cs);
1520 1521
}

1522 1523
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1524
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1525 1526 1527
{
	int ret;

1528
	ret = intel_ring_workarounds_emit(req);
1529 1530 1531
	if (ret)
		return ret;

1532 1533 1534 1535 1536 1537 1538 1539
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1540
	return i915_gem_render_state_emit(req);
1541 1542
}

1543 1544
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1545
 * @engine: Engine Command Streamer.
1546
 */
1547
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1548
{
1549
	struct drm_i915_private *dev_priv;
1550

1551 1552 1553 1554 1555 1556 1557
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1558
	dev_priv = engine->i915;
1559

1560 1561
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1562
	}
1563

1564 1565
	if (engine->cleanup)
		engine->cleanup(engine);
1566

1567 1568 1569
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1570
	}
1571 1572

	intel_engine_cleanup_common(engine);
1573

1574
	lrc_destroy_wa_ctx(engine);
1575
	engine->i915 = NULL;
1576 1577
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1578 1579
}

1580
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1581
{
1582 1583
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1584
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1585 1586
}

1587
static void
1588
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1589 1590
{
	/* Default vfuncs which can be overriden by each engine. */
1591
	engine->init_hw = gen8_init_common_ring;
1592
	engine->reset_hw = reset_common_ring;
1593 1594 1595 1596

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1597 1598
	engine->request_alloc = execlists_request_alloc;

1599
	engine->emit_flush = gen8_emit_flush;
1600
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1601
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1602 1603

	engine->set_default_submission = execlists_set_default_submission;
1604

1605 1606
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1607
	engine->emit_bb_start = gen8_emit_bb_start;
1608 1609
}

1610
static inline void
1611
logical_ring_default_irqs(struct intel_engine_cs *engine)
1612
{
1613
	unsigned shift = engine->irq_shift;
1614 1615
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1616 1617
}

1618
static int
1619
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1620
{
1621
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1622
	void *hws;
1623 1624

	/* The HWSP is part of the default context object in LRC mode. */
1625
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1626 1627
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1628 1629

	engine->status_page.page_addr = hws + hws_offset;
1630
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1631
	engine->status_page.vma = vma;
1632 1633

	return 0;
1634 1635
}

1636 1637 1638 1639 1640 1641
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1642 1643
	intel_engine_setup_common(engine);

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1668 1669 1670 1671 1672 1673
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1674
	ret = intel_engine_init_common(engine);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1692
int logical_render_ring_init(struct intel_engine_cs *engine)
1693 1694 1695 1696
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1697 1698
	logical_ring_setup(engine);

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1709
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1710
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1711

1712
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1727
	return logical_ring_init(engine);
1728 1729
}

1730
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1731 1732 1733 1734
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1735 1736
}

1737
static u32
1738
make_rpcs(struct drm_i915_private *dev_priv)
1739 1740 1741 1742 1743 1744 1745
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1746
	if (INTEL_GEN(dev_priv) < 9)
1747 1748 1749 1750 1751 1752 1753 1754
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1755
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1756
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1757
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1758 1759 1760 1761
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1762
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1763
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1764
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1765 1766 1767 1768
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1769 1770
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1771
			GEN8_RPCS_EU_MIN_SHIFT;
1772
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1773 1774 1775 1776 1777 1778 1779
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1780
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1781 1782 1783
{
	u32 indirect_ctx_offset;

1784
	switch (INTEL_GEN(engine->i915)) {
1785
	default:
1786
		MISSING_CASE(INTEL_GEN(engine->i915));
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1801
static void execlists_init_reg_state(u32 *regs,
1802 1803 1804
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1805
{
1806 1807
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1842

1843
		if (engine->wa_ctx.vma) {
1844
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1845
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1846

1847
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1848 1849
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1850

1851
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1852
				intel_lr_indirect_ctx_offset(engine) << 6;
1853

1854
			regs[CTX_BB_PER_CTX_PTR + 1] =
1855
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1856
		}
1857
	}
1858 1859 1860 1861

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1862
	/* PDP values well be assigned later if needed */
1863 1864 1865 1866 1867 1868 1869 1870
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1871

1872
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1873 1874 1875 1876
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1877
		ASSIGN_CTX_PML4(ppgtt, regs);
1878 1879
	}

1880 1881 1882 1883
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1884
	}
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1908
	ctx_obj->mm.dirty = true;
1909 1910 1911 1912 1913 1914

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1915

1916
	i915_gem_object_unpin_map(ctx_obj);
1917 1918 1919 1920

	return 0;
}

1921 1922
/**
 * intel_lr_context_size() - return the size of the context for an engine
1923
 * @engine: which engine to find the context size for
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1935
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1936
{
1937 1938
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;
1939

1940
	WARN_ON(INTEL_GEN(dev_priv) < 8);
1941

1942 1943 1944 1945 1946 1947
	switch (engine->class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
		case 9:
1948
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1949 1950
			break;
		case 8:
1951
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1952 1953
			break;
		}
1954
		break;
1955 1956 1957 1958 1959 1960

	default:
		MISSING_CASE(engine->class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
1961 1962 1963 1964 1965
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1966 1967
}

1968
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1969
					    struct intel_engine_cs *engine)
1970
{
1971
	struct drm_i915_gem_object *ctx_obj;
1972
	struct intel_context *ce = &ctx->engine[engine->id];
1973
	struct i915_vma *vma;
1974
	uint32_t context_size;
1975
	struct intel_ring *ring;
1976 1977
	int ret;

1978
	WARN_ON(ce->state);
1979

1980 1981
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1982

1983 1984 1985
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1986
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1987
	if (IS_ERR(ctx_obj)) {
1988
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1989
		return PTR_ERR(ctx_obj);
1990 1991
	}

1992
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1993 1994 1995 1996 1997
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1998
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1999 2000
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2001
		goto error_deref_obj;
2002 2003
	}

2004
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2005 2006
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2007
		goto error_ring_free;
2008 2009
	}

2010
	ce->ring = ring;
2011
	ce->state = vma;
2012
	ce->initialised = engine->init_context == NULL;
2013 2014

	return 0;
2015

2016
error_ring_free:
2017
	intel_ring_free(ring);
2018
error_deref_obj:
2019
	i915_gem_object_put(ctx_obj);
2020
	return ret;
2021
}
2022

2023
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2024
{
2025
	struct intel_engine_cs *engine;
2026
	struct i915_gem_context *ctx;
2027
	enum intel_engine_id id;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2040
		for_each_engine(engine, dev_priv, id) {
2041 2042
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2043

2044 2045
			if (!ce->state)
				continue;
2046

2047 2048 2049 2050
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2051

2052 2053 2054
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2055

C
Chris Wilson 已提交
2056
			ce->state->obj->mm.dirty = true;
2057
			i915_gem_object_unpin_map(ce->state->obj);
2058

2059
			intel_ring_reset(ce->ring, 0);
2060
		}
2061 2062
	}
}