spi-nor.c 113.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4 5 6 7
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 9 10 11 12 13 14 15
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
16
#include <linux/sizes.h>
17
#include <linux/slab.h>
18
#include <linux/sort.h>
19 20 21 22 23 24 25

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
26 27 28 29 30 31 32 33 34 35 36 37

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
38

39
#define SPI_NOR_MAX_ID_LEN	6
40
#define SPI_NOR_MAX_ADDR_WIDTH	4
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
struct spi_nor_read_command {
	u8			num_mode_clocks;
	u8			num_wait_states;
	u8			opcode;
	enum spi_nor_protocol	proto;
};

struct spi_nor_pp_command {
	u8			opcode;
	enum spi_nor_protocol	proto;
};

enum spi_nor_read_command_index {
	SNOR_CMD_READ,
	SNOR_CMD_READ_FAST,
	SNOR_CMD_READ_1_1_1_DTR,

	/* Dual SPI */
	SNOR_CMD_READ_1_1_2,
	SNOR_CMD_READ_1_2_2,
	SNOR_CMD_READ_2_2_2,
	SNOR_CMD_READ_1_2_2_DTR,

	/* Quad SPI */
	SNOR_CMD_READ_1_1_4,
	SNOR_CMD_READ_1_4_4,
	SNOR_CMD_READ_4_4_4,
	SNOR_CMD_READ_1_4_4_DTR,

	/* Octo SPI */
	SNOR_CMD_READ_1_1_8,
	SNOR_CMD_READ_1_8_8,
	SNOR_CMD_READ_8_8_8,
	SNOR_CMD_READ_1_8_8_DTR,

	SNOR_CMD_READ_MAX
};

enum spi_nor_pp_command_index {
	SNOR_CMD_PP,

	/* Quad SPI */
	SNOR_CMD_PP_1_1_4,
	SNOR_CMD_PP_1_4_4,
	SNOR_CMD_PP_4_4_4,

	/* Octo SPI */
	SNOR_CMD_PP_1_1_8,
	SNOR_CMD_PP_1_8_8,
	SNOR_CMD_PP_8_8_8,

	SNOR_CMD_PP_MAX
};

struct spi_nor_flash_parameter {
	u64				size;
	u32				page_size;

	struct spi_nor_hwcaps		hwcaps;
	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];

	int (*quad_enable)(struct spi_nor *nor);
};

struct sfdp_parameter_header {
	u8		id_lsb;
	u8		minor;
	u8		major;
	u8		length; /* in double words */
	u8		parameter_table_pointer[3]; /* byte address */
	u8		id_msb;
};

#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
	(((p)->parameter_table_pointer[2] << 16) | \
	 ((p)->parameter_table_pointer[1] <<  8) | \
	 ((p)->parameter_table_pointer[0] <<  0))

#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */

#define SFDP_SIGNATURE		0x50444653U
#define SFDP_JESD216_MAJOR	1
#define SFDP_JESD216_MINOR	0
#define SFDP_JESD216A_MINOR	5
#define SFDP_JESD216B_MINOR	6

struct sfdp_header {
	u32		signature; /* Ox50444653U <=> "SFDP" */
	u8		minor;
	u8		major;
	u8		nph; /* 0-base number of parameter headers */
	u8		unused;

	/* Basic Flash Parameter Table. */
	struct sfdp_parameter_header	bfpt_header;
};

/* Basic Flash Parameter Table */

/*
 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 * They are indexed from 1 but C arrays are indexed from 0.
 */
#define BFPT_DWORD(i)		((i) - 1)
#define BFPT_DWORD_MAX		16

/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216			9

/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
#define BFPT_DWORD1_DTR				BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)

/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)

/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
#define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)

/* 15th DWORD. */

/*
 * (from JESD216 rev B)
 * Quad Enable Requirements (QER):
 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 *         reads based on instruction. DQ3/HOLD# functions are hold during
 *         instruction phase.
 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         Writing only one byte to the status register has the side-effect of
 *         clearing status register 2, including the QE bit. The 100b code is
 *         used if writing one byte to the status register does not modify
 *         status register 2.
 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 *         one data byte where bit 6 is one.
 *         [...]
 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 *         [...]
 *         The status register 2 is read using instruction 3Fh.
 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         In contrast to the 001b code, writing one byte to the status
 *         register does not modify status register 2.
 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 *         Read Status instruction 05h. Status register2 is read using
 *         instruction 35h. QE is set via Writ Status instruction 01h with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 */
#define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */

struct sfdp_bfpt {
	u32	dwords[BFPT_DWORD_MAX];
};

/**
 * struct spi_nor_fixups - SPI NOR fixup hooks
 * @post_bfpt: called after the BFPT table has been parsed
 *
 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
 * table is broken or not available.
 */
struct spi_nor_fixups {
	int (*post_bfpt)(struct spi_nor *nor,
			 const struct sfdp_parameter_header *bfpt_header,
			 const struct sfdp_bfpt *bfpt,
			 struct spi_nor_flash_parameter *params);
};

232
struct flash_info {
233 234
	char		*name;

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
253 254 255 256 257 258 259 260
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
261
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
262 263 264 265 266
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
267 268 269 270 271 272
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
273 274 275 276
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
277
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
278
#define SPI_NOR_SKIP_SFDP	BIT(13)	/* Skip parsing of SFDP tables */
279
#define USE_CLSR		BIT(14)	/* use CLSR command */
280

281 282 283
	/* Part specific fixup hooks. */
	const struct spi_nor_fixups *fixups;

284
	int	(*quad_enable)(struct spi_nor *nor);
285 286 287
};

#define JEDEC_MFR(info)	((info)->id[0])
288 289 290 291 292 293 294 295 296 297 298

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

299
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
300 301 302 303 304 305 306 307
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

327 328 329
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
330
 * Returns negative if error occurred.
331 332 333 334 335 336
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

337
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
338 339 340 341 342 343 344 345 346 347 348 349
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
350
static int write_sr(struct spi_nor *nor, u8 val)
351 352
{
	nor->cmd_buf[0] = val;
353
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
354 355 356 357 358 359
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
360
static int write_enable(struct spi_nor *nor)
361
{
362
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
363 364 365
}

/*
366
 * Send write disable instruction to the chip.
367
 */
368
static int write_disable(struct spi_nor *nor)
369
{
370
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
371 372
}

373
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
374 375 376 377
{
	return mtd->priv;
}

378 379 380 381 382 383 384 385 386 387 388 389 390

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

391
static u8 spi_nor_convert_3to4_read(u8 opcode)
392 393 394 395 396 397 398 399
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
400 401 402 403

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
404 405 406 407 408 409
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

410
static u8 spi_nor_convert_3to4_program(u8 opcode)
411 412 413 414 415 416 417 418 419 420 421
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

422
static u8 spi_nor_convert_3to4_erase(u8 opcode)
423 424 425 426 427 428 429 430 431 432 433
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

434
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
435 436
{
	/* Do some manufacturer fixups first */
437
	switch (JEDEC_MFR(nor->info)) {
438 439 440
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
441
		nor->mtd.erasesize = nor->info->sector_size;
442 443 444 445 446 447 448 449 450
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
451 452 453 454 455 456 457 458 459 460 461 462

	if (!spi_nor_has_uniform_erase(nor)) {
		struct spi_nor_erase_map *map = &nor->erase_map;
		struct spi_nor_erase_type *erase;
		int i;

		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
			erase = &map->erase_type[i];
			erase->opcode =
				spi_nor_convert_3to4_erase(erase->opcode);
		}
	}
463 464
}

465
/* Enable/disable 4-byte addressing mode. */
466
static int set_4byte(struct spi_nor *nor, bool enable)
467 468 469 470 471
{
	int status;
	bool need_wren = false;
	u8 cmd;

472
	switch (JEDEC_MFR(nor->info)) {
473
	case SNOR_MFR_ST:
474
	case SNOR_MFR_MICRON:
475 476
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
477
		/* fall through */
478 479
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
480 481 482
		if (need_wren)
			write_enable(nor);

483
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
484
		status = nor->write_reg(nor, cmd, NULL, 0);
485 486 487
		if (need_wren)
			write_disable(nor);

488
		if (!status && !enable &&
489
		    JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) {
490 491 492 493 494 495 496 497 498 499 500 501
			/*
			 * On Winbond W25Q256FV, leaving 4byte mode causes
			 * the Extended Address Register to be set to 1, so all
			 * 3-byte-address reads come from the second 16M.
			 * We must clear the register to enable normal behavior.
			 */
			write_enable(nor);
			nor->cmd_buf[0] = 0;
			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
			write_disable(nor);
		}

502 503 504 505
		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
506
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
507 508
	}
}
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	return !!(val & XSR_RDY);
}

524
static int spi_nor_sr_ready(struct spi_nor *nor)
525
{
526 527 528
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
529 530 531 532 533 534 535 536 537 538 539 540

	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
		if (sr & SR_E_ERR)
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
		return -EIO;
	}

	return !(sr & SR_WIP);
541
}
542

543
static int spi_nor_fsr_ready(struct spi_nor *nor)
544 545 546 547
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
		if (fsr & FSR_E_ERR)
			dev_err(nor->dev, "Erase operation failed.\n");
		else
			dev_err(nor->dev, "Program operation failed.\n");

		if (fsr & FSR_PT_ERR)
			dev_err(nor->dev,
			"Attempted to modify a protected sector.\n");

		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
		return -EIO;
	}

	return fsr & FSR_READY;
564
}
565

566 567 568
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
569 570 571 572 573

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
574 575 576 577 578 579
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
580 581
}

582 583 584 585
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
586 587
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
588 589
{
	unsigned long deadline;
590
	int timeout = 0, ret;
591

592
	deadline = jiffies + timeout_jiffies;
593

594 595 596
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
597

598 599 600 601 602
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
603 604 605 606 607

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
608 609 610 611

	return -ETIMEDOUT;
}

612 613 614 615 616 617
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

618 619 620 621 622 623 624
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
625
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
626

627
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

654 655 656 657 658 659 660 661 662 663 664
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
665 666
	unsigned int offset;
	unsigned int page;
667

668 669 670
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
671

672
	return page | offset;
673 674
}

675 676 677 678 679 680 681 682
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

683 684 685
	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/**
 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @dividend:	dividend value
 * @remainder:	pointer to u32 remainder (will be updated)
 *
 * Return: the result of the division
 */
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
				     u64 dividend, u32 *remainder)
{
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	*remainder = (u32)dividend & erase->size_mask;
	return dividend >> erase->size_shift;
}

/**
 * spi_nor_find_best_erase_type() - find the best erase type for the given
 *				    offset in the serial flash memory and the
 *				    number of bytes to erase. The region in
 *				    which the address fits is expected to be
 *				    provided.
 * @map:	the erase map of the SPI NOR
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Return: a pointer to the best fitted erase type, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
			     const struct spi_nor_erase_region *region,
			     u64 addr, u32 len)
{
	const struct spi_nor_erase_type *erase;
	u32 rem;
	int i;
	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

	/*
	 * Erase types are ordered by size, with the biggest erase type at
	 * index 0.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		/* Does the erase region support the tested erase type? */
		if (!(erase_mask & BIT(i)))
			continue;

		erase = &map->erase_type[i];

		/* Don't erase more than what the user has asked for. */
		if (erase->size > len)
			continue;

		/* Alignment is not mandatory for overlaid regions */
		if (region->offset & SNOR_OVERLAID_REGION)
			return erase;

		spi_nor_div_by_erase_size(erase, addr, &rem);
		if (rem)
			continue;
		else
			return erase;
	}

	return NULL;
}

/**
 * spi_nor_region_next() - get the next spi nor region
 * @region:	pointer to a structure that describes a SPI NOR erase region
 *
 * Return: the next spi nor region or NULL if last region.
 */
static struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region)
{
	if (spi_nor_region_is_last(region))
		return NULL;
	region++;
	return region;
}

/**
 * spi_nor_find_erase_region() - find the region of the serial flash memory in
 *				 which the offset fits
 * @map:	the erase map of the SPI NOR
 * @addr:	offset in the serial flash memory
 *
 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
	struct spi_nor_erase_region *region = map->regions;
	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
	u64 region_end = region_start + region->size;

	while (addr < region_start || addr >= region_end) {
		region = spi_nor_region_next(region);
		if (!region)
			return ERR_PTR(-EINVAL);

		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
		region_end = region_start + region->size;
	}

	return region;
}

/**
 * spi_nor_init_erase_cmd() - initialize an erase command
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 *
 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
		       const struct spi_nor_erase_type *erase)
{
	struct spi_nor_erase_command *cmd;

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&cmd->list);
	cmd->opcode = erase->opcode;
	cmd->count = 1;

	if (region->offset & SNOR_OVERLAID_REGION)
		cmd->size = region->size;
	else
		cmd->size = erase->size;

	return cmd;
}

/**
 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
 * @erase_list:	list of erase commands
 */
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
	struct spi_nor_erase_command *cmd, *next;

	list_for_each_entry_safe(cmd, next, erase_list, list) {
		list_del(&cmd->list);
		kfree(cmd);
	}
}

/**
 * spi_nor_init_erase_cmd_list() - initialize erase command list
 * @nor:	pointer to a 'struct spi_nor'
 * @erase_list:	list of erase commands to be executed once we validate that the
 *		erase can be performed
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Builds the list of best fitted erase commands and verifies if the erase can
 * be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
				       struct list_head *erase_list,
				       u64 addr, u32 len)
{
	const struct spi_nor_erase_map *map = &nor->erase_map;
	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
	struct spi_nor_erase_region *region;
	struct spi_nor_erase_command *cmd = NULL;
	u64 region_end;
	int ret = -EINVAL;

	region = spi_nor_find_erase_region(map, addr);
	if (IS_ERR(region))
		return PTR_ERR(region);

	region_end = spi_nor_region_end(region);

	while (len) {
		erase = spi_nor_find_best_erase_type(map, region, addr, len);
		if (!erase)
			goto destroy_erase_cmd_list;

		if (prev_erase != erase ||
		    region->offset & SNOR_OVERLAID_REGION) {
			cmd = spi_nor_init_erase_cmd(region, erase);
			if (IS_ERR(cmd)) {
				ret = PTR_ERR(cmd);
				goto destroy_erase_cmd_list;
			}

			list_add_tail(&cmd->list, erase_list);
		} else {
			cmd->count++;
		}

		addr += cmd->size;
		len -= cmd->size;

		if (len && addr >= region_end) {
			region = spi_nor_region_next(region);
			if (!region)
				goto destroy_erase_cmd_list;
			region_end = spi_nor_region_end(region);
		}

		prev_erase = erase;
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(erase_list);
	return ret;
}

/**
 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Build a list of best fitted erase commands and execute it once we validate
 * that the erase can be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
	LIST_HEAD(erase_list);
	struct spi_nor_erase_command *cmd, *next;
	int ret;

	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
	if (ret)
		return ret;

	list_for_each_entry_safe(cmd, next, &erase_list, list) {
		nor->erase_opcode = cmd->opcode;
		while (cmd->count) {
			write_enable(nor);

			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
				goto destroy_erase_cmd_list;

			addr += cmd->size;
			cmd->count--;

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto destroy_erase_cmd_list;
		}
		list_del(&cmd->list);
		kfree(cmd);
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(&erase_list);
	return ret;
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

986 987 988 989 990
	if (spi_nor_has_uniform_erase(nor)) {
		div_u64_rem(instr->len, mtd->erasesize, &rem);
		if (rem)
			return -EINVAL;
	}
991 992 993 994 995 996 997 998 999

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
1000
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1001 1002
		unsigned long timeout;

1003 1004
		write_enable(nor);

1005 1006 1007 1008 1009
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1020 1021 1022
		if (ret)
			goto erase_err;

1023
	/* REVISIT in some cases we could speed up erasing large regions
1024
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1025 1026 1027 1028
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
1029
	} else if (spi_nor_has_uniform_erase(nor)) {
1030
		while (len) {
1031 1032
			write_enable(nor);

1033 1034
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
1035 1036 1037 1038
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
1039 1040 1041 1042

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
1043
		}
1044 1045 1046 1047 1048 1049

	/* erase multiple sectors */
	} else {
		ret = spi_nor_erase_multi_sectors(nor, addr, len);
		if (ret)
			goto erase_err;
1050 1051
	}

1052 1053
	write_disable(nor);

1054
erase_err:
1055 1056 1057 1058 1059
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	return ret;
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
	int ret;

	write_enable(nor);
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	ret = read_sr(nor);
	if (ret < 0)
		return ret;

	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
1096 1097 1098 1099
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
1100 1101 1102 1103
	}
}

/*
1104 1105
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
1106
 */
1107 1108
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
1109 1110 1111 1112
{
	loff_t lock_offs;
	uint64_t lock_len;

1113 1114 1115
	if (!len)
		return 1;

1116 1117
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
1136 1137 1138 1139
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1140
 * Supports the block protection bits BP{0,1,2} in the status register
1141 1142 1143 1144
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
1145 1146 1147
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1160 1161 1162 1163 1164 1165 1166
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1167 1168 1169
 *
 * Returns negative on errors, 0 on success.
 */
1170
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1171
{
1172
	struct mtd_info *mtd = &nor->mtd;
1173
	int status_old, status_new;
1174 1175
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
1176
	loff_t lock_len;
1177 1178
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1179 1180

	status_old = read_sr(nor);
1181 1182
	if (status_old < 0)
		return status_old;
1183

1184 1185 1186 1187
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

1188 1189 1190 1191
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

1192 1193 1194
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
1195 1196 1197
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
1198 1199
		return -EINVAL;

1200 1201 1202
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1203
	/* lock_len: length of region that should end up locked */
1204 1205 1206 1207
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
1218
	pow = ilog2(mtd->size) - ilog2(lock_len);
1219 1220 1221 1222 1223 1224 1225
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

1226
	status_new = (status_old & ~mask & ~SR_TB) | val;
1227

1228 1229 1230
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

1231 1232 1233
	if (!use_top)
		status_new |= SR_TB;

1234 1235 1236 1237
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1238
	/* Only modify protection if it will not unlock other areas */
1239
	if ((status_new & mask) < (status_old & mask))
1240
		return -EINVAL;
1241

1242
	return write_sr_and_check(nor, status_new, mask);
1243 1244
}

1245 1246 1247 1248 1249
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
1250
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1251
{
1252
	struct mtd_info *mtd = &nor->mtd;
1253
	int status_old, status_new;
1254 1255
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
1256
	loff_t lock_len;
1257 1258
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1259 1260

	status_old = read_sr(nor);
1261 1262
	if (status_old < 0)
		return status_old;
1263

1264 1265 1266 1267 1268 1269
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
1270 1271 1272 1273 1274 1275 1276 1277
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
1278
		return -EINVAL;
1279

1280 1281 1282
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1283
	/* lock_len: length of region that should remain locked */
1284 1285 1286 1287
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
1298 1299
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
1300 1301 1302 1303 1304 1305
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
1306 1307
	}

1308
	status_new = (status_old & ~mask & ~SR_TB) | val;
1309

1310
	/* Don't protect status register if we're fully unlocked */
1311
	if (lock_len == 0)
1312 1313
		status_new &= ~SR_SRWD;

1314 1315 1316
	if (!use_top)
		status_new |= SR_TB;

1317 1318 1319 1320
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1321
	/* Only modify protection if it will not lock other areas */
1322
	if ((status_new & mask) > (status_old & mask))
1323 1324
		return -EINVAL;

1325
	return write_sr_and_check(nor, status_new, mask);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

1357 1358 1359 1360
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occurred.
 */
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
	int ret;

	write_enable(nor);

	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

	return 0;
}

/**
 * macronix_quad_enable() - set QE bit in Status Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register.
 *
 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	if (val < 0)
		return val;
	if (val & SR_QUAD_EN_MX)
		return 0;

	write_enable(nor);

	write_sr(nor, val | SR_QUAD_EN_MX);

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * spansion_quad_enable() - set QE bit in Configuraiton Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function is kept for legacy purpose because it has been used for a
 * long time without anybody complaining but it should be considered as
 * deprecated and maybe buggy.
 * First, this function doesn't care about the previous values of the Status
 * and Configuration Registers when it sets the QE bit (bit 1) in the
 * Configuration Register: all other bits are cleared, which may have unwanted
 * side effects like removing some block protections.
 * Secondly, it uses the Read Configuration Register (35h) instruction though
 * some very old and few memories don't support this instruction. If a pull-up
 * resistor is present on the MISO/IO1 line, we might still be able to pass the
 * "read back" test because the QSPI memory doesn't recognize the command,
 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_quad_enable(struct spi_nor *nor)
{
	u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN};
	int ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories not supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
	u8 sr_cr[2];
	int ret;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(nor->dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;
	sr_cr[1] = CR_QUAD_EN_SPAN;

	return write_sr_cr(nor, sr_cr);
}

/**
 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
	struct device *dev = nor->dev;
	u8 sr_cr[2];
	int ret;

	/* Check current Quad Enable bit value. */
	ret = read_cr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading configuration register\n");
		return -EINVAL;
	}

	if (ret & CR_QUAD_EN_SPAN)
		return 0;

	sr_cr[1] = ret | CR_QUAD_EN_SPAN;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* Read back and check it. */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int sr2_bit7_quad_enable(struct spi_nor *nor)
{
	u8 sr2;
	int ret;

	/* Check current Quad Enable bit value. */
	ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
	if (ret)
		return ret;
	if (sr2 & SR2_QUAD_EN_BIT7)
		return 0;

	/* Update the Quad Enable bit. */
	sr2 |= SR2_QUAD_EN_BIT7;

	write_enable(nor);

	ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error while writing status register 2\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret < 0) {
		dev_err(nor->dev, "timeout while writing status register 2\n");
		return ret;
	}

	/* Read back and check it. */
	ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
	if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) {
		dev_err(nor->dev, "SR2 Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}
A
Andy Yan 已提交
1632

1633
/* Used when the "_ext_id" is two bytes at most */
1634
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
1635 1636 1637 1638 1639 1640 1641 1642
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
1643 1644 1645
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
1646
		.flags = (_flags),
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
1661
		.flags = (_flags),
1662

1663 1664 1665 1666 1667
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
1668
		.flags = (_flags),
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
			    const struct sfdp_parameter_header *bfpt_header,
			    const struct sfdp_bfpt *bfpt,
			    struct spi_nor_flash_parameter *params)
{
	/*
	 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
	 * Unfortunately, Macronix has re-used the same JEDEC ID for both
	 * variants which prevents us from defining a new entry in the parts
	 * table.
	 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
	 * seems that the F version advertises support for Fast Read 4-4-4 in
	 * its BFPT table.
	 */
	if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
		nor->flags |= SNOR_F_4B_OPCODES;

	return 0;
}

static struct spi_nor_fixups mx25l25635_fixups = {
	.post_bfpt = mx25l25635_post_bfpt_fixups,
};

1708 1709 1710
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
1711 1712 1713 1714 1715 1716 1717
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
1718
 */
1719
static const struct flash_info spi_nor_ids[] = {
1720 1721 1722 1723 1724
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
1725
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
1742
	{ "en25qh32",   INFO(0x1c7016, 0, 64 * 1024,   64, 0) },
1743
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
1744
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
1745
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
1746 1747

	/* ESMT */
1748
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
1749 1750
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
1751 1752

	/* Everspin */
1753
	{ "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1754 1755
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1756
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1757

1758 1759 1760
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

1761
	/* GigaDevice */
1762 1763 1764 1765 1766
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1767 1768 1769 1770 1771
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1772 1773 1774 1775 1776
	{
		"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
A
Andy Yan 已提交
1792 1793 1794 1795 1796 1797
	{
		"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
			.quad_enable = macronix_quad_enable,
	},
1798 1799 1800 1801 1802 1803

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

1804
	/* ISSI */
S
Sean Nyekjaer 已提交
1805 1806
	{ "is25cd512",  INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
	{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024,   8,
1807
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1808 1809
	{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024,  16,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1810 1811 1812 1813
	{ "is25lp032",  INFO(0x9d6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ) },
	{ "is25lp064",  INFO(0x9d6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ) },
S
Sean Nyekjaer 已提交
1814
	{ "is25lp128",  INFO(0x9d6018, 0, 64 * 1024, 256,
1815
			SECT_4K | SPI_NOR_DUAL_READ) },
1816
	{ "is25lp256",  INFO(0x9d6019, 0, 64 * 1024, 512,
1817 1818
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_4B_OPCODES) },
1819 1820 1821 1822 1823 1824
	{ "is25wp032",  INFO(0x9d7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp064",  INFO(0x9d7017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp128",  INFO(0x9d7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1825

1826
	/* Macronix */
1827
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
1828 1829 1830 1831
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
1832
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
1833
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
1834
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1835 1836 1837
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
1838
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1839 1840
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1841 1842
	{ "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1843 1844 1845
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
			 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
			 .fixups = &mx25l25635_fixups },
1846
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
1847
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1848
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1849
	{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1850
	{ "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1851 1852
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

1853
	/* Micron <--> ST Micro */
1854
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
1855
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1856
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1857
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1858
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1859 1860
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1861
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1862
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1863 1864
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1865 1866
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1867
	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1868

1869 1870 1871 1872 1873 1874
	/* Micron */
	{
		"mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
			SECT_4K | USE_FSR | SPI_NOR_4B_OPCODES)
	},

1875 1876 1877 1878 1879
	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

1880
	/* Spansion/Cypress -- single (large) sector size only, at least
1881 1882
	 * for the chips listed here (without boot sectors).
	 */
1883
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1884
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1885 1886 1887
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1888 1889 1890
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
1891 1892 1893
	{ "s25fl128s",  INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1894 1895 1896 1897 1898
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
1899
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1900 1901
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1902
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
1903
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1904
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
1905
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
1906
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
1907
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
1908
	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1909 1910
	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
1921
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
1922
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
1923
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1924
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1925
	{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1961
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
1962 1963

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1964
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
1965 1966 1967 1968 1969
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
1970 1971 1972 1973 1974
	{
		"w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1975
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1976 1977 1978
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
1979
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1980 1981 1982 1983 1984
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1985 1986 1987 1988 1989
	{
		"w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1990 1991
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2002 2003 2004 2005 2006
	{
		"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2007 2008 2009
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2010
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2011 2012
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2013 2014 2015 2016 2017 2018 2019

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2020 2021 2022 2023 2024 2025 2026

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2027 2028 2029 2030

	/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
	{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2031 2032 2033
	{ },
};

2034
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2035 2036
{
	int			tmp;
2037
	u8			id[SPI_NOR_MAX_ID_LEN];
2038
	const struct flash_info	*info;
2039

2040
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
2041
	if (tmp < 0) {
2042
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
2043 2044 2045 2046
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
2047
		info = &spi_nor_ids[tmp];
2048 2049
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
2050 2051 2052
				return &spi_nor_ids[tmp];
		}
	}
2053
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
2054
		id[0], id[1], id[2]);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
2070
	while (len) {
2071 2072 2073 2074 2075 2076
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		ret = nor->read(nor, addr, len, buf);
M
Michal Suchanek 已提交
2077 2078 2079 2080 2081 2082 2083
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
2084

M
Michal Suchanek 已提交
2085 2086 2087 2088 2089 2090 2091
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
2092

M
Michal Suchanek 已提交
2093 2094 2095
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
2118
		nor->program_opcode = SPINOR_OP_BP;
2119 2120

		/* write one byte. */
2121
		ret = nor->write(nor, to, 1, buf);
2122 2123 2124 2125
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
2126
		ret = spi_nor_wait_till_ready(nor);
2127
		if (ret)
2128
			goto sst_write_err;
2129 2130 2131 2132 2133
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
2134
		nor->program_opcode = SPINOR_OP_AAI_WP;
2135 2136

		/* write two bytes. */
2137
		ret = nor->write(nor, to, 2, buf + actual);
2138 2139 2140 2141
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
2142
		ret = spi_nor_wait_till_ready(nor);
2143
		if (ret)
2144
			goto sst_write_err;
2145 2146 2147 2148 2149 2150
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
2151
	ret = spi_nor_wait_till_ready(nor);
2152
	if (ret)
2153
		goto sst_write_err;
2154 2155 2156 2157 2158

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

2159
		nor->program_opcode = SPINOR_OP_BP;
2160
		ret = nor->write(nor, to, 1, buf + actual);
2161 2162 2163 2164
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
2165
		ret = spi_nor_wait_till_ready(nor);
2166
		if (ret)
2167
			goto sst_write_err;
2168
		write_disable(nor);
2169
		actual += 1;
2170
	}
2171
sst_write_err:
2172
	*retlen += actual;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2186 2187
	size_t page_offset, page_remain, i;
	ssize_t ret;
2188 2189 2190 2191 2192 2193 2194

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

2195 2196
	for (i = 0; i < len; ) {
		ssize_t written;
2197
		loff_t addr = to + i;
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
2211

2212 2213
			page_offset = do_div(aux, nor->page_size);
		}
2214
		/* the size of data remaining on the first page */
2215 2216 2217
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

2218 2219 2220
		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

2221
		write_enable(nor);
2222
		ret = nor->write(nor, addr, page_remain, buf + i);
2223 2224
		if (ret < 0)
			goto write_err;
2225
		written = ret;
2226

2227 2228 2229 2230 2231
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
2232 2233 2234 2235
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
2236
	return ret;
2237 2238
}

2239
static int spi_nor_check(struct spi_nor *nor)
2240 2241
{
	if (!nor->dev || !nor->read || !nor->write ||
2242
		!nor->read_reg || !nor->write_reg) {
2243 2244 2245 2246 2247 2248 2249
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

2250
static int s3an_nor_scan(struct spi_nor *nor)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
	if (val & XSR_PAGESIZE) {
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
2281
		nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2282 2283 2284 2285 2286 2287 2288 2289 2290
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

2364 2365 2366 2367
/*
 * Serial Flash Discoverable Parameters (SFDP) parsing.
 */

2368 2369 2370 2371 2372 2373 2374 2375
/**
 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
 *			addr_width and read_dummy members of the struct spi_nor
 *			should be previously
 * set.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to read
2376
 * @buf:	buffer where the data is copied into (dma-safe memory)
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
	int ret;

	while (len) {
		ret = nor->read(nor, addr, len, buf);
		if (!ret || ret > len)
			return -EIO;
		if (ret < 0)
			return ret;

		buf += ret;
		addr += ret;
		len -= ret;
	}
	return 0;
}

2398 2399 2400 2401 2402
/**
 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
2403
 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
 *
 * Whatever the actual numbers of bytes for address and dummy cycles are
 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 * followed by a 3-byte address and 8 dummy clock cycles.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
			     size_t len, void *buf)
{
	u8 addr_width, read_opcode, read_dummy;
	int ret;

	read_opcode = nor->read_opcode;
	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;

	nor->read_opcode = SPINOR_OP_RDSFDP;
	nor->addr_width = 3;
	nor->read_dummy = 8;

2425
	ret = spi_nor_read_raw(nor, addr, len, buf);
2426 2427 2428 2429 2430 2431 2432 2433

	nor->read_opcode = read_opcode;
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;

	return ret;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
/**
 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
 * @buf:	buffer where the SFDP data are copied into
 *
 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 * guaranteed to be dma-safe.
 *
 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 *          otherwise.
 */
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
					size_t len, void *buf)
{
	void *dma_safe_buf;
	int ret;

	dma_safe_buf = kmalloc(len, GFP_KERNEL);
	if (!dma_safe_buf)
		return -ENOMEM;

	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
	memcpy(buf, dma_safe_buf, len);
	kfree(dma_safe_buf);

	return ret;
}

2464 2465
/* Fast Read settings. */

2466
static void
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
				    u16 half,
				    enum spi_nor_protocol proto)
{
	read->num_mode_clocks = (half >> 5) & 0x07;
	read->num_wait_states = (half >> 0) & 0x1f;
	read->opcode = (half >> 8) & 0xff;
	read->proto = proto;
}

struct sfdp_bfpt_read {
	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
	u32			hwcaps;

	/*
	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
	 * whether the Fast Read x-y-z command is supported.
	 */
	u32			supported_dword;
	u32			supported_bit;

	/*
	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
	 * encodes the op code, the number of mode clocks and the number of wait
	 * states to be used by Fast Read x-y-z command.
	 */
	u32			settings_dword;
	u32			settings_shift;

	/* The SPI protocol for this Fast Read x-y-z command. */
	enum spi_nor_protocol	proto;
};

static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
	/* Fast Read 1-1-2 */
	{
		SNOR_HWCAPS_READ_1_1_2,
		BFPT_DWORD(1), BIT(16),	/* Supported bit */
		BFPT_DWORD(4), 0,	/* Settings */
		SNOR_PROTO_1_1_2,
	},

	/* Fast Read 1-2-2 */
	{
		SNOR_HWCAPS_READ_1_2_2,
		BFPT_DWORD(1), BIT(20),	/* Supported bit */
		BFPT_DWORD(4), 16,	/* Settings */
		SNOR_PROTO_1_2_2,
	},

	/* Fast Read 2-2-2 */
	{
		SNOR_HWCAPS_READ_2_2_2,
		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
		BFPT_DWORD(6), 16,	/* Settings */
		SNOR_PROTO_2_2_2,
	},

	/* Fast Read 1-1-4 */
	{
		SNOR_HWCAPS_READ_1_1_4,
		BFPT_DWORD(1), BIT(22),	/* Supported bit */
		BFPT_DWORD(3), 16,	/* Settings */
		SNOR_PROTO_1_1_4,
	},

	/* Fast Read 1-4-4 */
	{
		SNOR_HWCAPS_READ_1_4_4,
		BFPT_DWORD(1), BIT(21),	/* Supported bit */
		BFPT_DWORD(3), 0,	/* Settings */
		SNOR_PROTO_1_4_4,
	},

	/* Fast Read 4-4-4 */
	{
		SNOR_HWCAPS_READ_4_4_4,
		BFPT_DWORD(5), BIT(4),	/* Supported bit */
		BFPT_DWORD(7), 16,	/* Settings */
		SNOR_PROTO_4_4_4,
	},
};

struct sfdp_bfpt_erase {
	/*
	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
	 * op code and erase sector size to be used by Sector Erase commands.
	 */
	u32			dword;
	u32			shift;
};

static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
	/* Erase Type 1 in DWORD8 bits[15:0] */
	{BFPT_DWORD(8), 0},

	/* Erase Type 2 in DWORD8 bits[31:16] */
	{BFPT_DWORD(8), 16},

	/* Erase Type 3 in DWORD9 bits[15:0] */
	{BFPT_DWORD(9), 0},

	/* Erase Type 4 in DWORD9 bits[31:16] */
	{BFPT_DWORD(9), 16},
};

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/**
 * spi_nor_set_erase_type() - set a SPI NOR erase type
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 */
static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase,
				   u32 size, u8 opcode)
{
	erase->size = size;
	erase->opcode = opcode;
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	erase->size_shift = ffs(erase->size) - 1;
	erase->size_mask = (1 << erase->size_shift) - 1;
}

/**
 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 * @i:		erase type index as sorted in the Basic Flash Parameter Table
 *
 * The supported Erase Types will be sorted at init in ascending order, with
 * the smallest Erase Type size being the first member in the erase_type array
 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
 * the Basic Flash Parameter Table since it will be used later on to
 * synchronize with the supported Erase Types defined in SFDP optional tables.
 */
static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
				     u32 size, u8 opcode, u8 i)
{
	erase->idx = i;
	spi_nor_set_erase_type(erase, size, opcode);
}

/**
 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
 * @l:	member in the left half of the map's erase_type array
 * @r:	member in the right half of the map's erase_type array
 *
 * Comparison function used in the sort() call to sort in ascending order the
 * map's erase types, the smallest erase type size being the first member in the
 * sorted erase_type array.
 *
 * Return: the result of @l->size - @r->size
 */
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
{
	const struct spi_nor_erase_type *left = l, *right = r;

	return left->size - right->size;
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/**
 * spi_nor_sort_erase_mask() - sort erase mask
 * @map:	the erase map of the SPI NOR
 * @erase_mask:	the erase type mask to be sorted
 *
 * Replicate the sort done for the map's erase types in BFPT: sort the erase
 * mask in ascending order with the smallest erase type size starting from
 * BIT(0) in the sorted erase mask.
 *
 * Return: sorted erase mask.
 */
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
{
	struct spi_nor_erase_type *erase_type = map->erase_type;
	int i;
	u8 sorted_erase_mask = 0;

	if (!erase_mask)
		return 0;

	/* Replicate the sort done for the map's erase types. */
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
			sorted_erase_mask |= BIT(i);

	return sorted_erase_mask;
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * spi_nor_regions_sort_erase_types() - sort erase types in each region
 * @map:	the erase map of the SPI NOR
 *
 * Function assumes that the erase types defined in the erase map are already
 * sorted in ascending order, with the smallest erase type size being the first
 * member in the erase_type array. It replicates the sort done for the map's
 * erase types. Each region's erase bitmask will indicate which erase types are
 * supported from the sorted erase types defined in the erase map.
 * Sort the all region's erase type at init in order to speed up the process of
 * finding the best erase command at runtime.
 */
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
{
	struct spi_nor_erase_region *region = map->regions;
	u8 region_erase_mask, sorted_erase_mask;

	while (region) {
		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

2676 2677
		sorted_erase_mask = spi_nor_sort_erase_mask(map,
							    region_erase_mask);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

		/* Overwrite erase mask. */
		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
				 sorted_erase_mask;

		region = spi_nor_region_next(region);
	}
}

/**
 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
 * @map:		the erase map of the SPI NOR
 * @erase_mask:		bitmask encoding erase types that can erase the entire
 *			flash memory
 * @flash_size:		the spi nor flash memory size
 */
static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
					   u8 erase_mask, u64 flash_size)
{
	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
				     SNOR_LAST_REGION;
	map->uniform_region.size = flash_size;
	map->regions = &map->uniform_region;
	map->uniform_erase_type = erase_mask;
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
static int
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
			 const struct sfdp_parameter_header *bfpt_header,
			 const struct sfdp_bfpt *bfpt,
			 struct spi_nor_flash_parameter *params)
{
	if (nor->info->fixups && nor->info->fixups->post_bfpt)
		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
						    params);

	return 0;
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/**
 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 * @nor:		pointer to a 'struct spi_nor'
 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the Basic Flash Parameter Table length and version
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Basic Flash Parameter Table is the main and only mandatory table as
 * defined by the SFDP (JESD216) specification.
 * It provides us with the total size (memory density) of the data array and
 * the number of address bytes for Fast Read, Page Program and Sector Erase
 * commands.
 * For Fast READ commands, it also gives the number of mode clock cycles and
 * wait states (regrouped in the number of dummy clock cycles) for each
 * supported instruction op code.
 * For Page Program, the page size is now available since JESD216 rev A, however
 * the supported instruction op codes are still not provided.
 * For Sector Erase commands, this table stores the supported instruction op
 * codes and the associated sector sizes.
 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 * rev A. The QER bits encode the manufacturer dependent procedure to be
 * executed to set the Quad Enable (QE) bit in some internal register of the
 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 * and IO3 hence enabling 4 (Quad) I/O lines.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_bfpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *bfpt_header,
			      struct spi_nor_flash_parameter *params)
{
2752 2753
	struct spi_nor_erase_map *map = &nor->erase_map;
	struct spi_nor_erase_type *erase_type = map->erase_type;
2754 2755 2756 2757 2758
	struct sfdp_bfpt bfpt;
	size_t len;
	int i, cmd, err;
	u32 addr;
	u16 half;
2759
	u8 erase_mask;
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
		return -EINVAL;

	/* Read the Basic Flash Parameter Table. */
	len = min_t(size_t, sizeof(bfpt),
		    bfpt_header->length * sizeof(u32));
	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
	memset(&bfpt, 0, sizeof(bfpt));
2770
	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	if (err < 0)
		return err;

	/* Fix endianness of the BFPT DWORDs. */
	for (i = 0; i < BFPT_DWORD_MAX; i++)
		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);

	/* Number of address bytes. */
	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
		nor->addr_width = 3;
		break;

	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
		nor->addr_width = 4;
		break;

	default:
		break;
	}

	/* Flash Memory Density (in bits). */
	params->size = bfpt.dwords[BFPT_DWORD(2)];
	if (params->size & BIT(31)) {
		params->size &= ~BIT(31);
2796 2797 2798 2799 2800 2801 2802 2803 2804

		/*
		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
		 * bits is unlikely to exist so this error probably means
		 * the BFPT we are reading is corrupted/wrong.
		 */
		if (params->size > 63)
			return -EINVAL;

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		params->size = 1ULL << params->size;
	} else {
		params->size++;
	}
	params->size >>= 3; /* Convert to bytes. */

	/* Fast Read settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
		struct spi_nor_read_command *read;

		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
			params->hwcaps.mask &= ~rd->hwcaps;
			continue;
		}

		params->hwcaps.mask |= rd->hwcaps;
		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
		read = &params->reads[cmd];
		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
	}

2828 2829 2830 2831 2832 2833
	/*
	 * Sector Erase settings. Reinitialize the uniform erase map using the
	 * Erase Types defined in the bfpt table.
	 */
	erase_mask = 0;
	memset(&nor->erase_map, 0, sizeof(nor->erase_map));
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
		u32 erasesize;
		u8 opcode;

		half = bfpt.dwords[er->dword] >> er->shift;
		erasesize = half & 0xff;

		/* erasesize == 0 means this Erase Type is not supported. */
		if (!erasesize)
			continue;

		erasesize = 1U << erasesize;
		opcode = (half >> 8) & 0xff;
2848 2849 2850
		erase_mask |= BIT(i);
		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
						     opcode, i);
2851
	}
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
	/*
	 * Sort all the map's Erase Types in ascending order with the smallest
	 * erase size being the first member in the erase_type array.
	 */
	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
	     spi_nor_map_cmp_erase_type, NULL);
	/*
	 * Sort the erase types in the uniform region in order to update the
	 * uniform_erase_type bitmask. The bitmask will be used later on when
	 * selecting the uniform erase.
	 */
	spi_nor_regions_sort_erase_types(map);
	map->uniform_erase_type = map->uniform_region.offset &
				  SNOR_ERASE_TYPE_MASK;
2867 2868 2869

	/* Stop here if not JESD216 rev A or later. */
	if (bfpt_header->length < BFPT_DWORD_MAX)
2870 2871
		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
						params);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
	params->page_size = 1U << params->page_size;

	/* Quad Enable Requirements. */
	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
	case BFPT_DWORD15_QER_NONE:
		params->quad_enable = NULL;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
		params->quad_enable = spansion_no_read_cr_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR1_BIT6:
		params->quad_enable = macronix_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT7:
		params->quad_enable = sr2_bit7_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1:
		params->quad_enable = spansion_read_cr_quad_enable;
		break;

	default:
		return -EINVAL;
	}

2906
	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
2907 2908
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)

#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
#define SMPT_CMD_READ_DUMMY_SHIFT		16
#define SMPT_CMD_READ_DUMMY(_cmd) \
	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL

#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
#define SMPT_CMD_READ_DATA_SHIFT		24
#define SMPT_CMD_READ_DATA(_cmd) \
	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)

#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
#define SMPT_CMD_OPCODE_SHIFT			8
#define SMPT_CMD_OPCODE(_cmd) \
	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)

#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
#define SMPT_MAP_REGION_COUNT_SHIFT		16
#define SMPT_MAP_REGION_COUNT(_header) \
	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)

#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
#define SMPT_MAP_ID_SHIFT			8
#define SMPT_MAP_ID(_header) \
	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)

#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
#define SMPT_MAP_REGION_SIZE_SHIFT		8
#define SMPT_MAP_REGION_SIZE(_region) \
	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)

#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)

#define SMPT_DESC_TYPE_MAP			BIT(1)
#define SMPT_DESC_END				BIT(0)

/**
 * spi_nor_smpt_addr_width() - return the address width used in the
 *			       configuration detection command.
 * @nor:	pointer to a 'struct spi_nor'
 * @settings:	configuration detection command descriptor, dword1
 */
static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
{
	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
	case SMPT_CMD_ADDRESS_LEN_0:
		return 0;
	case SMPT_CMD_ADDRESS_LEN_3:
		return 3;
	case SMPT_CMD_ADDRESS_LEN_4:
		return 4;
	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
		/* fall through */
	default:
		return nor->addr_width;
	}
}

/**
 * spi_nor_smpt_read_dummy() - return the configuration detection command read
 *			       latency, in clock cycles.
 * @nor:	pointer to a 'struct spi_nor'
 * @settings:	configuration detection command descriptor, dword1
 *
 * Return: the number of dummy cycles for an SMPT read
 */
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
{
	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);

	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
		return nor->read_dummy;
	return read_dummy;
}

/**
 * spi_nor_get_map_in_use() - get the configuration map in use
 * @nor:	pointer to a 'struct spi_nor'
 * @smpt:	pointer to the sector map parameter table
2998
 * @smpt_len:	sector map parameter table length
2999 3000
 *
 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
3001
 */
3002 3003
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
					 u8 smpt_len)
3004
{
3005
	const u32 *ret;
3006
	u8 *buf;
3007
	u32 addr;
3008
	int err;
3009
	u8 i;
3010
	u8 addr_width, read_opcode, read_dummy;
3011 3012 3013 3014 3015 3016
	u8 read_data_mask, map_id;

	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
	if (!buf)
		return ERR_PTR(-ENOMEM);
3017 3018 3019 3020 3021 3022 3023

	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;
	read_opcode = nor->read_opcode;

	map_id = 0;
	/* Determine if there are any optional Detection Command Descriptors */
3024 3025 3026 3027
	for (i = 0; i < smpt_len; i += 2) {
		if (smpt[i] & SMPT_DESC_TYPE_MAP)
			break;

3028 3029 3030 3031 3032 3033
		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
		addr = smpt[i + 1];

3034
		err = spi_nor_read_raw(nor, addr, 1, buf);
3035 3036
		if (err) {
			ret = ERR_PTR(err);
3037
			goto out;
3038
		}
3039 3040 3041 3042 3043

		/*
		 * Build an index value that is used to select the Sector Map
		 * Configuration that is currently in use.
		 */
3044
		map_id = map_id << 1 | !!(*buf & read_data_mask);
3045 3046
	}

3047 3048 3049 3050 3051 3052 3053
	/*
	 * If command descriptors are provided, they always precede map
	 * descriptors in the table. There is no need to start the iteration
	 * over smpt array all over again.
	 *
	 * Find the matching configuration map.
	 */
3054
	ret = ERR_PTR(-EINVAL);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	while (i < smpt_len) {
		if (SMPT_MAP_ID(smpt[i]) == map_id) {
			ret = smpt + i;
			break;
		}

		/*
		 * If there are no more configuration map descriptors and no
		 * configuration ID matched the configuration identifier, the
		 * sector address map is unknown.
		 */
3066
		if (smpt[i] & SMPT_DESC_END)
3067 3068
			break;

3069 3070 3071 3072 3073 3074
		/* increment the table index to the next map */
		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
	}

	/* fall through */
out:
3075
	kfree(buf);
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;
	nor->read_opcode = read_opcode;
	return ret;
}

/**
 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @erase_type:	erase type bitmask
 */
static void
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
			     const struct spi_nor_erase_type *erase,
			     const u8 erase_type)
{
	int i;

	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		if (!(erase_type & BIT(i)))
			continue;
		if (region->size & erase[i].size_mask) {
			spi_nor_region_mark_overlay(region);
			return;
		}
	}
}

/**
 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
 * @nor:	pointer to a 'struct spi_nor'
 * @smpt:	pointer to the sector map parameter table
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
					      const u32 *smpt)
{
	struct spi_nor_erase_map *map = &nor->erase_map;
3116
	struct spi_nor_erase_type *erase = map->erase_type;
3117 3118 3119 3120
	struct spi_nor_erase_region *region;
	u64 offset;
	u32 region_count;
	int i, j;
3121 3122
	u8 uniform_erase_type, save_uniform_erase_type;
	u8 erase_type, regions_erase_type;
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134

	region_count = SMPT_MAP_REGION_COUNT(*smpt);
	/*
	 * The regions will be freed when the driver detaches from the
	 * device.
	 */
	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
			      GFP_KERNEL);
	if (!region)
		return -ENOMEM;
	map->regions = region;

3135
	uniform_erase_type = 0xff;
3136
	regions_erase_type = 0;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	offset = 0;
	/* Populate regions. */
	for (i = 0; i < region_count; i++) {
		j = i + 1; /* index for the region dword */
		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
		region[i].offset = offset | erase_type;

		spi_nor_region_check_overlay(&region[i], erase, erase_type);

		/*
		 * Save the erase types that are supported in all regions and
		 * can erase the entire flash memory.
		 */
3151
		uniform_erase_type &= erase_type;
3152

3153 3154 3155 3156 3157 3158
		/*
		 * regions_erase_type mask will indicate all the erase types
		 * supported in this configuration map.
		 */
		regions_erase_type |= erase_type;

3159 3160 3161 3162
		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
			 region[i].size;
	}

3163
	save_uniform_erase_type = map->uniform_erase_type;
3164 3165 3166
	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
							  uniform_erase_type);

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	if (!regions_erase_type) {
		/*
		 * Roll back to the previous uniform_erase_type mask, SMPT is
		 * broken.
		 */
		map->uniform_erase_type = save_uniform_erase_type;
		return -EINVAL;
	}

	/*
	 * BFPT advertises all the erase types supported by all the possible
	 * map configurations. Mask out the erase types that are not supported
	 * by the current map configuration.
	 */
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
		if (!(regions_erase_type & BIT(erase[i].idx)))
			spi_nor_set_erase_type(&erase[i], 0, 0xFF);

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	spi_nor_region_mark_end(&region[i - 1]);

	return 0;
}

/**
 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
 * @nor:		pointer to a 'struct spi_nor'
 * @smpt_header:	sector map parameter table header
 *
 * This table is optional, but when available, we parse it to identify the
 * location and size of sectors within the main data array of the flash memory
 * device and to identify which Erase Types are supported by each sector.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_smpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *smpt_header)
{
	const u32 *sector_map;
	u32 *smpt;
	size_t len;
	u32 addr;
	int i, ret;

	/* Read the Sector Map Parameter Table. */
	len = smpt_header->length * sizeof(*smpt);
3212
	smpt = kmalloc(len, GFP_KERNEL);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	if (!smpt)
		return -ENOMEM;

	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
	if (ret)
		goto out;

	/* Fix endianness of the SMPT DWORDs. */
	for (i = 0; i < smpt_header->length; i++)
		smpt[i] = le32_to_cpu(smpt[i]);

3225
	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
3226 3227
	if (IS_ERR(sector_map)) {
		ret = PTR_ERR(sector_map);
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		goto out;
	}

	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
	if (ret)
		goto out;

	spi_nor_regions_sort_erase_types(&nor->erase_map);
	/* fall through */
out:
	kfree(smpt);
	return ret;
}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
/**
 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 * @nor:		pointer to a 'struct spi_nor'
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 * specification. This is a standard which tends to supported by almost all
 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 * runtime the main parameters needed to perform basic SPI flash operations such
 * as Fast Read, Page Program or Sector Erase commands.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_sfdp(struct spi_nor *nor,
			      struct spi_nor_flash_parameter *params)
{
	const struct sfdp_parameter_header *param_header, *bfpt_header;
	struct sfdp_parameter_header *param_headers = NULL;
	struct sfdp_header header;
	struct device *dev = nor->dev;
	size_t psize;
	int i, err;

	/* Get the SFDP header. */
3267
	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
3268 3269 3270 3271 3272
	if (err < 0)
		return err;

	/* Check the SFDP header version. */
	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
3273
	    header.major != SFDP_JESD216_MAJOR)
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		return -EINVAL;

	/*
	 * Verify that the first and only mandatory parameter header is a
	 * Basic Flash Parameter Table header as specified in JESD216.
	 */
	bfpt_header = &header.bfpt_header;
	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
	    bfpt_header->major != SFDP_JESD216_MAJOR)
		return -EINVAL;

	/*
	 * Allocate memory then read all parameter headers with a single
	 * Read SFDP command. These parameter headers will actually be parsed
	 * twice: a first time to get the latest revision of the basic flash
	 * parameter table, then a second time to handle the supported optional
	 * tables.
	 * Hence we read the parameter headers once for all to reduce the
	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
	 * because we don't need to keep these parameter headers: the allocated
	 * memory is always released with kfree() before exiting this function.
	 */
	if (header.nph) {
		psize = header.nph * sizeof(*param_headers);

		param_headers = kmalloc(psize, GFP_KERNEL);
		if (!param_headers)
			return -ENOMEM;

		err = spi_nor_read_sfdp(nor, sizeof(header),
					psize, param_headers);
		if (err < 0) {
			dev_err(dev, "failed to read SFDP parameter headers\n");
			goto exit;
		}
	}

	/*
	 * Check other parameter headers to get the latest revision of
	 * the basic flash parameter table.
	 */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
		    param_header->major == SFDP_JESD216_MAJOR &&
		    (param_header->minor > bfpt_header->minor ||
		     (param_header->minor == bfpt_header->minor &&
		      param_header->length > bfpt_header->length)))
			bfpt_header = param_header;
	}

	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
	if (err)
		goto exit;

3330
	/* Parse optional parameter tables. */
3331 3332 3333 3334 3335
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		switch (SFDP_PARAM_HEADER_ID(param_header)) {
		case SFDP_SECTOR_MAP_ID:
3336
			err = spi_nor_parse_smpt(nor, param_header);
3337 3338 3339 3340 3341 3342
			break;

		default:
			break;
		}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		if (err) {
			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
				 SFDP_PARAM_HEADER_ID(param_header));
			/*
			 * Let's not drop all information we extracted so far
			 * if optional table parsers fail. In case of failing,
			 * each optional parser is responsible to roll back to
			 * the previously known spi_nor data.
			 */
			err = 0;
		}
3354 3355 3356 3357 3358 3359 3360
	}

exit:
	kfree(param_headers);
	return err;
}

3361 3362 3363
static int spi_nor_init_params(struct spi_nor *nor,
			       struct spi_nor_flash_parameter *params)
{
3364
	struct spi_nor_erase_map *map = &nor->erase_map;
3365
	const struct flash_info *info = nor->info;
3366 3367
	u8 i, erase_mask;

3368 3369 3370 3371
	/* Set legacy flash parameters as default. */
	memset(params, 0, sizeof(*params));

	/* Set SPI NOR sizes. */
3372
	params->size = (u64)info->sector_size * info->n_sectors;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	params->page_size = info->page_size;

	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

	if (!(info->flags & SPI_NOR_NO_FR)) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);
	}

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	/*
	 * Sector Erase settings. Sort Erase Types in ascending order, with the
	 * smallest erase size starting at BIT(0).
	 */
	erase_mask = 0;
	i = 0;
	if (info->flags & SECT_4K_PMC) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K_PMC);
		i++;
	} else if (info->flags & SECT_4K) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K);
		i++;
	}
	erase_mask |= BIT(i);
	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
			       SPINOR_OP_SE);
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);

3429 3430 3431 3432 3433 3434 3435 3436
	/* Select the procedure to set the Quad Enable bit. */
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
				   SNOR_HWCAPS_PP_QUAD)) {
		switch (JEDEC_MFR(info)) {
		case SNOR_MFR_MACRONIX:
			params->quad_enable = macronix_quad_enable;
			break;

3437
		case SNOR_MFR_ST:
3438 3439 3440 3441
		case SNOR_MFR_MICRON:
			break;

		default:
3442
			/* Kept only for backward compatibility purpose. */
3443 3444 3445
			params->quad_enable = spansion_quad_enable;
			break;
		}
3446 3447 3448 3449 3450 3451 3452 3453 3454

		/*
		 * Some manufacturer like GigaDevice may use different
		 * bit to set QE on different memories, so the MFR can't
		 * indicate the quad_enable method for this case, we need
		 * set it in flash info list.
		 */
		if (info->quad_enable)
			params->quad_enable = info->quad_enable;
3455 3456
	}

3457 3458 3459
	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
		struct spi_nor_flash_parameter sfdp_params;
3460
		struct spi_nor_erase_map prev_map;
3461 3462

		memcpy(&sfdp_params, params, sizeof(sfdp_params));
3463 3464
		memcpy(&prev_map, &nor->erase_map, sizeof(prev_map));

3465 3466
		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
			nor->addr_width = 0;
3467
			nor->flags &= ~SNOR_F_4B_OPCODES;
3468 3469 3470
			/* restore previous erase map */
			memcpy(&nor->erase_map, &prev_map,
			       sizeof(nor->erase_map));
3471
		} else {
3472
			memcpy(params, &sfdp_params, sizeof(*params));
3473
		}
3474 3475
	}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	return 0;
}

static int spi_nor_select_read(struct spi_nor *nor,
			       const struct spi_nor_flash_parameter *params,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &params->reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &params->page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/**
 * spi_nor_select_uniform_erase() - select optimum uniform erase type
 * @map:		the erase map of the SPI NOR
 * @wanted_size:	the erase type size to search for. Contains the value of
 *			info->sector_size or of the "small sector" size in case
 *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
 *
 * Once the optimum uniform sector erase command is found, disable all the
 * other.
 *
 * Return: pointer to erase type on success, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
			     const u32 wanted_size)
3546
{
3547 3548 3549
	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
	int i;
	u8 uniform_erase_type = map->uniform_erase_type;
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (!(uniform_erase_type & BIT(i)))
			continue;

		tested_erase = &map->erase_type[i];

		/*
		 * If the current erase size is the one, stop here:
		 * we have found the right uniform Sector Erase command.
		 */
		if (tested_erase->size == wanted_size) {
			erase = tested_erase;
			break;
		}
3565

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
		/*
		 * Otherwise, the current erase size is still a valid canditate.
		 * Select the biggest valid candidate.
		 */
		if (!erase && tested_erase->size)
			erase = tested_erase;
			/* keep iterating to find the wanted_size */
	}

	if (!erase)
		return NULL;

	/* Disable all other Sector Erase commands. */
	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
	map->uniform_erase_type |= BIT(erase - map->erase_type);
	return erase;
}

static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size)
{
	struct spi_nor_erase_map *map = &nor->erase_map;
	const struct spi_nor_erase_type *erase = NULL;
	struct mtd_info *mtd = &nor->mtd;
	int i;

	/*
	 * The previous implementation handling Sector Erase commands assumed
	 * that the SPI flash memory has an uniform layout then used only one
	 * of the supported erase sizes for all Sector Erase commands.
	 * So to be backward compatible, the new implementation also tries to
	 * manage the SPI flash memory as uniform with a single erase sector
	 * size, when possible.
	 */
3599 3600
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
3601
	wanted_size = 4096u;
3602
#endif
3603 3604 3605 3606 3607 3608 3609 3610

	if (spi_nor_has_uniform_erase(nor)) {
		erase = spi_nor_select_uniform_erase(map, wanted_size);
		if (!erase)
			return -EINVAL;
		nor->erase_opcode = erase->opcode;
		mtd->erasesize = erase->size;
		return 0;
3611
	}
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

	/*
	 * For non-uniform SPI flash memory, set mtd->erasesize to the
	 * maximum erase sector size. No need to set nor->erase_opcode.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (map->erase_type[i].size) {
			erase = &map->erase_type[i];
			break;
		}
	}

	if (!erase)
		return -EINVAL;

	mtd->erasesize = erase->size;
3628 3629 3630
	return 0;
}

3631
static int spi_nor_setup(struct spi_nor *nor,
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
			 const struct spi_nor_flash_parameter *params,
			 const struct spi_nor_hwcaps *hwcaps)
{
	u32 ignored_mask, shared_mask;
	bool enable_quad_io;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	/* SPI n-n-n protocols are not supported yet. */
	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
			SNOR_HWCAPS_READ_4_4_4 |
3648 3649 3650
			SNOR_HWCAPS_READ_8_8_8 |
			SNOR_HWCAPS_PP_4_4_4 |
			SNOR_HWCAPS_PP_8_8_8);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	if (shared_mask & ignored_mask) {
		dev_dbg(nor->dev,
			"SPI n-n-n protocols are not supported yet.\n");
		shared_mask &= ~ignored_mask;
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
3674
	err = spi_nor_select_erase(nor, nor->info->sector_size);
3675 3676 3677 3678 3679 3680 3681 3682 3683
	if (err) {
		dev_err(nor->dev,
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Enable Quad I/O if needed. */
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
	if (enable_quad_io && params->quad_enable)
		nor->quad_enable = params->quad_enable;
	else
		nor->quad_enable = NULL;

	return 0;
}

static int spi_nor_init(struct spi_nor *nor)
{
	int err;

	/*
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
	 */
	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
	    nor->info->flags & SPI_NOR_HAS_LOCK) {
		write_enable(nor);
		write_sr(nor, 0);
		spi_nor_wait_till_ready(nor);
	}

	if (nor->quad_enable) {
		err = nor->quad_enable(nor);
3711 3712 3713 3714 3715 3716
		if (err) {
			dev_err(nor->dev, "quad mode not supported\n");
			return err;
		}
	}

3717
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
3718 3719 3720 3721 3722 3723 3724 3725 3726
		/*
		 * If the RESET# pin isn't hooked up properly, or the system
		 * otherwise doesn't perform a reset command in the boot
		 * sequence, it's impossible to 100% protect against unexpected
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
		 * designer) that this is bad.
		 */
		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
			  "enabling reset hack; may not recover from unexpected reboots\n");
3727
		set_4byte(nor, true);
3728
	}
3729

3730 3731 3732
	return 0;
}

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	struct device *dev = nor->dev;
	int ret;

	/* re-initialize the nor chip */
	ret = spi_nor_init(nor);
	if (ret)
		dev_err(dev, "resume() failed\n");
}

3746 3747 3748
void spi_nor_restore(struct spi_nor *nor)
{
	/* restore the addressing mode */
3749 3750
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
	    nor->flags & SNOR_F_BROKEN_RESET)
3751
		set_4byte(nor, false);
3752 3753 3754
}
EXPORT_SYMBOL_GPL(spi_nor_restore);

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
static const struct flash_info *spi_nor_match_id(const char *name)
{
	const struct flash_info *id = spi_nor_ids;

	while (id->name) {
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

3767 3768
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
3769
{
3770
	struct spi_nor_flash_parameter params;
3771
	const struct flash_info *info = NULL;
3772
	struct device *dev = nor->dev;
3773
	struct mtd_info *mtd = &nor->mtd;
3774
	struct device_node *np = spi_nor_get_flash_node(nor);
3775 3776 3777 3778 3779 3780 3781
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

3782 3783 3784 3785 3786
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

3787
	if (name)
3788
		info = spi_nor_match_id(name);
3789
	/* Try to auto-detect if chip name wasn't specified or not found */
3790 3791 3792
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
3793 3794
		return -ENOENT;

3795 3796 3797 3798 3799
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
3800
		const struct flash_info *jinfo;
3801

3802 3803 3804 3805
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
3806 3807 3808 3809 3810 3811 3812 3813
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
3814 3815
				 jinfo->name, info->name);
			info = jinfo;
3816 3817 3818
		}
	}

3819 3820
	nor->info = info;

3821 3822
	mutex_init(&nor->lock);

3823 3824 3825 3826 3827 3828 3829 3830
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

3831
	/* Parse the Serial Flash Discoverable Parameters table. */
3832
	ret = spi_nor_init_params(nor, &params);
3833 3834 3835
	if (ret)
		return ret;

3836
	if (!mtd->name)
3837
		mtd->name = dev_name(dev);
3838
	mtd->priv = nor;
3839 3840 3841
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
3842
	mtd->size = params.size;
3843 3844
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;
3845
	mtd->_resume = spi_nor_resume;
3846

3847
	/* NOR protection support for STmicro/Micron chips and similar */
3848 3849 3850
	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
	    info->flags & SPI_NOR_HAS_LOCK) {
3851 3852
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
3853
		nor->flash_is_locked = stm_is_locked;
3854 3855
	}

3856
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
3857 3858
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
3859
		mtd->_is_locked = spi_nor_is_locked;
3860 3861 3862 3863 3864 3865 3866 3867
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

3868 3869
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
3870 3871
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
3872 3873
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3874 3875
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;
3876

3877 3878 3879 3880
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
3881
	nor->page_size = params.page_size;
3882 3883 3884 3885 3886
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
3887
			params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
3888
		else
3889
			params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
3890 3891
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
3892
		params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
3893 3894
	}

3895 3896 3897
	if (of_property_read_bool(np, "broken-flash-reset"))
		nor->flags |= SNOR_F_BROKEN_RESET;

3898 3899
	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
3900
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
3901

3902 3903 3904 3905 3906 3907 3908
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
	 */
3909
	ret = spi_nor_setup(nor, &params, hwcaps);
3910 3911
	if (ret)
		return ret;
3912

3913 3914 3915
	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (info->addr_width) {
3916
		nor->addr_width = info->addr_width;
3917
	} else if (mtd->size > 0x1000000) {
3918 3919 3920 3921 3922 3923
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
	} else {
		nor->addr_width = 3;
	}

3924 3925 3926 3927 3928
	if (info->flags & SPI_NOR_4B_OPCODES ||
	    (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M))
		nor->flags |= SNOR_F_4B_OPCODES;

	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES)
3929
		spi_nor_set_4byte_opcodes(nor);
3930

3931 3932 3933 3934 3935 3936
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

3937
	if (info->flags & SPI_S3AN) {
3938
		ret = s3an_nor_scan(nor);
3939 3940 3941 3942
		if (ret)
			return ret;
	}

3943 3944 3945 3946 3947
	/* Send all the required SPI flash commands to initialize device */
	ret = spi_nor_init(nor);
	if (ret)
		return ret;

3948
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
3969
EXPORT_SYMBOL_GPL(spi_nor_scan);
3970

3971
MODULE_LICENSE("GPL v2");
3972 3973 3974
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");