spi-nor.c 86.3 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20
#include <linux/slab.h>
21 22 23 24 25 26 27

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
28 29 30 31 32 33 34 35 36 37 38 39

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40

41
#define SPI_NOR_MAX_ID_LEN	6
42
#define SPI_NOR_MAX_ADDR_WIDTH	4
43 44

struct flash_info {
45 46
	char		*name;

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
65 66 67 68 69 70 71 72
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
73
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
74 75 76 77 78
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
79 80 81 82 83 84
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
85 86 87 88
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
89
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
90
#define SPI_NOR_SKIP_SFDP	BIT(13)	/* Skip parsing of SFDP tables */
91
#define USE_CLSR		BIT(14)	/* use CLSR command */
92 93

	int	(*quad_enable)(struct spi_nor *nor);
94 95 96
};

#define JEDEC_MFR(info)	((info)->id[0])
97

98
static const struct flash_info *spi_nor_match_id(const char *name);
99

100 101 102 103 104 105 106 107 108 109
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

110
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
111 112 113 114 115 116 117 118
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

138 139 140
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
141
 * Returns negative if error occurred.
142 143 144 145 146 147
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

148
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
164
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
165 166 167 168 169 170 171 172
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
173
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
174 175 176
}

/*
177
 * Send write disable instruction to the chip.
178 179 180
 */
static inline int write_disable(struct spi_nor *nor)
{
181
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
182 183 184 185 186 187 188
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

static inline u8 spi_nor_convert_3to4_read(u8 opcode)
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
211 212 213 214

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static inline u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
				      const struct flash_info *info)
{
	/* Do some manufacturer fixups first */
	switch (JEDEC_MFR(info)) {
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
		nor->mtd.erasesize = info->sector_size;
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}

265
/* Enable/disable 4-byte addressing mode. */
266
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
267
			    int enable)
268 269 270 271 272
{
	int status;
	bool need_wren = false;
	u8 cmd;

273
	switch (JEDEC_MFR(info)) {
274
	case SNOR_MFR_MICRON:
275 276
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
277 278
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
279 280 281
		if (need_wren)
			write_enable(nor);

282
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
283
		status = nor->write_reg(nor, cmd, NULL, 0);
284 285 286
		if (need_wren)
			write_disable(nor);

287 288 289 290 291 292 293 294 295 296 297 298 299 300
		if (!status && !enable &&
		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
			/*
			 * On Winbond W25Q256FV, leaving 4byte mode causes
			 * the Extended Address Register to be set to 1, so all
			 * 3-byte-address reads come from the second 16M.
			 * We must clear the register to enable normal behavior.
			 */
			write_enable(nor);
			nor->cmd_buf[0] = 0;
			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
			write_disable(nor);
		}

301 302 303 304
		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
305
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
306 307
	}
}
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	return !!(val & XSR_RDY);
}

323
static inline int spi_nor_sr_ready(struct spi_nor *nor)
324
{
325 326 327
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
328 329 330 331 332 333 334 335 336 337 338 339

	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
		if (sr & SR_E_ERR)
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
		return -EIO;
	}

	return !(sr & SR_WIP);
340
}
341

342 343 344 345 346
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
		if (fsr & FSR_E_ERR)
			dev_err(nor->dev, "Erase operation failed.\n");
		else
			dev_err(nor->dev, "Program operation failed.\n");

		if (fsr & FSR_PT_ERR)
			dev_err(nor->dev,
			"Attempted to modify a protected sector.\n");

		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
		return -EIO;
	}

	return fsr & FSR_READY;
363
}
364

365 366 367
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
368 369 370 371 372

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
373 374 375 376 377 378
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
379 380
}

381 382 383 384
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
385 386
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
387 388
{
	unsigned long deadline;
389
	int timeout = 0, ret;
390

391
	deadline = jiffies + timeout_jiffies;
392

393 394 395
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
396

397 398 399 400 401
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
402 403 404 405 406

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
407 408 409 410

	return -ETIMEDOUT;
}

411 412 413 414 415 416
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

417 418 419 420 421 422 423
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
424
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
425

426
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

453 454 455 456 457 458 459 460 461 462 463
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
464 465
	unsigned int offset;
	unsigned int page;
466

467 468 469
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
470

471
	return page | offset;
472 473
}

474 475 476 477 478 479 480 481
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

482 483 484
	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
526
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
527 528
		unsigned long timeout;

529 530
		write_enable(nor);

531 532 533 534 535
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

536 537 538 539 540 541 542 543 544 545
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
546 547 548
		if (ret)
			goto erase_err;

549
	/* REVISIT in some cases we could speed up erasing large regions
550
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
551 552 553 554 555 556
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
557 558
			write_enable(nor);

559 560
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
561 562 563 564
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
565 566 567 568

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
569 570 571
		}
	}

572 573
	write_disable(nor);

574
erase_err:
575 576 577 578 579
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	return ret;
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
	int ret;

	write_enable(nor);
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	ret = read_sr(nor);
	if (ret < 0)
		return ret;

	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
616 617 618 619
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
620 621 622 623
	}
}

/*
624 625
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
626
 */
627 628
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
629 630 631 632
{
	loff_t lock_offs;
	uint64_t lock_len;

633 634 635
	if (!len)
		return 1;

636 637
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
656 657 658 659
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
660
 * Supports the block protection bits BP{0,1,2} in the status register
661 662 663 664
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
665 666 667
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
668 669 670 671 672 673 674 675 676 677 678 679
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
680 681 682 683 684 685 686
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
687 688 689
 *
 * Returns negative on errors, 0 on success.
 */
690
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
691
{
692
	struct mtd_info *mtd = &nor->mtd;
693
	int status_old, status_new;
694 695
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
696
	loff_t lock_len;
697 698
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
699 700

	status_old = read_sr(nor);
701 702
	if (status_old < 0)
		return status_old;
703

704 705 706 707
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

708 709 710 711
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

712 713 714
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
715 716 717
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
718 719
		return -EINVAL;

720 721 722
	/* Prefer top, if both are valid */
	use_top = can_be_top;

723
	/* lock_len: length of region that should end up locked */
724 725 726 727
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
728 729 730 731 732 733 734 735 736 737

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
738
	pow = ilog2(mtd->size) - ilog2(lock_len);
739 740 741 742 743 744 745
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

746
	status_new = (status_old & ~mask & ~SR_TB) | val;
747

748 749 750
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

751 752 753
	if (!use_top)
		status_new |= SR_TB;

754 755 756 757
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

758
	/* Only modify protection if it will not unlock other areas */
759
	if ((status_new & mask) < (status_old & mask))
760
		return -EINVAL;
761

762
	return write_sr_and_check(nor, status_new, mask);
763 764
}

765 766 767 768 769
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
770
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
771
{
772
	struct mtd_info *mtd = &nor->mtd;
773
	int status_old, status_new;
774 775
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
776
	loff_t lock_len;
777 778
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
779 780

	status_old = read_sr(nor);
781 782
	if (status_old < 0)
		return status_old;
783

784 785 786 787 788 789
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
790 791 792 793 794 795 796 797
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
798
		return -EINVAL;
799

800 801 802
	/* Prefer top, if both are valid */
	use_top = can_be_top;

803
	/* lock_len: length of region that should remain locked */
804 805 806 807
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
808

809 810 811 812 813 814 815 816 817
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
818 819
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
820 821 822 823 824 825
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
826 827
	}

828
	status_new = (status_old & ~mask & ~SR_TB) | val;
829

830
	/* Don't protect status register if we're fully unlocked */
831
	if (lock_len == 0)
832 833
		status_new &= ~SR_SRWD;

834 835 836
	if (!use_top)
		status_new |= SR_TB;

837 838 839 840
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

841
	/* Only modify protection if it will not lock other areas */
842
	if ((status_new & mask) > (status_old & mask))
843 844
		return -EINVAL;

845
	return write_sr_and_check(nor, status_new, mask);
846 847
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

866 867 868 869 870 871 872 873 874 875 876
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

877 878 879 880
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

A
Andy Yan 已提交
911 912
static int macronix_quad_enable(struct spi_nor *nor);

913
/* Used when the "_ext_id" is two bytes at most */
914
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
915 916 917 918 919 920 921 922
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
923 924 925
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
926
		.flags = (_flags),
927

928 929 930 931 932 933 934 935 936 937 938 939 940
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
941
		.flags = (_flags),
942

943 944 945 946 947
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
948
		.flags = (_flags),
949

950 951 952 953 954 955 956 957 958 959 960 961 962
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

963 964 965
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
966 967 968 969 970 971 972
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
973
 */
974
static const struct flash_info spi_nor_ids[] = {
975 976 977 978 979
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
980
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
997
	{ "en25qh32",   INFO(0x1c7016, 0, 64 * 1024,   64, 0) },
998
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
999
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
1000
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
1001 1002

	/* ESMT */
1003
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
1004 1005
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
1006 1007

	/* Everspin */
1008
	{ "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1009 1010
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1011
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1012

1013 1014 1015
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

1016
	/* GigaDevice */
1017 1018 1019 1020 1021
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1022 1023 1024 1025 1026
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1027 1028 1029 1030 1031
	{
		"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
A
Andy Yan 已提交
1047 1048 1049 1050 1051 1052
	{
		"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
			.quad_enable = macronix_quad_enable,
	},
1053 1054 1055 1056 1057 1058

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

1059
	/* ISSI */
S
Sean Nyekjaer 已提交
1060 1061
	{ "is25cd512",  INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
	{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024,   8,
1062
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1063 1064
	{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024,  16,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
S
Sean Nyekjaer 已提交
1065
	{ "is25lp128",  INFO(0x9d6018, 0, 64 * 1024, 256,
1066
			SECT_4K | SPI_NOR_DUAL_READ) },
1067 1068
	{ "is25lp256",  INFO(0x9d6019, 0, 64 * 1024, 512,
			SECT_4K | SPI_NOR_DUAL_READ) },
1069 1070 1071 1072 1073 1074
	{ "is25wp032",  INFO(0x9d7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp064",  INFO(0x9d7017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp128",  INFO(0x9d7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1075

1076
	/* Macronix */
1077
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
1078 1079 1080 1081
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
1082
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
1083
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
1084
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1085 1086 1087
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
1088
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1089 1090
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1091
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1092
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
1093
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1094
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1095
	{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1096
	{ "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1097 1098 1099
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
1100
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
1101
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1102
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1103
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1104
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1105 1106
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1107
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1108
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1109 1110
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1111 1112
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1113
	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1114 1115 1116 1117 1118 1119

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

1120
	/* Spansion/Cypress -- single (large) sector size only, at least
1121 1122
	 * for the chips listed here (without boot sectors).
	 */
1123
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1124
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1125 1126 1127
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1128 1129 1130
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
1131 1132 1133
	{ "s25fl128s",  INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1134 1135 1136 1137 1138
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
1139
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1140 1141
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1142
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
1143
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1144
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
1145
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
1146
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
1147
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
1148
	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1149 1150
	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
1161
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
1162
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
1163
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1164
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1165
	{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1201
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
1202 1203

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1204
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
1205 1206 1207 1208 1209
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
1210 1211 1212 1213 1214
	{
		"w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1215
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1216 1217 1218
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
1219
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1220 1221 1222 1223 1224
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1225 1226 1227 1228 1229
	{
		"w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1230 1231
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1242 1243 1244
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1245
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1246 1247
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
1248 1249 1250 1251 1252 1253 1254

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1255 1256 1257 1258 1259 1260 1261

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1262 1263 1264 1265

	/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
	{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1266 1267 1268
	{ },
};

1269
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1270 1271
{
	int			tmp;
1272
	u8			id[SPI_NOR_MAX_ID_LEN];
1273
	const struct flash_info	*info;
1274

1275
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1276
	if (tmp < 0) {
1277
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1278 1279 1280 1281
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
1282
		info = &spi_nor_ids[tmp];
1283 1284
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
1285 1286 1287
				return &spi_nor_ids[tmp];
		}
	}
1288
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1289
		id[0], id[1], id[2]);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
1305
	while (len) {
1306 1307 1308 1309 1310 1311
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		ret = nor->read(nor, addr, len, buf);
M
Michal Suchanek 已提交
1312 1313 1314 1315 1316 1317 1318
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
1319

M
Michal Suchanek 已提交
1320 1321 1322 1323 1324 1325 1326
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
1327

M
Michal Suchanek 已提交
1328 1329 1330
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
1353
		nor->program_opcode = SPINOR_OP_BP;
1354 1355

		/* write one byte. */
1356
		ret = nor->write(nor, to, 1, buf);
1357 1358 1359 1360
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1361
		ret = spi_nor_wait_till_ready(nor);
1362
		if (ret)
1363
			goto sst_write_err;
1364 1365 1366 1367 1368
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
1369
		nor->program_opcode = SPINOR_OP_AAI_WP;
1370 1371

		/* write two bytes. */
1372
		ret = nor->write(nor, to, 2, buf + actual);
1373 1374 1375 1376
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
1377
		ret = spi_nor_wait_till_ready(nor);
1378
		if (ret)
1379
			goto sst_write_err;
1380 1381 1382 1383 1384 1385
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
1386
	ret = spi_nor_wait_till_ready(nor);
1387
	if (ret)
1388
		goto sst_write_err;
1389 1390 1391 1392 1393

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

1394
		nor->program_opcode = SPINOR_OP_BP;
1395
		ret = nor->write(nor, to, 1, buf + actual);
1396 1397 1398 1399
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1400
		ret = spi_nor_wait_till_ready(nor);
1401
		if (ret)
1402
			goto sst_write_err;
1403
		write_disable(nor);
1404
		actual += 1;
1405
	}
1406
sst_write_err:
1407
	*retlen += actual;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1421 1422
	size_t page_offset, page_remain, i;
	ssize_t ret;
1423 1424 1425 1426 1427 1428 1429

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

1430 1431
	for (i = 0; i < len; ) {
		ssize_t written;
1432
		loff_t addr = to + i;
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
1446

1447 1448
			page_offset = do_div(aux, nor->page_size);
		}
1449
		/* the size of data remaining on the first page */
1450 1451 1452
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

1453 1454 1455
		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

1456
		write_enable(nor);
1457
		ret = nor->write(nor, addr, page_remain, buf + i);
1458 1459
		if (ret < 0)
			goto write_err;
1460
		written = ret;
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
		if (written != page_remain) {
			dev_err(nor->dev,
				"While writing %zu bytes written %zd bytes\n",
				page_remain, written);
			ret = -EIO;
			goto write_err;
1473 1474 1475 1476 1477
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1478
	return ret;
1479 1480
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 * macronix_quad_enable() - set QE bit in Status Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register.
 *
 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
1491 1492 1493 1494 1495
static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
1496 1497
	if (val < 0)
		return val;
1498 1499 1500
	if (val & SR_QUAD_EN_MX)
		return 0;

1501 1502
	write_enable(nor);

1503
	write_sr(nor, val | SR_QUAD_EN_MX);
1504

1505 1506 1507
	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
1522
 * Return negative if error occurred.
1523
 */
1524
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1525 1526 1527 1528 1529
{
	int ret;

	write_enable(nor);

1530
	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1531 1532 1533 1534 1535 1536
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

1537 1538 1539 1540 1541 1542 1543
	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	return 0;
}

/**
 * spansion_quad_enable() - set QE bit in Configuraiton Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function is kept for legacy purpose because it has been used for a
 * long time without anybody complaining but it should be considered as
 * deprecated and maybe buggy.
 * First, this function doesn't care about the previous values of the Status
 * and Configuration Registers when it sets the QE bit (bit 1) in the
 * Configuration Register: all other bits are cleared, which may have unwanted
 * side effects like removing some block protections.
 * Secondly, it uses the Read Configuration Register (35h) instruction though
 * some very old and few memories don't support this instruction. If a pull-up
 * resistor is present on the MISO/IO1 line, we might still be able to pass the
 * "read back" test because the QSPI memory doesn't recognize the command,
 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_quad_enable(struct spi_nor *nor)
{
	u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN};
	int ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/**
 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories not supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
	u8 sr_cr[2];
	int ret;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(nor->dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;
	sr_cr[1] = CR_QUAD_EN_SPAN;

	return write_sr_cr(nor, sr_cr);
}

/**
 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
	struct device *dev = nor->dev;
	u8 sr_cr[2];
	int ret;

	/* Check current Quad Enable bit value. */
	ret = read_cr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading configuration register\n");
		return -EINVAL;
	}

	if (ret & CR_QUAD_EN_SPAN)
		return 0;

	sr_cr[1] = ret | CR_QUAD_EN_SPAN;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* Read back and check it. */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int sr2_bit7_quad_enable(struct spi_nor *nor)
{
	u8 sr2;
	int ret;

	/* Check current Quad Enable bit value. */
	ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
	if (ret)
		return ret;
	if (sr2 & SR2_QUAD_EN_BIT7)
		return 0;

	/* Update the Quad Enable bit. */
	sr2 |= SR2_QUAD_EN_BIT7;

	write_enable(nor);

	ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error while writing status register 2\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret < 0) {
		dev_err(nor->dev, "timeout while writing status register 2\n");
		return ret;
	}

	/* Read back and check it. */
	ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
	if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) {
		dev_err(nor->dev, "SR2 Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1723 1724 1725
static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1726
		!nor->read_reg || !nor->write_reg) {
1727 1728 1729 1730 1731 1732 1733
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
	if (val & XSR_PAGESIZE) {
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
		nor->mtd.size = 8 * nor->page_size * info->n_sectors;
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
struct spi_nor_read_command {
	u8			num_mode_clocks;
	u8			num_wait_states;
	u8			opcode;
	enum spi_nor_protocol	proto;
};

struct spi_nor_pp_command {
	u8			opcode;
	enum spi_nor_protocol	proto;
};

enum spi_nor_read_command_index {
	SNOR_CMD_READ,
	SNOR_CMD_READ_FAST,
1790
	SNOR_CMD_READ_1_1_1_DTR,
1791 1792 1793 1794 1795

	/* Dual SPI */
	SNOR_CMD_READ_1_1_2,
	SNOR_CMD_READ_1_2_2,
	SNOR_CMD_READ_2_2_2,
1796
	SNOR_CMD_READ_1_2_2_DTR,
1797 1798 1799 1800 1801

	/* Quad SPI */
	SNOR_CMD_READ_1_1_4,
	SNOR_CMD_READ_1_4_4,
	SNOR_CMD_READ_4_4_4,
1802
	SNOR_CMD_READ_1_4_4_DTR,
1803

1804 1805 1806 1807 1808 1809
	/* Octo SPI */
	SNOR_CMD_READ_1_1_8,
	SNOR_CMD_READ_1_8_8,
	SNOR_CMD_READ_8_8_8,
	SNOR_CMD_READ_1_8_8_DTR,

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	SNOR_CMD_READ_MAX
};

enum spi_nor_pp_command_index {
	SNOR_CMD_PP,

	/* Quad SPI */
	SNOR_CMD_PP_1_1_4,
	SNOR_CMD_PP_1_4_4,
	SNOR_CMD_PP_4_4_4,

1821 1822 1823 1824 1825
	/* Octo SPI */
	SNOR_CMD_PP_1_1_8,
	SNOR_CMD_PP_1_8_8,
	SNOR_CMD_PP_8_8_8,

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	SNOR_CMD_PP_MAX
};

struct spi_nor_flash_parameter {
	u64				size;
	u32				page_size;

	struct spi_nor_hwcaps		hwcaps;
	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];

	int (*quad_enable)(struct spi_nor *nor);
};

static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

1862 1863 1864 1865 1866 1867 1868 1869 1870
/*
 * Serial Flash Discoverable Parameters (SFDP) parsing.
 */

/**
 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
1871
 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
 *
 * Whatever the actual numbers of bytes for address and dummy cycles are
 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 * followed by a 3-byte address and 8 dummy clock cycles.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
			     size_t len, void *buf)
{
	u8 addr_width, read_opcode, read_dummy;
	int ret;

	read_opcode = nor->read_opcode;
	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;

	nor->read_opcode = SPINOR_OP_RDSFDP;
	nor->addr_width = 3;
	nor->read_dummy = 8;

	while (len) {
		ret = nor->read(nor, addr, len, (u8 *)buf);
		if (!ret || ret > len) {
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;

		buf += ret;
		addr += ret;
		len -= ret;
	}
	ret = 0;

read_err:
	nor->read_opcode = read_opcode;
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;

	return ret;
}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/**
 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
 * @buf:	buffer where the SFDP data are copied into
 *
 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 * guaranteed to be dma-safe.
 *
 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 *          otherwise.
 */
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
					size_t len, void *buf)
{
	void *dma_safe_buf;
	int ret;

	dma_safe_buf = kmalloc(len, GFP_KERNEL);
	if (!dma_safe_buf)
		return -ENOMEM;

	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
	memcpy(buf, dma_safe_buf, len);
	kfree(dma_safe_buf);

	return ret;
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
struct sfdp_parameter_header {
	u8		id_lsb;
	u8		minor;
	u8		major;
	u8		length; /* in double words */
	u8		parameter_table_pointer[3]; /* byte address */
	u8		id_msb;
};

#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
	(((p)->parameter_table_pointer[2] << 16) | \
	 ((p)->parameter_table_pointer[1] <<  8) | \
	 ((p)->parameter_table_pointer[0] <<  0))

#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */

#define SFDP_SIGNATURE		0x50444653U
#define SFDP_JESD216_MAJOR	1
#define SFDP_JESD216_MINOR	0
#define SFDP_JESD216A_MINOR	5
#define SFDP_JESD216B_MINOR	6

struct sfdp_header {
	u32		signature; /* Ox50444653U <=> "SFDP" */
	u8		minor;
	u8		major;
	u8		nph; /* 0-base number of parameter headers */
	u8		unused;

	/* Basic Flash Parameter Table. */
	struct sfdp_parameter_header	bfpt_header;
};

/* Basic Flash Parameter Table */

/*
 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 * They are indexed from 1 but C arrays are indexed from 0.
 */
#define BFPT_DWORD(i)		((i) - 1)
#define BFPT_DWORD_MAX		16

/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216			9

/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
#define BFPT_DWORD1_DTR				BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)

/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)

/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
#define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)

/* 15th DWORD. */

/*
 * (from JESD216 rev B)
 * Quad Enable Requirements (QER):
 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 *         reads based on instruction. DQ3/HOLD# functions are hold during
 *         instruction phase.
 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         Writing only one byte to the status register has the side-effect of
 *         clearing status register 2, including the QE bit. The 100b code is
 *         used if writing one byte to the status register does not modify
 *         status register 2.
 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 *         one data byte where bit 6 is one.
 *         [...]
 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 *         [...]
 *         The status register 2 is read using instruction 3Fh.
 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         In contrast to the 001b code, writing one byte to the status
 *         register does not modify status register 2.
 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 *         Read Status instruction 05h. Status register2 is read using
 *         instruction 35h. QE is set via Writ Status instruction 01h with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 */
#define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */

struct sfdp_bfpt {
	u32	dwords[BFPT_DWORD_MAX];
};

/* Fast Read settings. */

static inline void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
				    u16 half,
				    enum spi_nor_protocol proto)
{
	read->num_mode_clocks = (half >> 5) & 0x07;
	read->num_wait_states = (half >> 0) & 0x1f;
	read->opcode = (half >> 8) & 0xff;
	read->proto = proto;
}

struct sfdp_bfpt_read {
	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
	u32			hwcaps;

	/*
	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
	 * whether the Fast Read x-y-z command is supported.
	 */
	u32			supported_dword;
	u32			supported_bit;

	/*
	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
	 * encodes the op code, the number of mode clocks and the number of wait
	 * states to be used by Fast Read x-y-z command.
	 */
	u32			settings_dword;
	u32			settings_shift;

	/* The SPI protocol for this Fast Read x-y-z command. */
	enum spi_nor_protocol	proto;
};

static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
	/* Fast Read 1-1-2 */
	{
		SNOR_HWCAPS_READ_1_1_2,
		BFPT_DWORD(1), BIT(16),	/* Supported bit */
		BFPT_DWORD(4), 0,	/* Settings */
		SNOR_PROTO_1_1_2,
	},

	/* Fast Read 1-2-2 */
	{
		SNOR_HWCAPS_READ_1_2_2,
		BFPT_DWORD(1), BIT(20),	/* Supported bit */
		BFPT_DWORD(4), 16,	/* Settings */
		SNOR_PROTO_1_2_2,
	},

	/* Fast Read 2-2-2 */
	{
		SNOR_HWCAPS_READ_2_2_2,
		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
		BFPT_DWORD(6), 16,	/* Settings */
		SNOR_PROTO_2_2_2,
	},

	/* Fast Read 1-1-4 */
	{
		SNOR_HWCAPS_READ_1_1_4,
		BFPT_DWORD(1), BIT(22),	/* Supported bit */
		BFPT_DWORD(3), 16,	/* Settings */
		SNOR_PROTO_1_1_4,
	},

	/* Fast Read 1-4-4 */
	{
		SNOR_HWCAPS_READ_1_4_4,
		BFPT_DWORD(1), BIT(21),	/* Supported bit */
		BFPT_DWORD(3), 0,	/* Settings */
		SNOR_PROTO_1_4_4,
	},

	/* Fast Read 4-4-4 */
	{
		SNOR_HWCAPS_READ_4_4_4,
		BFPT_DWORD(5), BIT(4),	/* Supported bit */
		BFPT_DWORD(7), 16,	/* Settings */
		SNOR_PROTO_4_4_4,
	},
};

struct sfdp_bfpt_erase {
	/*
	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
	 * op code and erase sector size to be used by Sector Erase commands.
	 */
	u32			dword;
	u32			shift;
};

static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
	/* Erase Type 1 in DWORD8 bits[15:0] */
	{BFPT_DWORD(8), 0},

	/* Erase Type 2 in DWORD8 bits[31:16] */
	{BFPT_DWORD(8), 16},

	/* Erase Type 3 in DWORD9 bits[15:0] */
	{BFPT_DWORD(9), 0},

	/* Erase Type 4 in DWORD9 bits[31:16] */
	{BFPT_DWORD(9), 16},
};

static int spi_nor_hwcaps_read2cmd(u32 hwcaps);

/**
 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 * @nor:		pointer to a 'struct spi_nor'
 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the Basic Flash Parameter Table length and version
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Basic Flash Parameter Table is the main and only mandatory table as
 * defined by the SFDP (JESD216) specification.
 * It provides us with the total size (memory density) of the data array and
 * the number of address bytes for Fast Read, Page Program and Sector Erase
 * commands.
 * For Fast READ commands, it also gives the number of mode clock cycles and
 * wait states (regrouped in the number of dummy clock cycles) for each
 * supported instruction op code.
 * For Page Program, the page size is now available since JESD216 rev A, however
 * the supported instruction op codes are still not provided.
 * For Sector Erase commands, this table stores the supported instruction op
 * codes and the associated sector sizes.
 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 * rev A. The QER bits encode the manufacturer dependent procedure to be
 * executed to set the Quad Enable (QE) bit in some internal register of the
 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 * and IO3 hence enabling 4 (Quad) I/O lines.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_bfpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *bfpt_header,
			      struct spi_nor_flash_parameter *params)
{
	struct mtd_info *mtd = &nor->mtd;
	struct sfdp_bfpt bfpt;
	size_t len;
	int i, cmd, err;
	u32 addr;
	u16 half;

	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
		return -EINVAL;

	/* Read the Basic Flash Parameter Table. */
	len = min_t(size_t, sizeof(bfpt),
		    bfpt_header->length * sizeof(u32));
	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
	memset(&bfpt, 0, sizeof(bfpt));
2218
	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	if (err < 0)
		return err;

	/* Fix endianness of the BFPT DWORDs. */
	for (i = 0; i < BFPT_DWORD_MAX; i++)
		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);

	/* Number of address bytes. */
	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
		nor->addr_width = 3;
		break;

	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
		nor->addr_width = 4;
		break;

	default:
		break;
	}

	/* Flash Memory Density (in bits). */
	params->size = bfpt.dwords[BFPT_DWORD(2)];
	if (params->size & BIT(31)) {
		params->size &= ~BIT(31);
2244 2245 2246 2247 2248 2249 2250 2251 2252

		/*
		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
		 * bits is unlikely to exist so this error probably means
		 * the BFPT we are reading is corrupted/wrong.
		 */
		if (params->size > 63)
			return -EINVAL;

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
		params->size = 1ULL << params->size;
	} else {
		params->size++;
	}
	params->size >>= 3; /* Convert to bytes. */

	/* Fast Read settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
		struct spi_nor_read_command *read;

		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
			params->hwcaps.mask &= ~rd->hwcaps;
			continue;
		}

		params->hwcaps.mask |= rd->hwcaps;
		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
		read = &params->reads[cmd];
		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
	}

	/* Sector Erase settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
		u32 erasesize;
		u8 opcode;

		half = bfpt.dwords[er->dword] >> er->shift;
		erasesize = half & 0xff;

		/* erasesize == 0 means this Erase Type is not supported. */
		if (!erasesize)
			continue;

		erasesize = 1U << erasesize;
		opcode = (half >> 8) & 0xff;
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
		if (erasesize == SZ_4K) {
			nor->erase_opcode = opcode;
			mtd->erasesize = erasesize;
			break;
		}
#endif
		if (!mtd->erasesize || mtd->erasesize < erasesize) {
			nor->erase_opcode = opcode;
			mtd->erasesize = erasesize;
		}
	}

	/* Stop here if not JESD216 rev A or later. */
	if (bfpt_header->length < BFPT_DWORD_MAX)
		return 0;

	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
	params->page_size = 1U << params->page_size;

	/* Quad Enable Requirements. */
	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
	case BFPT_DWORD15_QER_NONE:
		params->quad_enable = NULL;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
		params->quad_enable = spansion_no_read_cr_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR1_BIT6:
		params->quad_enable = macronix_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT7:
		params->quad_enable = sr2_bit7_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1:
		params->quad_enable = spansion_read_cr_quad_enable;
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 * @nor:		pointer to a 'struct spi_nor'
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 * specification. This is a standard which tends to supported by almost all
 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 * runtime the main parameters needed to perform basic SPI flash operations such
 * as Fast Read, Page Program or Sector Erase commands.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_sfdp(struct spi_nor *nor,
			      struct spi_nor_flash_parameter *params)
{
	const struct sfdp_parameter_header *param_header, *bfpt_header;
	struct sfdp_parameter_header *param_headers = NULL;
	struct sfdp_header header;
	struct device *dev = nor->dev;
	size_t psize;
	int i, err;

	/* Get the SFDP header. */
2369
	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
2370 2371 2372 2373 2374
	if (err < 0)
		return err;

	/* Check the SFDP header version. */
	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
2375
	    header.major != SFDP_JESD216_MAJOR)
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		return -EINVAL;

	/*
	 * Verify that the first and only mandatory parameter header is a
	 * Basic Flash Parameter Table header as specified in JESD216.
	 */
	bfpt_header = &header.bfpt_header;
	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
	    bfpt_header->major != SFDP_JESD216_MAJOR)
		return -EINVAL;

	/*
	 * Allocate memory then read all parameter headers with a single
	 * Read SFDP command. These parameter headers will actually be parsed
	 * twice: a first time to get the latest revision of the basic flash
	 * parameter table, then a second time to handle the supported optional
	 * tables.
	 * Hence we read the parameter headers once for all to reduce the
	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
	 * because we don't need to keep these parameter headers: the allocated
	 * memory is always released with kfree() before exiting this function.
	 */
	if (header.nph) {
		psize = header.nph * sizeof(*param_headers);

		param_headers = kmalloc(psize, GFP_KERNEL);
		if (!param_headers)
			return -ENOMEM;

		err = spi_nor_read_sfdp(nor, sizeof(header),
					psize, param_headers);
		if (err < 0) {
			dev_err(dev, "failed to read SFDP parameter headers\n");
			goto exit;
		}
	}

	/*
	 * Check other parameter headers to get the latest revision of
	 * the basic flash parameter table.
	 */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
		    param_header->major == SFDP_JESD216_MAJOR &&
		    (param_header->minor > bfpt_header->minor ||
		     (param_header->minor == bfpt_header->minor &&
		      param_header->length > bfpt_header->length)))
			bfpt_header = param_header;
	}

	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
	if (err)
		goto exit;

	/* Parse other parameter headers. */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		switch (SFDP_PARAM_HEADER_ID(param_header)) {
		case SFDP_SECTOR_MAP_ID:
			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
			break;

		default:
			break;
		}

		if (err)
			goto exit;
	}

exit:
	kfree(param_headers);
	return err;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static int spi_nor_init_params(struct spi_nor *nor,
			       const struct flash_info *info,
			       struct spi_nor_flash_parameter *params)
{
	/* Set legacy flash parameters as default. */
	memset(params, 0, sizeof(*params));

	/* Set SPI NOR sizes. */
	params->size = info->sector_size * info->n_sectors;
	params->page_size = info->page_size;

	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

	if (!(info->flags & SPI_NOR_NO_FR)) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);
	}

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

	/* Select the procedure to set the Quad Enable bit. */
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
				   SNOR_HWCAPS_PP_QUAD)) {
		switch (JEDEC_MFR(info)) {
		case SNOR_MFR_MACRONIX:
			params->quad_enable = macronix_quad_enable;
			break;

		case SNOR_MFR_MICRON:
			break;

		default:
2509
			/* Kept only for backward compatibility purpose. */
2510 2511 2512
			params->quad_enable = spansion_quad_enable;
			break;
		}
2513 2514 2515 2516 2517 2518 2519 2520 2521

		/*
		 * Some manufacturer like GigaDevice may use different
		 * bit to set QE on different memories, so the MFR can't
		 * indicate the quad_enable method for this case, we need
		 * set it in flash info list.
		 */
		if (info->quad_enable)
			params->quad_enable = info->quad_enable;
2522 2523
	}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	/* Override the parameters with data read from SFDP tables. */
	nor->addr_width = 0;
	nor->mtd.erasesize = 0;
	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
		struct spi_nor_flash_parameter sfdp_params;

		memcpy(&sfdp_params, params, sizeof(sfdp_params));
		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
			nor->addr_width = 0;
			nor->mtd.erasesize = 0;
		} else {
			memcpy(params, &sfdp_params, sizeof(*params));
		}
	}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	return 0;
}

static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2559
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2560 2561 2562
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2563
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2564 2565 2566
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2567
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2568 2569 2570 2571
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2585 2586 2587
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

static int spi_nor_select_read(struct spi_nor *nor,
			       const struct spi_nor_flash_parameter *params,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &params->reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &params->page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

static int spi_nor_select_erase(struct spi_nor *nor,
				const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

2651 2652 2653 2654
	/* Do nothing if already configured from SFDP. */
	if (mtd->erasesize)
		return 0;

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		nor->erase_opcode = SPINOR_OP_BE_4K;
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
		mtd->erasesize = 4096;
	} else
#endif
	{
		nor->erase_opcode = SPINOR_OP_SE;
		mtd->erasesize = info->sector_size;
	}
	return 0;
}

static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
			 const struct spi_nor_flash_parameter *params,
			 const struct spi_nor_hwcaps *hwcaps)
{
	u32 ignored_mask, shared_mask;
	bool enable_quad_io;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	/* SPI n-n-n protocols are not supported yet. */
	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
			SNOR_HWCAPS_READ_4_4_4 |
2689 2690 2691
			SNOR_HWCAPS_READ_8_8_8 |
			SNOR_HWCAPS_PP_4_4_4 |
			SNOR_HWCAPS_PP_8_8_8);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	if (shared_mask & ignored_mask) {
		dev_dbg(nor->dev,
			"SPI n-n-n protocols are not supported yet.\n");
		shared_mask &= ~ignored_mask;
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
	err = spi_nor_select_erase(nor, info);
	if (err) {
		dev_err(nor->dev,
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Enable Quad I/O if needed. */
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (enable_quad_io && params->quad_enable)
		nor->quad_enable = params->quad_enable;
	else
		nor->quad_enable = NULL;

	return 0;
}

static int spi_nor_init(struct spi_nor *nor)
{
	int err;

	/*
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
	 */
	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
	    nor->info->flags & SPI_NOR_HAS_LOCK) {
		write_enable(nor);
		write_sr(nor, 0);
		spi_nor_wait_till_ready(nor);
	}

	if (nor->quad_enable) {
		err = nor->quad_enable(nor);
2752 2753 2754 2755 2756 2757
		if (err) {
			dev_err(nor->dev, "quad mode not supported\n");
			return err;
		}
	}

2758 2759
	if ((nor->addr_width == 4) &&
	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
		/*
		 * If the RESET# pin isn't hooked up properly, or the system
		 * otherwise doesn't perform a reset command in the boot
		 * sequence, it's impossible to 100% protect against unexpected
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
		 * designer) that this is bad.
		 */
		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
			  "enabling reset hack; may not recover from unexpected reboots\n");
2770
		set_4byte(nor, nor->info, 1);
2771
	}
2772

2773 2774 2775
	return 0;
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	struct device *dev = nor->dev;
	int ret;

	/* re-initialize the nor chip */
	ret = spi_nor_init(nor);
	if (ret)
		dev_err(dev, "resume() failed\n");
}

2789 2790 2791 2792 2793
void spi_nor_restore(struct spi_nor *nor)
{
	/* restore the addressing mode */
	if ((nor->addr_width == 4) &&
	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2794 2795
	    !(nor->info->flags & SPI_NOR_4B_OPCODES) &&
	    (nor->flags & SNOR_F_BROKEN_RESET))
2796 2797 2798 2799
		set_4byte(nor, nor->info, 0);
}
EXPORT_SYMBOL_GPL(spi_nor_restore);

2800 2801
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
2802
{
2803
	struct spi_nor_flash_parameter params;
2804
	const struct flash_info *info = NULL;
2805
	struct device *dev = nor->dev;
2806
	struct mtd_info *mtd = &nor->mtd;
2807
	struct device_node *np = spi_nor_get_flash_node(nor);
2808 2809 2810 2811 2812 2813 2814
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

2815 2816 2817 2818 2819
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

2820
	if (name)
2821
		info = spi_nor_match_id(name);
2822
	/* Try to auto-detect if chip name wasn't specified or not found */
2823 2824 2825
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
2826 2827
		return -ENOENT;

2828 2829 2830 2831 2832
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
2833
		const struct flash_info *jinfo;
2834

2835 2836 2837 2838
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
2839 2840 2841 2842 2843 2844 2845 2846
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
2847 2848
				 jinfo->name, info->name);
			info = jinfo;
2849 2850 2851 2852 2853
		}
	}

	mutex_init(&nor->lock);

2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

2862 2863 2864 2865 2866
	/* Parse the Serial Flash Discoverable Parameters table. */
	ret = spi_nor_init_params(nor, info, &params);
	if (ret)
		return ret;

2867
	if (!mtd->name)
2868
		mtd->name = dev_name(dev);
2869
	mtd->priv = nor;
2870 2871 2872
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
2873
	mtd->size = params.size;
2874 2875
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;
2876
	mtd->_resume = spi_nor_resume;
2877

2878
	/* NOR protection support for STmicro/Micron chips and similar */
2879 2880
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
			info->flags & SPI_NOR_HAS_LOCK) {
2881 2882
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
2883
		nor->flash_is_locked = stm_is_locked;
2884 2885
	}

2886
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
2887 2888
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
2889
		mtd->_is_locked = spi_nor_is_locked;
2890 2891 2892 2893 2894 2895 2896 2897
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

2898 2899
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
2900 2901
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
2902 2903
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2904 2905
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;
2906

2907 2908 2909 2910
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
2911
	nor->page_size = params.page_size;
2912 2913 2914 2915 2916
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
2917
			params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2918
		else
2919
			params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2920 2921
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
2922
		params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2923 2924
	}

2925 2926 2927
	if (of_property_read_bool(np, "broken-flash-reset"))
		nor->flags |= SNOR_F_BROKEN_RESET;

2928 2929
	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
2930
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
	 */
	ret = spi_nor_setup(nor, info, &params, hwcaps);
	if (ret)
		return ret;
2942

2943 2944 2945
	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (info->addr_width) {
2946
		nor->addr_width = info->addr_width;
2947
	} else if (mtd->size > 0x1000000) {
2948 2949
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
2950 2951 2952
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
		    info->flags & SPI_NOR_4B_OPCODES)
			spi_nor_set_4byte_opcodes(nor, info);
2953 2954 2955 2956
	} else {
		nor->addr_width = 3;
	}

2957 2958 2959 2960 2961 2962
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

2963 2964 2965 2966 2967 2968
	if (info->flags & SPI_S3AN) {
		ret = s3an_nor_scan(info, nor);
		if (ret)
			return ret;
	}

2969 2970 2971 2972 2973 2974
	/* Send all the required SPI flash commands to initialize device */
	nor->info = info;
	ret = spi_nor_init(nor);
	if (ret)
		return ret;

2975
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
2996
EXPORT_SYMBOL_GPL(spi_nor_scan);
2997

2998
static const struct flash_info *spi_nor_match_id(const char *name)
2999
{
3000
	const struct flash_info *id = spi_nor_ids;
3001

3002
	while (id->name) {
3003 3004 3005 3006 3007 3008 3009
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

3010 3011 3012 3013
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");