spi-nor.c 56.8 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42 43

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
64 65 66 67 68 69 70 71
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
72
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
73 74 75 76 77
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
78 79 80 81 82 83
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
84 85 86 87
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
88
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
89 90 91
};

#define JEDEC_MFR(info)	((info)->id[0])
92

93
static const struct flash_info *spi_nor_match_id(const char *name);
94

95 96 97 98 99 100 101 102 103 104
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

105
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
106 107 108 109 110 111 112 113
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

133 134 135
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
136
 * Returns negative if error occurred.
137 138 139 140 141 142
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

143
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
159
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
160 161 162 163 164 165 166 167
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
168
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
169 170 171
}

/*
172
 * Send write disable instruction to the chip.
173 174 175
 */
static inline int write_disable(struct spi_nor *nor)
{
176
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
177 178 179 180 181 182 183
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

static inline u8 spi_nor_convert_3to4_read(u8 opcode)
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static inline u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
				      const struct flash_info *info)
{
	/* Do some manufacturer fixups first */
	switch (JEDEC_MFR(info)) {
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
		nor->mtd.erasesize = info->sector_size;
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}

256
/* Enable/disable 4-byte addressing mode. */
257
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
258
			    int enable)
259 260 261 262 263
{
	int status;
	bool need_wren = false;
	u8 cmd;

264
	switch (JEDEC_MFR(info)) {
265
	case SNOR_MFR_MICRON:
266 267
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
268 269
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
270 271 272
		if (need_wren)
			write_enable(nor);

273
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
274
		status = nor->write_reg(nor, cmd, NULL, 0);
275 276 277 278 279 280 281
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
282
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
283 284
	}
}
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	return !!(val & XSR_RDY);
}

300
static inline int spi_nor_sr_ready(struct spi_nor *nor)
301
{
302 303 304 305 306 307
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
308

309 310 311 312 313 314 315 316
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
317

318 319 320
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
321 322 323 324 325

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
326 327 328 329 330 331
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
332 333
}

334 335 336 337
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
338 339
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
340 341
{
	unsigned long deadline;
342
	int timeout = 0, ret;
343

344
	deadline = jiffies + timeout_jiffies;
345

346 347 348
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
349

350 351 352 353 354
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
355 356 357 358 359

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
360 361 362 363

	return -ETIMEDOUT;
}

364 365 366 367 368 369
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

370 371 372 373 374 375 376
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
377
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
378

379
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

406 407 408 409 410 411 412 413 414 415 416
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
417 418
	unsigned int offset;
	unsigned int page;
419

420 421 422
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
423

424
	return page | offset;
425 426
}

427 428 429 430 431 432 433 434
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

435 436 437
	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
479
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
480 481
		unsigned long timeout;

482 483
		write_enable(nor);

484 485 486 487 488
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

489 490 491 492 493 494 495 496 497 498
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
499 500 501
		if (ret)
			goto erase_err;

502
	/* REVISIT in some cases we could speed up erasing large regions
503
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
504 505 506 507 508 509
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
510 511
			write_enable(nor);

512 513
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
514 515 516 517
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
518 519 520 521

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
522 523 524
		}
	}

525 526
	write_disable(nor);

527
erase_err:
528 529
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

530
	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
531 532 533 534 535
	mtd_erase_callback(instr);

	return ret;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
551 552 553 554
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
555 556 557 558
	}
}

/*
559 560
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
561
 */
562 563
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
564 565 566 567
{
	loff_t lock_offs;
	uint64_t lock_len;

568 569 570
	if (!len)
		return 1;

571 572
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
591 592 593 594
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
595
 * Supports the block protection bits BP{0,1,2} in the status register
596 597 598 599
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
600 601 602
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
603 604 605 606 607 608 609 610 611 612 613 614
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
615 616 617 618 619 620 621
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
622 623 624
 *
 * Returns negative on errors, 0 on success.
 */
625
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
626
{
627
	struct mtd_info *mtd = &nor->mtd;
628
	int status_old, status_new;
629 630
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
631
	loff_t lock_len;
632 633
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
634
	int ret;
635 636

	status_old = read_sr(nor);
637 638
	if (status_old < 0)
		return status_old;
639

640 641 642 643
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

644 645 646 647
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

648 649 650
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
651 652 653
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
654 655
		return -EINVAL;

656 657 658
	/* Prefer top, if both are valid */
	use_top = can_be_top;

659
	/* lock_len: length of region that should end up locked */
660 661 662 663
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
664 665 666 667 668 669 670 671 672 673

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
674
	pow = ilog2(mtd->size) - ilog2(lock_len);
675 676 677 678 679 680 681
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

682
	status_new = (status_old & ~mask & ~SR_TB) | val;
683

684 685 686
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

687 688 689
	if (!use_top)
		status_new |= SR_TB;

690 691 692 693
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

694
	/* Only modify protection if it will not unlock other areas */
695
	if ((status_new & mask) < (status_old & mask))
696
		return -EINVAL;
697

698
	write_enable(nor);
699 700 701 702
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
703 704
}

705 706 707 708 709
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
710
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
711
{
712
	struct mtd_info *mtd = &nor->mtd;
713
	int status_old, status_new;
714 715
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
716
	loff_t lock_len;
717 718
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
719
	int ret;
720 721

	status_old = read_sr(nor);
722 723
	if (status_old < 0)
		return status_old;
724

725 726 727 728 729 730
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
731 732 733 734 735 736 737 738
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
739
		return -EINVAL;
740

741 742 743
	/* Prefer top, if both are valid */
	use_top = can_be_top;

744
	/* lock_len: length of region that should remain locked */
745 746 747 748
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
749

750 751 752 753 754 755 756 757 758
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
759 760
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
761 762 763 764 765 766
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
767 768
	}

769
	status_new = (status_old & ~mask & ~SR_TB) | val;
770

771
	/* Don't protect status register if we're fully unlocked */
772
	if (lock_len == 0)
773 774
		status_new &= ~SR_SRWD;

775 776 777
	if (!use_top)
		status_new |= SR_TB;

778 779 780 781
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

782
	/* Only modify protection if it will not lock other areas */
783
	if ((status_new & mask) > (status_old & mask))
784 785 786
		return -EINVAL;

	write_enable(nor);
787 788 789 790
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

811 812 813 814 815 816 817 818 819 820 821
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

822 823 824 825
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

856
/* Used when the "_ext_id" is two bytes at most */
857
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
858 859 860 861 862 863 864 865
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
866 867 868
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
869
		.flags = (_flags),
870

871 872 873 874 875 876 877 878 879 880 881 882 883
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
884
		.flags = (_flags),
885

886 887 888 889 890
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
891
		.flags = (_flags),
892

893 894 895 896 897 898 899 900 901 902 903 904 905
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

906 907 908
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
909 910 911 912 913 914 915
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
916
 */
917
static const struct flash_info spi_nor_ids[] = {
918 919 920 921 922
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
923
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
940
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
941
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
942
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
943 944

	/* ESMT */
945
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
946 947
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
948 949 950 951

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
952
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
953

954 955 956
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

957
	/* GigaDevice */
958 959 960 961 962
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
983 984 985 986 987 988

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

989 990 991
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

992
	/* Macronix */
993
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
994 995 996 997
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
998
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
999
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
1000
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1001 1002 1003
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
1004
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1005 1006 1007
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
1008
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
1009 1010 1011 1012 1013
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
1014
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
1015
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1016
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1017
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1018
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1019 1020
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1021
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1022
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1023 1024
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1025 1026
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1027 1028 1029 1030 1031 1032 1033 1034 1035

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
1036
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1037
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1038 1039 1040 1041 1042 1043
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
1044
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1045 1046
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1047 1048 1049 1050 1051
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
1052
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1053 1054
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1055
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
1056
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1057
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
1058
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
1059
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
1060
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
1071
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
1072
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
1073
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1074
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1110
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
1111 1112

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1113
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
1114 1115 1116 1117 1118 1119
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1120 1121 1122
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
1123
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1124 1125 1126 1127 1128
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1129 1130
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1152 1153 1154 1155 1156 1157 1158

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1159 1160 1161
	{ },
};

1162
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1163 1164
{
	int			tmp;
1165
	u8			id[SPI_NOR_MAX_ID_LEN];
1166
	const struct flash_info	*info;
1167

1168
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1169
	if (tmp < 0) {
1170
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1171 1172 1173 1174
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
1175
		info = &spi_nor_ids[tmp];
1176 1177
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
1178 1179 1180
				return &spi_nor_ids[tmp];
		}
	}
1181
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1182
		id[0], id[1], id[2]);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
1198
	while (len) {
1199 1200 1201 1202 1203 1204
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		ret = nor->read(nor, addr, len, buf);
M
Michal Suchanek 已提交
1205 1206 1207 1208 1209 1210 1211
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
1212

M
Michal Suchanek 已提交
1213 1214 1215 1216 1217 1218 1219
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
1220

M
Michal Suchanek 已提交
1221 1222 1223
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
1246
		nor->program_opcode = SPINOR_OP_BP;
1247 1248

		/* write one byte. */
1249
		ret = nor->write(nor, to, 1, buf);
1250 1251 1252 1253
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1254
		ret = spi_nor_wait_till_ready(nor);
1255
		if (ret)
1256
			goto sst_write_err;
1257 1258 1259 1260 1261
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
1262
		nor->program_opcode = SPINOR_OP_AAI_WP;
1263 1264

		/* write two bytes. */
1265
		ret = nor->write(nor, to, 2, buf + actual);
1266 1267 1268 1269
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
1270
		ret = spi_nor_wait_till_ready(nor);
1271
		if (ret)
1272
			goto sst_write_err;
1273 1274 1275 1276 1277 1278
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
1279
	ret = spi_nor_wait_till_ready(nor);
1280
	if (ret)
1281
		goto sst_write_err;
1282 1283 1284 1285 1286

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

1287
		nor->program_opcode = SPINOR_OP_BP;
1288
		ret = nor->write(nor, to, 1, buf + actual);
1289 1290 1291 1292
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1293
		ret = spi_nor_wait_till_ready(nor);
1294
		if (ret)
1295
			goto sst_write_err;
1296
		write_disable(nor);
1297
		actual += 1;
1298
	}
1299
sst_write_err:
1300
	*retlen += actual;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1314 1315
	size_t page_offset, page_remain, i;
	ssize_t ret;
1316 1317 1318 1319 1320 1321 1322

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

1323 1324
	for (i = 0; i < len; ) {
		ssize_t written;
1325
		loff_t addr = to + i;
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
1339

1340 1341
			page_offset = do_div(aux, nor->page_size);
		}
1342
		/* the size of data remaining on the first page */
1343 1344 1345
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

1346 1347 1348
		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

1349
		write_enable(nor);
1350
		ret = nor->write(nor, addr, page_remain, buf + i);
1351 1352
		if (ret < 0)
			goto write_err;
1353
		written = ret;
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
		if (written != page_remain) {
			dev_err(nor->dev,
				"While writing %zu bytes written %zd bytes\n",
				page_remain, written);
			ret = -EIO;
			goto write_err;
1366 1367 1368 1369 1370
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1371
	return ret;
1372 1373 1374 1375 1376 1377 1378
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
1379 1380
	if (val < 0)
		return val;
1381 1382 1383
	if (val & SR_QUAD_EN_MX)
		return 0;

1384 1385
	write_enable(nor);

1386
	write_sr(nor, val | SR_QUAD_EN_MX);
1387

1388
	if (spi_nor_wait_till_ready(nor))
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
1404
 * Return negative if error occurred.
1405 1406 1407 1408 1409 1410
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

1411
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

1428 1429 1430 1431 1432 1433 1434
	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1448
		!nor->read_reg || !nor->write_reg) {
1449 1450 1451 1452 1453 1454 1455
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
	if (val & XSR_PAGESIZE) {
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
		nor->mtd.size = 8 * nor->page_size * info->n_sectors;
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
struct spi_nor_read_command {
	u8			num_mode_clocks;
	u8			num_wait_states;
	u8			opcode;
	enum spi_nor_protocol	proto;
};

struct spi_nor_pp_command {
	u8			opcode;
	enum spi_nor_protocol	proto;
};

enum spi_nor_read_command_index {
	SNOR_CMD_READ,
	SNOR_CMD_READ_FAST,

	/* Dual SPI */
	SNOR_CMD_READ_1_1_2,
	SNOR_CMD_READ_1_2_2,
	SNOR_CMD_READ_2_2_2,

	/* Quad SPI */
	SNOR_CMD_READ_1_1_4,
	SNOR_CMD_READ_1_4_4,
	SNOR_CMD_READ_4_4_4,

	SNOR_CMD_READ_MAX
};

enum spi_nor_pp_command_index {
	SNOR_CMD_PP,

	/* Quad SPI */
	SNOR_CMD_PP_1_1_4,
	SNOR_CMD_PP_1_4_4,
	SNOR_CMD_PP_4_4_4,

	SNOR_CMD_PP_MAX
};

struct spi_nor_flash_parameter {
	u64				size;
	u32				page_size;

	struct spi_nor_hwcaps		hwcaps;
	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];

	int (*quad_enable)(struct spi_nor *nor);
};

static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

static int spi_nor_init_params(struct spi_nor *nor,
			       const struct flash_info *info,
			       struct spi_nor_flash_parameter *params)
{
	/* Set legacy flash parameters as default. */
	memset(params, 0, sizeof(*params));

	/* Set SPI NOR sizes. */
	params->size = info->sector_size * info->n_sectors;
	params->page_size = info->page_size;

	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

	if (!(info->flags & SPI_NOR_NO_FR)) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);
	}

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

	/* Select the procedure to set the Quad Enable bit. */
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
				   SNOR_HWCAPS_PP_QUAD)) {
		switch (JEDEC_MFR(info)) {
		case SNOR_MFR_MACRONIX:
			params->quad_enable = macronix_quad_enable;
			break;

		case SNOR_MFR_MICRON:
			break;

		default:
			params->quad_enable = spansion_quad_enable;
			break;
		}
	}

	return 0;
}

static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

static int spi_nor_select_read(struct spi_nor *nor,
			       const struct spi_nor_flash_parameter *params,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &params->reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &params->page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

static int spi_nor_select_erase(struct spi_nor *nor,
				const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		nor->erase_opcode = SPINOR_OP_BE_4K;
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
		mtd->erasesize = 4096;
	} else
#endif
	{
		nor->erase_opcode = SPINOR_OP_SE;
		mtd->erasesize = info->sector_size;
	}
	return 0;
}

static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
			 const struct spi_nor_flash_parameter *params,
			 const struct spi_nor_hwcaps *hwcaps)
{
	u32 ignored_mask, shared_mask;
	bool enable_quad_io;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	/* SPI n-n-n protocols are not supported yet. */
	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
			SNOR_HWCAPS_READ_4_4_4 |
			SNOR_HWCAPS_PP_4_4_4);
	if (shared_mask & ignored_mask) {
		dev_dbg(nor->dev,
			"SPI n-n-n protocols are not supported yet.\n");
		shared_mask &= ~ignored_mask;
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
	err = spi_nor_select_erase(nor, info);
	if (err) {
		dev_err(nor->dev,
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Enable Quad I/O if needed. */
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
	if (enable_quad_io && params->quad_enable) {
		err = params->quad_enable(nor);
		if (err) {
			dev_err(nor->dev, "quad mode not supported\n");
			return err;
		}
	}

	return 0;
}

int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
1812
{
1813
	struct spi_nor_flash_parameter params;
1814
	const struct flash_info *info = NULL;
1815
	struct device *dev = nor->dev;
1816
	struct mtd_info *mtd = &nor->mtd;
1817
	struct device_node *np = spi_nor_get_flash_node(nor);
1818 1819 1820 1821 1822 1823 1824
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1825 1826 1827 1828 1829
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

1830
	if (name)
1831
		info = spi_nor_match_id(name);
1832
	/* Try to auto-detect if chip name wasn't specified or not found */
1833 1834 1835
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1836 1837
		return -ENOENT;

1838 1839 1840 1841 1842
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1843
		const struct flash_info *jinfo;
1844

1845 1846 1847 1848
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1849 1850 1851 1852 1853 1854 1855 1856
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1857 1858
				 jinfo->name, info->name);
			info = jinfo;
1859 1860 1861 1862 1863
		}
	}

	mutex_init(&nor->lock);

1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

1872 1873 1874 1875 1876
	/* Parse the Serial Flash Discoverable Parameters table. */
	ret = spi_nor_init_params(nor, info, &params);
	if (ret)
		return ret;

1877
	/*
1878 1879
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
1880 1881
	 */

1882 1883
	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1884 1885
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
	    info->flags & SPI_NOR_HAS_LOCK) {
1886 1887
		write_enable(nor);
		write_sr(nor, 0);
1888
		spi_nor_wait_till_ready(nor);
1889 1890
	}

1891
	if (!mtd->name)
1892
		mtd->name = dev_name(dev);
1893
	mtd->priv = nor;
1894 1895 1896
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
1897
	mtd->size = params.size;
1898 1899 1900
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

1901
	/* NOR protection support for STmicro/Micron chips and similar */
1902 1903
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
			info->flags & SPI_NOR_HAS_LOCK) {
1904 1905
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
1906
		nor->flash_is_locked = stm_is_locked;
1907 1908
	}

1909
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1910 1911
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
1912
		mtd->_is_locked = spi_nor_is_locked;
1913 1914 1915 1916 1917 1918 1919 1920
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1921 1922
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1923 1924
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
1925 1926
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
1927

1928 1929 1930 1931
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
1932
	nor->page_size = params.page_size;
1933 1934 1935 1936 1937
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
1938
			params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1939
		else
1940
			params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
1941 1942
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
1943
		params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1944 1945 1946 1947
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
1948
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
	 */
	ret = spi_nor_setup(nor, info, &params, hwcaps);
	if (ret)
		return ret;
1960 1961 1962 1963 1964 1965

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1966 1967 1968 1969
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
		    info->flags & SPI_NOR_4B_OPCODES)
			spi_nor_set_4byte_opcodes(nor, info);
		else
1970
			set_4byte(nor, info, 1);
1971 1972 1973 1974
	} else {
		nor->addr_width = 3;
	}

1975 1976 1977 1978 1979 1980
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

1981 1982 1983 1984 1985 1986
	if (info->flags & SPI_S3AN) {
		ret = s3an_nor_scan(info, nor);
		if (ret)
			return ret;
	}

1987
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
2008
EXPORT_SYMBOL_GPL(spi_nor_scan);
2009

2010
static const struct flash_info *spi_nor_match_id(const char *name)
2011
{
2012
	const struct flash_info *id = spi_nor_ids;
2013

2014
	while (id->name) {
2015 2016 2017 2018 2019 2020 2021
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

2022 2023 2024 2025
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");