spi-nor.c 38.8 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42 43

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
#define	SST_WRITE		0x04	/* use SST byte programming */
#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
#define	USE_FSR			0x80	/* use flag status register */
};

#define JEDEC_MFR(info)	((info)->id[0])
75

76
static const struct flash_info *spi_nor_match_id(const char *name);
77

78 79 80 81 82 83 84 85 86 87
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

88
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
89 90 91 92 93 94 95 96
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

116 117 118 119 120 121 122 123 124 125
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

126
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
146
		return 8;
147 148 149 150 151 152 153 154 155 156 157 158 159
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
160
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
161 162 163 164 165 166 167 168
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
169
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
170 171 172 173 174 175 176
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
177
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
178 179 180 181 182 183 184 185
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
186
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
187
			    int enable)
188 189 190 191 192
{
	int status;
	bool need_wren = false;
	u8 cmd;

193
	switch (JEDEC_MFR(info)) {
194
	case SNOR_MFR_MICRON:
195 196
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
197 198
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
199 200 201
		if (need_wren)
			write_enable(nor);

202
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
203
		status = nor->write_reg(nor, cmd, NULL, 0);
204 205 206 207 208 209 210
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
211
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
212 213
	}
}
214
static inline int spi_nor_sr_ready(struct spi_nor *nor)
215
{
216 217 218 219 220 221
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
222

223 224 225 226 227 228 229 230
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
231

232 233 234 235 236 237 238 239 240 241
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
	sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
242 243
}

244 245 246 247
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
248 249
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
250 251
{
	unsigned long deadline;
252
	int timeout = 0, ret;
253

254
	deadline = jiffies + timeout_jiffies;
255

256 257 258
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
259

260 261 262 263 264
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
265 266 267 268 269

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
270 271 272 273

	return -ETIMEDOUT;
}

274 275 276 277 278 279
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

280 281 282 283 284 285 286
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
287
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
288

289
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
366 367
		unsigned long timeout;

368 369
		write_enable(nor);

370 371 372 373 374
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

375 376 377 378 379 380 381 382 383 384
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
385 386 387
		if (ret)
			goto erase_err;

388
	/* REVISIT in some cases we could speed up erasing large regions
389
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
390 391 392 393 394 395
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
396 397
			write_enable(nor);

398 399
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
400 401 402 403
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
404 405 406 407

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
408 409 410
		}
	}

411 412
	write_disable(nor);

413
erase_err:
414 415
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

416
	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
417 418 419 420 421
	mtd_erase_callback(instr);

	return ret;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
		*ofs = mtd->size - *len;
	}
}

/*
 * Return 1 if the entire region is locked, 0 otherwise
 */
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	loff_t lock_offs;
	uint64_t lock_len;

	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

	return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
 * Supports only the block protection bits BP{0,1,2} in the status register
 * (SR). Does not support these features found in newer SR bitfields:
 *   - TB: top/bottom protect - only handle TB=0 (top protect)
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 *
 * Returns negative on errors, 0 on success.
 */
478
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
479
{
480
	struct mtd_info *mtd = &nor->mtd;
481
	int status_old, status_new;
482 483
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
484
	int ret;
485 486

	status_old = read_sr(nor);
487 488
	if (status_old < 0)
		return status_old;
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	/* SPI NOR always locks to the end */
	if (ofs + len != mtd->size) {
		/* Does combined region extend to end? */
		if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len,
				      status_old))
			return -EINVAL;
		len = mtd->size - ofs;
	}

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
	pow = ilog2(mtd->size) - ilog2(len);
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

	status_new = (status_old & ~mask) | val;
517 518

	/* Only modify protection if it will not unlock other areas */
519 520
	if ((status_new & mask) <= (status_old & mask))
		return -EINVAL;
521

522
	write_enable(nor);
523 524 525 526
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
527 528
}

529 530 531 532 533
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
534
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
535
{
536
	struct mtd_info *mtd = &nor->mtd;
537
	int status_old, status_new;
538 539
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
540
	int ret;
541 542

	status_old = read_sr(nor);
543 544
	if (status_old < 0)
		return status_old;
545

546
	/* Cannot unlock; would unlock larger region than requested */
547 548
	if (stm_is_locked_sr(nor, ofs - mtd->erasesize, mtd->erasesize,
			     status_old))
549
		return -EINVAL;
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
	pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len));
	if (ofs + len == mtd->size) {
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
568 569
	}

570 571 572 573 574 575 576
	status_new = (status_old & ~mask) | val;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & mask) >= (status_old & mask))
		return -EINVAL;

	write_enable(nor);
577 578 579 580
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

601 602 603 604 605 606 607 608 609 610 611
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

612 613 614 615
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

646
/* Used when the "_ext_id" is two bytes at most */
647
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
648 649 650 651 652 653 654 655
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
656 657 658
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
659
		.flags = (_flags),
660

661 662 663 664 665 666 667 668 669 670 671 672 673
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
674
		.flags = (_flags),
675

676 677 678 679 680
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
681
		.flags = (_flags),
682 683 684 685

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
686 687 688 689 690 691 692
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
693
 */
694
static const struct flash_info spi_nor_ids[] = {
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
716
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
717
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
718
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
719 720 721 722 723 724 725 726

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

727 728 729
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

730 731 732
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
733
	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
734 735 736 737 738 739

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

740 741 742
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

743
	/* Macronix */
744
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
745 746 747 748
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
749
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
750
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
751
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
752
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
753 754 755 756 757 758 759 760
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
761
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
762
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
763
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
764
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
765 766
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
767 768 769 770
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
771 772 773 774 775 776 777 778 779

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
780
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
781
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
782 783 784 785 786 787
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
788
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
789 790
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
791 792 793 794 795
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
796
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
797 798
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
799
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
800
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
801
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
802
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
803
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
804 805 806 807 808 809 810 811 812 813

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
814
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
815
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
816
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
817
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
853
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
854 855

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
856
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
857 858 859 860 861 862 863
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
864
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
865 866
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
867
	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
868
	{ "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
869 870 871 872 873 874 875 876 877 878 879 880 881 882
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};

883
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
884 885
{
	int			tmp;
886
	u8			id[SPI_NOR_MAX_ID_LEN];
887
	const struct flash_info	*info;
888

889
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
890
	if (tmp < 0) {
891
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
892 893 894 895
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
896
		info = &spi_nor_ids[tmp];
897 898
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
899 900 901
				return &spi_nor_ids[tmp];
		}
	}
902
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
903
		id[0], id[1], id[2]);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	ret = nor->read(nor, from, len, retlen, buf);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
945
		nor->program_opcode = SPINOR_OP_BP;
946 947 948

		/* write one byte. */
		nor->write(nor, to, 1, retlen, buf);
949
		ret = spi_nor_wait_till_ready(nor);
950 951 952 953 954 955 956
		if (ret)
			goto time_out;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
957
		nor->program_opcode = SPINOR_OP_AAI_WP;
958 959 960

		/* write two bytes. */
		nor->write(nor, to, 2, retlen, buf + actual);
961
		ret = spi_nor_wait_till_ready(nor);
962 963 964 965 966 967 968 969
		if (ret)
			goto time_out;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
970
	ret = spi_nor_wait_till_ready(nor);
971 972 973 974 975 976 977
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

978
		nor->program_opcode = SPINOR_OP_BP;
979 980
		nor->write(nor, to, 1, retlen, buf + actual);

981
		ret = spi_nor_wait_till_ready(nor);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		if (ret)
			goto time_out;
		write_disable(nor);
	}
time_out:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 page_offset, page_size, i;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	page_offset = to & (nor->page_size - 1);

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= nor->page_size) {
		nor->write(nor, to, len, retlen, buf);
	} else {
		/* the size of data remaining on the first page */
		page_size = nor->page_size - page_offset;
		nor->write(nor, to, page_size, retlen, buf);

		/* write everything in nor->page_size chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > nor->page_size)
				page_size = nor->page_size;

1027
			ret = spi_nor_wait_till_ready(nor);
1028 1029 1030
			if (ret)
				goto write_err;

1031 1032 1033 1034 1035 1036
			write_enable(nor);

			nor->write(nor, to + i, page_size, retlen, buf + i);
		}
	}

1037
	ret = spi_nor_wait_till_ready(nor);
1038 1039
write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1040
	return ret;
1041 1042 1043 1044 1045 1046 1047
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
1048 1049
	if (val < 0)
		return val;
1050 1051
	write_enable(nor);

1052
	write_sr(nor, val | SR_QUAD_EN_MX);
1053

1054
	if (spi_nor_wait_till_ready(nor))
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

1077
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1104
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
1105 1106 1107
{
	int status;

1108
	switch (JEDEC_MFR(info)) {
1109
	case SNOR_MFR_MACRONIX:
1110 1111 1112 1113 1114 1115
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1116
	case SNOR_MFR_MICRON:
1117
		return 0;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1131
		!nor->read_reg || !nor->write_reg) {
1132 1133 1134 1135 1136 1137 1138
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1139
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1140
{
1141
	const struct flash_info *info = NULL;
1142
	struct device *dev = nor->dev;
1143
	struct mtd_info *mtd = &nor->mtd;
1144
	struct device_node *np = spi_nor_get_flash_node(nor);
1145 1146 1147 1148 1149 1150 1151
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1152
	if (name)
1153
		info = spi_nor_match_id(name);
1154
	/* Try to auto-detect if chip name wasn't specified or not found */
1155 1156 1157
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1158 1159
		return -ENOENT;

1160 1161 1162 1163 1164
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1165
		const struct flash_info *jinfo;
1166

1167 1168 1169 1170
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1171 1172 1173 1174 1175 1176 1177 1178
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1179 1180
				 jinfo->name, info->name);
			info = jinfo;
1181 1182 1183 1184 1185 1186
		}
	}

	mutex_init(&nor->lock);

	/*
1187 1188
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
1189 1190
	 */

1191 1192
	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1193
	    JEDEC_MFR(info) == SNOR_MFR_SST) {
1194 1195
		write_enable(nor);
		write_sr(nor, 0);
1196
		spi_nor_wait_till_ready(nor);
1197 1198
	}

1199
	if (!mtd->name)
1200
		mtd->name = dev_name(dev);
1201
	mtd->priv = nor;
1202 1203 1204 1205 1206 1207 1208
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

1209
	/* NOR protection support for STmicro/Micron chips and similar */
1210
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON) {
1211 1212
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
1213
		nor->flash_is_locked = stm_is_locked;
1214 1215
	}

1216
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1217 1218
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
1219
		mtd->_is_locked = spi_nor_is_locked;
1220 1221 1222 1223 1224 1225 1226 1227
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1228 1229
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1230

1231
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1232 1233
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1234
		nor->erase_opcode = SPINOR_OP_BE_4K;
1235 1236
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1237
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1238
		mtd->erasesize = 4096;
1239 1240 1241
	} else
#endif
	{
1242
		nor->erase_opcode = SPINOR_OP_SE;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1270
		ret = set_quad_mode(nor, info);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1283
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1284 1285
		break;
	case SPI_NOR_DUAL:
1286
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1287 1288
		break;
	case SPI_NOR_FAST:
1289
		nor->read_opcode = SPINOR_OP_READ_FAST;
1290 1291
		break;
	case SPI_NOR_NORMAL:
1292
		nor->read_opcode = SPINOR_OP_READ;
1293 1294 1295 1296 1297 1298
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1299
	nor->program_opcode = SPINOR_OP_PP;
1300 1301 1302 1303 1304 1305

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1306
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
1307 1308 1309
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1310
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1311 1312
				break;
			case SPI_NOR_DUAL:
1313
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1314 1315
				break;
			case SPI_NOR_FAST:
1316
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1317 1318
				break;
			case SPI_NOR_NORMAL:
1319
				nor->read_opcode = SPINOR_OP_READ4;
1320 1321
				break;
			}
1322
			nor->program_opcode = SPINOR_OP_PP_4B;
1323
			/* No small sector erase for 4-byte command set */
1324
			nor->erase_opcode = SPINOR_OP_SE_4B;
1325 1326
			mtd->erasesize = info->sector_size;
		} else
1327
			set_4byte(nor, info, 1);
1328 1329 1330 1331
	} else {
		nor->addr_width = 3;
	}

1332 1333 1334 1335 1336 1337
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

1338 1339
	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

1340
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1361
EXPORT_SYMBOL_GPL(spi_nor_scan);
1362

1363
static const struct flash_info *spi_nor_match_id(const char *name)
1364
{
1365
	const struct flash_info *id = spi_nor_ids;
1366

1367
	while (id->name) {
1368 1369 1370 1371 1372 1373 1374
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1375 1376 1377 1378
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");