spi-nor.c 35.9 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26 27

#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
28 29 30 31 32 33 34 35 36 37 38 39

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40

41 42 43
#define SPI_NOR_MAX_ID_LEN	6

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
#define	SST_WRITE		0x04	/* use SST byte programming */
#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
#define	USE_FSR			0x80	/* use flag status register */
};

#define JEDEC_MFR(info)	((info)->id[0])
75

76
static const struct flash_info *spi_nor_match_id(const char *name);
77

78 79 80 81 82 83 84 85 86 87
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

88
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
89 90 91 92 93 94 95 96
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

116 117 118 119 120 121 122 123 124 125
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

126
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
146
		return 8;
147 148 149 150 151 152 153 154 155 156 157 158 159
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
160
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
161 162 163 164 165 166 167 168
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
169
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
170 171 172 173 174 175 176
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
177
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
178 179 180 181 182 183 184 185
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
186
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
187
			    int enable)
188 189 190 191 192
{
	int status;
	bool need_wren = false;
	u8 cmd;

193
	switch (JEDEC_MFR(info)) {
194 195 196 197 198 199 200 201
	case CFI_MFR_ST: /* Micron, actually */
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
	case 0xEF /* winbond */:
		if (need_wren)
			write_enable(nor);

202
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
203
		status = nor->write_reg(nor, cmd, NULL, 0);
204 205 206 207 208 209 210
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
211
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
212 213
	}
}
214
static inline int spi_nor_sr_ready(struct spi_nor *nor)
215
{
216 217 218 219 220 221
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
222

223 224 225 226 227 228 229 230
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
231

232 233 234 235 236 237 238 239 240 241
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
	sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
242 243
}

244 245 246 247
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
248 249
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
250 251
{
	unsigned long deadline;
252
	int timeout = 0, ret;
253

254
	deadline = jiffies + timeout_jiffies;
255

256 257 258
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
259

260 261 262 263 264
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
265 266 267 268 269

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
270 271 272 273

	return -ETIMEDOUT;
}

274 275 276 277 278 279
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

280 281 282 283 284 285 286
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
287
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
288

289
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
343 344
		unsigned long timeout;

345 346
		write_enable(nor);

347 348 349 350 351
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

352 353 354 355 356 357 358 359 360 361
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
362 363 364
		if (ret)
			goto erase_err;

365
	/* REVISIT in some cases we could speed up erasing large regions
366
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
367 368 369 370 371 372
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
373 374
			write_enable(nor);

375 376 377 378 379 380 381
			if (nor->erase(nor, addr)) {
				ret = -EIO;
				goto erase_err;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
382 383 384 385

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
386 387 388
		}
	}

389 390
	write_disable(nor);

391 392 393 394 395 396 397 398 399 400 401 402 403
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return ret;

erase_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
	instr->state = MTD_ERASE_FAILED;
	return ret;
}

404
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
405
{
406
	struct mtd_info *mtd = &nor->mtd;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	status_old = read_sr(nor);

	if (offset < mtd->size - (mtd->size / 2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset < mtd->size - (mtd->size / 32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 64))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
	}

	return ret;
}

438
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
439
{
440
	struct mtd_info *mtd = &nor->mtd;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	status_old = read_sr(nor);

	if (offset+len > mtd->size - (mtd->size / 64))
		status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
	else if (offset+len > mtd->size - (mtd->size / 32))
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else if (offset+len > mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 4))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset+len > mtd->size - (mtd->size / 2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
	}

469 470 471 472 473 474 475 476 477 478 479 480 481 482
	return ret;
}

static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

483 484 485 486
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

502
/* Used when the "_ext_id" is two bytes at most */
503
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
504 505 506 507 508 509 510 511
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
512 513 514
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
515
		.flags = (_flags),
516

517 518 519 520 521 522 523 524 525 526 527 528 529
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
530
		.flags = (_flags),
531

532 533 534 535 536
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
537
		.flags = (_flags),
538 539 540 541

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
542 543 544 545 546 547 548
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
549
 */
550
static const struct flash_info spi_nor_ids[] = {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
572
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
573
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
574
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
575 576 577 578 579 580 581 582

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

583 584 585
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

586 587 588
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
589
	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
590 591 592 593 594 595

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

596 597 598
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

599
	/* Macronix */
600
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
601 602 603 604 605 606 607
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
608
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
609 610 611 612 613 614 615 616
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
617
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
618
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
619
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
620
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
621 622 623 624 625 626
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
627 628 629 630 631 632 633 634 635

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
636
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
637
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
638 639 640 641 642 643
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
644
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
645 646
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
647 648 649 650 651
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
652 653
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
654
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
655
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
656
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
657
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K) },
658 659 660 661 662 663 664 665 666 667

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
668
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
669
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
670
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
671
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
707
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
708 709

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
710
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
711 712 713 714 715 716 717 718 719 720
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
721
	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
722
	{ "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
723 724 725 726 727 728 729 730 731 732 733 734 735 736
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};

737
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
738 739
{
	int			tmp;
740
	u8			id[SPI_NOR_MAX_ID_LEN];
741
	const struct flash_info	*info;
742

743
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
744 745 746 747 748 749
	if (tmp < 0) {
		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
750
		info = &spi_nor_ids[tmp];
751 752
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
753 754 755
				return &spi_nor_ids[tmp];
		}
	}
756 757
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
		id[0], id[1], id[2]);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	ret = nor->read(nor, from, len, retlen, buf);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
799
		nor->program_opcode = SPINOR_OP_BP;
800 801 802

		/* write one byte. */
		nor->write(nor, to, 1, retlen, buf);
803
		ret = spi_nor_wait_till_ready(nor);
804 805 806 807 808 809 810
		if (ret)
			goto time_out;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
811
		nor->program_opcode = SPINOR_OP_AAI_WP;
812 813 814

		/* write two bytes. */
		nor->write(nor, to, 2, retlen, buf + actual);
815
		ret = spi_nor_wait_till_ready(nor);
816 817 818 819 820 821 822 823
		if (ret)
			goto time_out;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
824
	ret = spi_nor_wait_till_ready(nor);
825 826 827 828 829 830 831
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

832
		nor->program_opcode = SPINOR_OP_BP;
833 834
		nor->write(nor, to, 1, retlen, buf + actual);

835
		ret = spi_nor_wait_till_ready(nor);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		if (ret)
			goto time_out;
		write_disable(nor);
	}
time_out:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 page_offset, page_size, i;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	page_offset = to & (nor->page_size - 1);

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= nor->page_size) {
		nor->write(nor, to, len, retlen, buf);
	} else {
		/* the size of data remaining on the first page */
		page_size = nor->page_size - page_offset;
		nor->write(nor, to, page_size, retlen, buf);

		/* write everything in nor->page_size chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > nor->page_size)
				page_size = nor->page_size;

881
			ret = spi_nor_wait_till_ready(nor);
882 883 884
			if (ret)
				goto write_err;

885 886 887 888 889 890
			write_enable(nor);

			nor->write(nor, to + i, page_size, retlen, buf + i);
		}
	}

891
	ret = spi_nor_wait_till_ready(nor);
892 893
write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
894
	return ret;
895 896 897 898 899 900 901 902 903
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	write_enable(nor);

904
	write_sr(nor, val | SR_QUAD_EN_MX);
905

906
	if (spi_nor_wait_till_ready(nor))
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

929
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int micron_quad_enable(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}

	write_enable(nor);

	/* set EVCR, enable quad I/O */
	nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
971
	ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	if (ret < 0) {
		dev_err(nor->dev, "error while writing EVCR register\n");
		return ret;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	/* read EVCR and check it */
	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}
	if (val & EVCR_QUAD_EN_MICRON) {
		dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
		return -EINVAL;
	}

	return 0;
}

995
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
996 997 998
{
	int status;

999
	switch (JEDEC_MFR(info)) {
1000 1001 1002 1003 1004 1005 1006
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1007 1008 1009 1010 1011 1012 1013
	case CFI_MFR_ST:
		status = micron_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Micron quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
		!nor->read_reg || !nor->write_reg || !nor->erase) {
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1035
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1036
{
1037
	const struct flash_info *info = NULL;
1038
	struct device *dev = nor->dev;
1039
	struct mtd_info *mtd = &nor->mtd;
1040
	struct device_node *np = nor->flash_node;
1041 1042 1043 1044 1045 1046 1047
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1048
	if (name)
1049
		info = spi_nor_match_id(name);
1050
	/* Try to auto-detect if chip name wasn't specified or not found */
1051 1052 1053
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1054 1055
		return -ENOENT;

1056 1057 1058 1059 1060
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1061
		const struct flash_info *jinfo;
1062

1063 1064 1065 1066
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1067 1068 1069 1070 1071 1072 1073 1074
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1075 1076
				 jinfo->name, info->name);
			info = jinfo;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		}
	}

	mutex_init(&nor->lock);

	/*
	 * Atmel, SST and Intel/Numonyx serial nor tend to power
	 * up with the software protection bits set
	 */

1087 1088 1089
	if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info) == CFI_MFR_SST) {
1090 1091 1092 1093
		write_enable(nor);
		write_sr(nor, 0);
	}

1094
	if (!mtd->name)
1095
		mtd->name = dev_name(dev);
1096
	mtd->priv = nor;
1097 1098 1099 1100 1101 1102 1103 1104
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

	/* nor protection support for STmicro chips */
1105
	if (JEDEC_MFR(info) == CFI_MFR_ST) {
1106 1107 1108 1109 1110
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
	}

	if (nor->flash_lock && nor->flash_unlock) {
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1121 1122
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1123

1124
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1125 1126
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1127
		nor->erase_opcode = SPINOR_OP_BE_4K;
1128 1129
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1130
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1131
		mtd->erasesize = 4096;
1132 1133 1134
	} else
#endif
	{
1135
		nor->erase_opcode = SPINOR_OP_SE;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1163
		ret = set_quad_mode(nor, info);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1176
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1177 1178
		break;
	case SPI_NOR_DUAL:
1179
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1180 1181
		break;
	case SPI_NOR_FAST:
1182
		nor->read_opcode = SPINOR_OP_READ_FAST;
1183 1184
		break;
	case SPI_NOR_NORMAL:
1185
		nor->read_opcode = SPINOR_OP_READ;
1186 1187 1188 1189 1190 1191
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1192
	nor->program_opcode = SPINOR_OP_PP;
1193 1194 1195 1196 1197 1198

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1199
		if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1200 1201 1202
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1203
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1204 1205
				break;
			case SPI_NOR_DUAL:
1206
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1207 1208
				break;
			case SPI_NOR_FAST:
1209
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1210 1211
				break;
			case SPI_NOR_NORMAL:
1212
				nor->read_opcode = SPINOR_OP_READ4;
1213 1214
				break;
			}
1215
			nor->program_opcode = SPINOR_OP_PP_4B;
1216
			/* No small sector erase for 4-byte command set */
1217
			nor->erase_opcode = SPINOR_OP_SE_4B;
1218 1219
			mtd->erasesize = info->sector_size;
		} else
1220
			set_4byte(nor, info, 1);
1221 1222 1223 1224 1225 1226
	} else {
		nor->addr_width = 3;
	}

	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

1227
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1248
EXPORT_SYMBOL_GPL(spi_nor_scan);
1249

1250
static const struct flash_info *spi_nor_match_id(const char *name)
1251
{
1252
	const struct flash_info *id = spi_nor_ids;
1253

1254
	while (id->name) {
1255 1256 1257 1258 1259 1260 1261
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1262 1263 1264 1265
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");