spi-nor.c 42.9 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42 43

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
64 65 66 67 68 69 70 71
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
72
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
73 74 75 76 77
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
78 79 80
};

#define JEDEC_MFR(info)	((info)->id[0])
81

82
static const struct flash_info *spi_nor_match_id(const char *name);
83

84 85 86 87 88 89 90 91 92 93
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

94
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
95 96 97 98 99 100 101 102
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

122 123 124 125 126 127 128 129 130 131
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

132
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
152
		return 8;
153 154 155 156 157 158 159 160 161 162 163 164 165
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
166
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
167 168 169 170 171 172 173 174
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
175
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
176 177 178 179 180 181 182
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
183
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
184 185 186 187 188 189 190 191
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
192
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
193
			    int enable)
194 195 196 197 198
{
	int status;
	bool need_wren = false;
	u8 cmd;

199
	switch (JEDEC_MFR(info)) {
200
	case SNOR_MFR_MICRON:
201 202
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
203 204
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
205 206 207
		if (need_wren)
			write_enable(nor);

208
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
209
		status = nor->write_reg(nor, cmd, NULL, 0);
210 211 212 213 214 215 216
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
217
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
218 219
	}
}
220
static inline int spi_nor_sr_ready(struct spi_nor *nor)
221
{
222 223 224 225 226 227
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
228

229 230 231 232 233 234 235 236
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
237

238 239 240 241 242 243 244 245 246 247
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
	sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
248 249
}

250 251 252 253
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
254 255
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
256 257
{
	unsigned long deadline;
258
	int timeout = 0, ret;
259

260
	deadline = jiffies + timeout_jiffies;
261

262 263 264
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
265

266 267 268 269 270
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
271 272 273 274 275

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
276 277 278 279

	return -ETIMEDOUT;
}

280 281 282 283 284 285
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

286 287 288 289 290 291 292
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
293
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
294

295
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
372 373
		unsigned long timeout;

374 375
		write_enable(nor);

376 377 378 379 380
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

381 382 383 384 385 386 387 388 389 390
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
391 392 393
		if (ret)
			goto erase_err;

394
	/* REVISIT in some cases we could speed up erasing large regions
395
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
396 397 398 399 400 401
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
402 403
			write_enable(nor);

404 405
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
406 407 408 409
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
410 411 412 413

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
414 415 416
		}
	}

417 418
	write_disable(nor);

419
erase_err:
420 421
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

422
	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
423 424 425 426 427
	mtd_erase_callback(instr);

	return ret;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
443 444 445 446
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
447 448 449 450
	}
}

/*
451 452
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
453
 */
454 455
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
456 457 458 459
{
	loff_t lock_offs;
	uint64_t lock_len;

460 461 462
	if (!len)
		return 1;

463 464
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
483 484 485 486
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
487
 * Supports the block protection bits BP{0,1,2} in the status register
488 489 490 491
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
492 493 494
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
495 496 497 498 499 500 501 502 503 504 505 506
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
507 508 509 510 511 512 513
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
514 515 516
 *
 * Returns negative on errors, 0 on success.
 */
517
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
518
{
519
	struct mtd_info *mtd = &nor->mtd;
520
	int status_old, status_new;
521 522
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
523
	loff_t lock_len;
524 525
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
526
	int ret;
527 528

	status_old = read_sr(nor);
529 530
	if (status_old < 0)
		return status_old;
531

532 533 534 535
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

536 537 538 539
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

540 541 542
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
543 544 545
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
546 547
		return -EINVAL;

548 549 550
	/* Prefer top, if both are valid */
	use_top = can_be_top;

551
	/* lock_len: length of region that should end up locked */
552 553 554 555
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
556 557 558 559 560 561 562 563 564 565

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
566
	pow = ilog2(mtd->size) - ilog2(lock_len);
567 568 569 570 571 572 573
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

574
	status_new = (status_old & ~mask & ~SR_TB) | val;
575

576 577 578
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

579 580 581
	if (!use_top)
		status_new |= SR_TB;

582 583 584 585
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

586
	/* Only modify protection if it will not unlock other areas */
587
	if ((status_new & mask) < (status_old & mask))
588
		return -EINVAL;
589

590
	write_enable(nor);
591 592 593 594
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
595 596
}

597 598 599 600 601
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
602
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
603
{
604
	struct mtd_info *mtd = &nor->mtd;
605
	int status_old, status_new;
606 607
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
608
	loff_t lock_len;
609 610
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
611
	int ret;
612 613

	status_old = read_sr(nor);
614 615
	if (status_old < 0)
		return status_old;
616

617 618 619 620 621 622
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
623 624 625 626 627 628 629 630
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
631
		return -EINVAL;
632

633 634 635
	/* Prefer top, if both are valid */
	use_top = can_be_top;

636
	/* lock_len: length of region that should remain locked */
637 638 639 640
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
641

642 643 644 645 646 647 648 649 650
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
651 652
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
653 654 655 656 657 658
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
659 660
	}

661
	status_new = (status_old & ~mask & ~SR_TB) | val;
662

663 664 665 666
	/* Don't protect status register if we're fully unlocked */
	if (lock_len == mtd->size)
		status_new &= ~SR_SRWD;

667 668 669
	if (!use_top)
		status_new |= SR_TB;

670 671 672 673
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

674
	/* Only modify protection if it will not lock other areas */
675
	if ((status_new & mask) > (status_old & mask))
676 677 678
		return -EINVAL;

	write_enable(nor);
679 680 681 682
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
683 684
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

703 704 705 706 707 708 709 710 711 712 713
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

714 715 716 717
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

748
/* Used when the "_ext_id" is two bytes at most */
749
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
750 751 752 753 754 755 756 757
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
758 759 760
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
761
		.flags = (_flags),
762

763 764 765 766 767 768 769 770 771 772 773 774 775
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
776
		.flags = (_flags),
777

778 779 780 781 782
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
783
		.flags = (_flags),
784 785 786 787

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
788 789 790 791 792 793 794
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
795
 */
796
static const struct flash_info spi_nor_ids[] = {
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
818
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
819
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
820
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
821 822 823 824 825 826 827 828

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

829 830 831
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

832 833 834
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
835
	{ "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
836
	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
837 838 839 840 841 842

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

843 844 845
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

846
	/* Macronix */
847
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
848 849 850 851
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
852
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
853
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
854
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
855
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
856 857 858 859 860 861 862 863
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
864
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
865
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
866
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
867
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
868 869
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
870 871 872 873
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
874 875 876 877 878 879 880 881 882

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
883
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
884
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
885 886 887 888 889 890
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
891
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
892 893
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
894 895 896 897 898
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
899
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
900 901
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
902
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
903
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
904
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
905
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
906
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
907 908 909 910 911 912 913 914 915 916

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
917
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
918
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
919
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
920
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
956
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
957 958

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
959
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
960 961 962 963 964 965 966
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
967 968 969 970 971
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
972 973
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
974 975 976 977 978 979 980 981 982 983
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
984 985 986 987 988 989 990 991 992 993 994 995 996 997
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};

998
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
999 1000
{
	int			tmp;
1001
	u8			id[SPI_NOR_MAX_ID_LEN];
1002
	const struct flash_info	*info;
1003

1004
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1005
	if (tmp < 0) {
1006
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1007 1008 1009 1010
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
1011
		info = &spi_nor_ids[tmp];
1012 1013
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
1014 1015 1016
				return &spi_nor_ids[tmp];
		}
	}
1017
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1018
		id[0], id[1], id[2]);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
	while (len) {
		ret = nor->read(nor, from, len, buf);
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
1043

M
Michal Suchanek 已提交
1044 1045 1046 1047 1048 1049 1050
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
1051

M
Michal Suchanek 已提交
1052 1053 1054
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
1077
		nor->program_opcode = SPINOR_OP_BP;
1078 1079

		/* write one byte. */
1080
		ret = nor->write(nor, to, 1, buf);
1081 1082 1083 1084
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1085
		ret = spi_nor_wait_till_ready(nor);
1086
		if (ret)
1087
			goto sst_write_err;
1088 1089 1090 1091 1092
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
1093
		nor->program_opcode = SPINOR_OP_AAI_WP;
1094 1095

		/* write two bytes. */
1096
		ret = nor->write(nor, to, 2, buf + actual);
1097 1098 1099 1100
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
1101
		ret = spi_nor_wait_till_ready(nor);
1102
		if (ret)
1103
			goto sst_write_err;
1104 1105 1106 1107 1108 1109
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
1110
	ret = spi_nor_wait_till_ready(nor);
1111
	if (ret)
1112
		goto sst_write_err;
1113 1114 1115 1116 1117

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

1118
		nor->program_opcode = SPINOR_OP_BP;
1119
		ret = nor->write(nor, to, 1, buf + actual);
1120 1121 1122 1123
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1124
		ret = spi_nor_wait_till_ready(nor);
1125
		if (ret)
1126
			goto sst_write_err;
1127
		write_disable(nor);
1128
		actual += 1;
1129
	}
1130
sst_write_err:
1131
	*retlen += actual;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1145 1146
	size_t page_offset, page_remain, i;
	ssize_t ret;
1147 1148 1149 1150 1151 1152 1153

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

1154 1155
	for (i = 0; i < len; ) {
		ssize_t written;
1156

1157 1158 1159 1160
		page_offset = (to + i) & (nor->page_size - 1);
		WARN_ONCE(page_offset,
			  "Writing at offset %zu into a NOR page. Writing partial pages may decrease reliability and increase wear of NOR flash.",
			  page_offset);
1161
		/* the size of data remaining on the first page */
1162 1163 1164 1165 1166
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

		write_enable(nor);
		ret = nor->write(nor, to + i, page_remain, buf + i);
1167 1168
		if (ret < 0)
			goto write_err;
1169
		written = ret;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
		if (written != page_remain) {
			dev_err(nor->dev,
				"While writing %zu bytes written %zd bytes\n",
				page_remain, written);
			ret = -EIO;
			goto write_err;
1182 1183 1184 1185 1186
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1187
	return ret;
1188 1189 1190 1191 1192 1193 1194
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
1195 1196
	if (val < 0)
		return val;
1197 1198
	write_enable(nor);

1199
	write_sr(nor, val | SR_QUAD_EN_MX);
1200

1201
	if (spi_nor_wait_till_ready(nor))
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

1224
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1251
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
1252 1253 1254
{
	int status;

1255
	switch (JEDEC_MFR(info)) {
1256
	case SNOR_MFR_MACRONIX:
1257 1258 1259 1260 1261 1262
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1263
	case SNOR_MFR_MICRON:
1264
		return 0;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1278
		!nor->read_reg || !nor->write_reg) {
1279 1280 1281 1282 1283 1284 1285
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1286
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1287
{
1288
	const struct flash_info *info = NULL;
1289
	struct device *dev = nor->dev;
1290
	struct mtd_info *mtd = &nor->mtd;
1291
	struct device_node *np = spi_nor_get_flash_node(nor);
1292 1293 1294 1295 1296 1297 1298
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1299
	if (name)
1300
		info = spi_nor_match_id(name);
1301
	/* Try to auto-detect if chip name wasn't specified or not found */
1302 1303 1304
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1305 1306
		return -ENOENT;

1307 1308 1309 1310 1311
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1312
		const struct flash_info *jinfo;
1313

1314 1315 1316 1317
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1318 1319 1320 1321 1322 1323 1324 1325
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1326 1327
				 jinfo->name, info->name);
			info = jinfo;
1328 1329 1330 1331 1332 1333
		}
	}

	mutex_init(&nor->lock);

	/*
1334 1335
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
1336 1337
	 */

1338 1339
	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1340 1341
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
	    info->flags & SPI_NOR_HAS_LOCK) {
1342 1343
		write_enable(nor);
		write_sr(nor, 0);
1344
		spi_nor_wait_till_ready(nor);
1345 1346
	}

1347
	if (!mtd->name)
1348
		mtd->name = dev_name(dev);
1349
	mtd->priv = nor;
1350 1351 1352 1353 1354 1355 1356
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

1357
	/* NOR protection support for STmicro/Micron chips and similar */
1358 1359
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
			info->flags & SPI_NOR_HAS_LOCK) {
1360 1361
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
1362
		nor->flash_is_locked = stm_is_locked;
1363 1364
	}

1365
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1366 1367
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
1368
		mtd->_is_locked = spi_nor_is_locked;
1369 1370 1371 1372 1373 1374 1375 1376
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1377 1378
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1379 1380
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
1381

1382
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1383 1384
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1385
		nor->erase_opcode = SPINOR_OP_BE_4K;
1386 1387
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1388
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1389
		mtd->erasesize = 4096;
1390 1391 1392
	} else
#endif
	{
1393
		nor->erase_opcode = SPINOR_OP_SE;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1421
		ret = set_quad_mode(nor, info);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1434
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1435 1436
		break;
	case SPI_NOR_DUAL:
1437
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1438 1439
		break;
	case SPI_NOR_FAST:
1440
		nor->read_opcode = SPINOR_OP_READ_FAST;
1441 1442
		break;
	case SPI_NOR_NORMAL:
1443
		nor->read_opcode = SPINOR_OP_READ;
1444 1445 1446 1447 1448 1449
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1450
	nor->program_opcode = SPINOR_OP_PP;
1451 1452 1453 1454 1455 1456

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1457
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
1458 1459 1460
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1461
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1462 1463
				break;
			case SPI_NOR_DUAL:
1464
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1465 1466
				break;
			case SPI_NOR_FAST:
1467
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1468 1469
				break;
			case SPI_NOR_NORMAL:
1470
				nor->read_opcode = SPINOR_OP_READ4;
1471 1472
				break;
			}
1473
			nor->program_opcode = SPINOR_OP_PP_4B;
1474
			/* No small sector erase for 4-byte command set */
1475
			nor->erase_opcode = SPINOR_OP_SE_4B;
1476 1477
			mtd->erasesize = info->sector_size;
		} else
1478
			set_4byte(nor, info, 1);
1479 1480 1481 1482
	} else {
		nor->addr_width = 3;
	}

1483 1484 1485 1486 1487 1488
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

1489 1490
	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

1491
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1512
EXPORT_SYMBOL_GPL(spi_nor_scan);
1513

1514
static const struct flash_info *spi_nor_match_id(const char *name)
1515
{
1516
	const struct flash_info *id = spi_nor_ids;
1517

1518
	while (id->name) {
1519 1520 1521 1522 1523 1524 1525
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1526 1527 1528 1529
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");