spi-nor.c 34.2 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>

#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ) /* M25P16 specs 40s max chip erase */

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#define SPI_NOR_MAX_ID_LEN	6

struct flash_info {
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
#define	SST_WRITE		0x04	/* use SST byte programming */
#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
#define	USE_FSR			0x80	/* use flag status register */
};

#define JEDEC_MFR(info)	((info)->id[0])
61

62 63
static const struct spi_device_id *spi_nor_match_id(const char *name);

64 65 66 67 68 69 70 71 72 73
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

74
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
75 76 77 78 79 80 81 82
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

102 103 104 105 106 107 108 109 110 111
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

112
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
132
		return 8;
133 134 135 136 137 138 139 140 141 142 143 144 145
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
146
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
147 148 149 150 151 152 153 154
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
155
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
156 157 158 159 160 161 162
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
163
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
164 165 166 167 168 169 170 171
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
172 173
static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
			    int enable)
174 175 176 177 178
{
	int status;
	bool need_wren = false;
	u8 cmd;

179
	switch (JEDEC_MFR(info)) {
180 181 182 183 184 185 186 187
	case CFI_MFR_ST: /* Micron, actually */
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
	case 0xEF /* winbond */:
		if (need_wren)
			write_enable(nor);

188
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
189 190 191 192 193 194 195 196
		status = nor->write_reg(nor, cmd, NULL, 0, 0);
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
197
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
198 199
	}
}
200
static inline int spi_nor_sr_ready(struct spi_nor *nor)
201
{
202 203 204 205 206 207
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
208

209 210 211 212 213 214 215 216
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
217

218 219 220 221 222 223 224 225 226 227
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
	sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
228 229
}

230 231 232 233
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
234
static int spi_nor_wait_till_ready(struct spi_nor *nor)
235 236
{
	unsigned long deadline;
237
	int timeout = 0, ret;
238 239 240

	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

241 242 243
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
244

245 246 247 248 249
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
250 251 252 253 254

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
255 256 257 258

	return -ETIMEDOUT;
}

259 260 261 262 263 264 265 266 267
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));

268
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
322 323
		write_enable(nor);

324 325 326 327 328
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

329 330 331 332
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto erase_err;

333
	/* REVISIT in some cases we could speed up erasing large regions
334
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
335 336 337 338 339 340
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
341 342
			write_enable(nor);

343 344 345 346 347 348 349
			if (nor->erase(nor, addr)) {
				ret = -EIO;
				goto erase_err;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
350 351 352 353

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
354 355 356
		}
	}

357 358
	write_disable(nor);

359 360 361 362 363 364 365 366 367 368 369 370 371
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return ret;

erase_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
	instr->state = MTD_ERASE_FAILED;
	return ret;
}

372
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
373
{
374
	struct mtd_info *mtd = nor->mtd;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	status_old = read_sr(nor);

	if (offset < mtd->size - (mtd->size / 2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset < mtd->size - (mtd->size / 32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 64))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
	}

	return ret;
}

406
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
407
{
408
	struct mtd_info *mtd = nor->mtd;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	status_old = read_sr(nor);

	if (offset+len > mtd->size - (mtd->size / 64))
		status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
	else if (offset+len > mtd->size - (mtd->size / 32))
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else if (offset+len > mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 4))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset+len > mtd->size - (mtd->size / 2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
	}

437 438 439 440 441 442 443 444 445 446 447 448 449 450
	return ret;
}

static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

451 452 453 454
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

470
/* Used when the "_ext_id" is two bytes at most */
471 472
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
473 474 475 476 477 478 479 480
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
481 482 483 484 485 486
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
		.flags = (_flags),					\
	})

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
		.flags = (_flags),					\
	})

504 505 506 507 508 509 510 511 512 513 514 515 516
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = (_flags),					\
	})

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
517
static const struct spi_device_id spi_nor_ids[] = {
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
539
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
540
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
541
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, 0) },
542 543 544 545 546 547 548 549

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

550 551 552
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

553 554 555
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
556
	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
557 558 559 560 561 562

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

563 564 565
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

566
	/* Macronix */
567
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
568 569 570 571 572 573 574
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
575
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
576 577 578 579 580 581 582 583
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
584 585 586 587 588 589 590 591
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SPI_NOR_QUAD_READ) },
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
592 593 594 595 596 597 598 599 600

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
601
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
602 603 604 605 606 607 608
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
609
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
610 611 612 613 614 615 616 617 618 619
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
620
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, 0) },
621 622 623 624 625 626 627 628 629 630 631

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
632
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
668
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
669 670

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
671
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
672 673 674 675 676 677 678 679 680 681
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
682
	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};

static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
{
	int			tmp;
700
	u8			id[SPI_NOR_MAX_ID_LEN];
701 702
	struct flash_info	*info;

703
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
704 705 706 707 708 709 710
	if (tmp < 0) {
		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
		info = (void *)spi_nor_ids[tmp].driver_data;
711 712
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
713 714 715
				return &spi_nor_ids[tmp];
		}
	}
716 717
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
		id[0], id[1], id[2]);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	ret = nor->read(nor, from, len, retlen, buf);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
759
		nor->program_opcode = SPINOR_OP_BP;
760 761 762

		/* write one byte. */
		nor->write(nor, to, 1, retlen, buf);
763
		ret = spi_nor_wait_till_ready(nor);
764 765 766 767 768 769 770
		if (ret)
			goto time_out;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
771
		nor->program_opcode = SPINOR_OP_AAI_WP;
772 773 774

		/* write two bytes. */
		nor->write(nor, to, 2, retlen, buf + actual);
775
		ret = spi_nor_wait_till_ready(nor);
776 777 778 779 780 781 782 783
		if (ret)
			goto time_out;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
784
	ret = spi_nor_wait_till_ready(nor);
785 786 787 788 789 790 791
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

792
		nor->program_opcode = SPINOR_OP_BP;
793 794
		nor->write(nor, to, 1, retlen, buf + actual);

795
		ret = spi_nor_wait_till_ready(nor);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		if (ret)
			goto time_out;
		write_disable(nor);
	}
time_out:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 page_offset, page_size, i;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	page_offset = to & (nor->page_size - 1);

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= nor->page_size) {
		nor->write(nor, to, len, retlen, buf);
	} else {
		/* the size of data remaining on the first page */
		page_size = nor->page_size - page_offset;
		nor->write(nor, to, page_size, retlen, buf);

		/* write everything in nor->page_size chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > nor->page_size)
				page_size = nor->page_size;

841
			ret = spi_nor_wait_till_ready(nor);
842 843 844
			if (ret)
				goto write_err;

845 846 847 848 849 850
			write_enable(nor);

			nor->write(nor, to + i, page_size, retlen, buf + i);
		}
	}

851
	ret = spi_nor_wait_till_ready(nor);
852 853
write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
854
	return ret;
855 856 857 858 859 860 861 862 863 864
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	write_enable(nor);

	nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
865
	nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
866

867
	if (spi_nor_wait_till_ready(nor))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

890
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static int micron_quad_enable(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}

	write_enable(nor);

	/* set EVCR, enable quad I/O */
	nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
	ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
	if (ret < 0) {
		dev_err(nor->dev, "error while writing EVCR register\n");
		return ret;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	/* read EVCR and check it */
	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}
	if (val & EVCR_QUAD_EN_MICRON) {
		dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
		return -EINVAL;
	}

	return 0;
}

956
static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
957 958 959
{
	int status;

960
	switch (JEDEC_MFR(info)) {
961 962 963 964 965 966 967
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
968 969 970 971 972 973 974
	case CFI_MFR_ST:
		status = micron_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Micron quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
		!nor->read_reg || !nor->write_reg || !nor->erase) {
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

996
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
997
{
998
	const struct spi_device_id	*id = NULL;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	struct flash_info		*info;
	struct device *dev = nor->dev;
	struct mtd_info *mtd = nor->mtd;
	struct device_node *np = dev->of_node;
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1010 1011 1012 1013 1014 1015
	/* Try to auto-detect if chip name wasn't specified */
	if (!name)
		id = spi_nor_read_id(nor);
	else
		id = spi_nor_match_id(name);
	if (IS_ERR_OR_NULL(id))
1016 1017
		return -ENOENT;

1018 1019
	info = (void *)id->driver_data;

1020 1021 1022 1023 1024
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1025 1026
		const struct spi_device_id *jid;

1027
		jid = spi_nor_read_id(nor);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}

	mutex_init(&nor->lock);

	/*
	 * Atmel, SST and Intel/Numonyx serial nor tend to power
	 * up with the software protection bits set
	 */

1052 1053 1054
	if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info) == CFI_MFR_SST) {
1055 1056 1057 1058
		write_enable(nor);
		write_sr(nor, 0);
	}

1059
	if (!mtd->name)
1060 1061 1062 1063 1064 1065 1066 1067 1068
		mtd->name = dev_name(dev);
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

	/* nor protection support for STmicro chips */
1069
	if (JEDEC_MFR(info) == CFI_MFR_ST) {
1070 1071 1072 1073 1074
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
	}

	if (nor->flash_lock && nor->flash_unlock) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1085 1086
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1087

1088
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1089 1090
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1091
		nor->erase_opcode = SPINOR_OP_BE_4K;
1092 1093
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1094
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1095
		mtd->erasesize = 4096;
1096 1097 1098
	} else
#endif
	{
1099
		nor->erase_opcode = SPINOR_OP_SE;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1127
		ret = set_quad_mode(nor, info);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1140
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1141 1142
		break;
	case SPI_NOR_DUAL:
1143
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1144 1145
		break;
	case SPI_NOR_FAST:
1146
		nor->read_opcode = SPINOR_OP_READ_FAST;
1147 1148
		break;
	case SPI_NOR_NORMAL:
1149
		nor->read_opcode = SPINOR_OP_READ;
1150 1151 1152 1153 1154 1155
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1156
	nor->program_opcode = SPINOR_OP_PP;
1157 1158 1159 1160 1161 1162

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1163
		if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1164 1165 1166
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1167
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1168 1169
				break;
			case SPI_NOR_DUAL:
1170
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1171 1172
				break;
			case SPI_NOR_FAST:
1173
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1174 1175
				break;
			case SPI_NOR_NORMAL:
1176
				nor->read_opcode = SPINOR_OP_READ4;
1177 1178
				break;
			}
1179
			nor->program_opcode = SPINOR_OP_PP_4B;
1180
			/* No small sector erase for 4-byte command set */
1181
			nor->erase_opcode = SPINOR_OP_SE_4B;
1182 1183
			mtd->erasesize = info->sector_size;
		} else
1184
			set_4byte(nor, info, 1);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	} else {
		nor->addr_width = 3;
	}

	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

	dev_info(dev, "%s (%lld Kbytes)\n", id->name,
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1212
EXPORT_SYMBOL_GPL(spi_nor_scan);
1213

1214
static const struct spi_device_id *spi_nor_match_id(const char *name)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
{
	const struct spi_device_id *id = spi_nor_ids;

	while (id->name[0]) {
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1226 1227 1228 1229
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");