spi-nor.c 39.5 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42 43

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
#define	SST_WRITE		0x04	/* use SST byte programming */
#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
#define	USE_FSR			0x80	/* use flag status register */
};

#define JEDEC_MFR(info)	((info)->id[0])
75

76
static const struct flash_info *spi_nor_match_id(const char *name);
77

78 79 80 81 82 83 84 85 86 87
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

88
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
89 90 91 92 93 94 95 96
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

116 117 118 119 120 121 122 123 124 125
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

126
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
146
		return 8;
147 148 149 150 151 152 153 154 155 156 157 158 159
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
160
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
161 162 163 164 165 166 167 168
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
169
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
170 171 172 173 174 175 176
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
177
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
178 179 180 181 182 183 184 185
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
186
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
187
			    int enable)
188 189 190 191 192
{
	int status;
	bool need_wren = false;
	u8 cmd;

193
	switch (JEDEC_MFR(info)) {
194
	case SNOR_MFR_MICRON:
195 196
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
197 198
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
199 200 201
		if (need_wren)
			write_enable(nor);

202
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
203
		status = nor->write_reg(nor, cmd, NULL, 0);
204 205 206 207 208 209 210
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
211
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
212 213
	}
}
214
static inline int spi_nor_sr_ready(struct spi_nor *nor)
215
{
216 217 218 219 220 221
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
222

223 224 225 226 227 228 229 230
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
231

232 233 234 235 236 237 238 239 240 241
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
	sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
242 243
}

244 245 246 247
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
248 249
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
250 251
{
	unsigned long deadline;
252
	int timeout = 0, ret;
253

254
	deadline = jiffies + timeout_jiffies;
255

256 257 258
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
259

260 261 262 263 264
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
265 266 267 268 269

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
270 271 272 273

	return -ETIMEDOUT;
}

274 275 276 277 278 279
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

280 281 282 283 284 285 286
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
287
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
288

289
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
366 367
		unsigned long timeout;

368 369
		write_enable(nor);

370 371 372 373 374
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

375 376 377 378 379 380 381 382 383 384
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
385 386 387
		if (ret)
			goto erase_err;

388
	/* REVISIT in some cases we could speed up erasing large regions
389
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
390 391 392 393 394 395
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
396 397
			write_enable(nor);

398 399
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
400 401 402 403
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
404 405 406 407

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
408 409 410
		}
	}

411 412
	write_disable(nor);

413
erase_err:
414 415
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

416
	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
417 418 419 420 421
	mtd_erase_callback(instr);

	return ret;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
		*ofs = mtd->size - *len;
	}
}

/*
 * Return 1 if the entire region is locked, 0 otherwise
 */
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	loff_t lock_offs;
	uint64_t lock_len;

	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

	return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
 * Supports only the block protection bits BP{0,1,2} in the status register
 * (SR). Does not support these features found in newer SR bitfields:
 *   - TB: top/bottom protect - only handle TB=0 (top protect)
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 *
 * Returns negative on errors, 0 on success.
 */
478
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
479
{
480
	struct mtd_info *mtd = &nor->mtd;
481 482 483
	u8 status_old, status_new;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
484 485 486

	status_old = read_sr(nor);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/* SPI NOR always locks to the end */
	if (ofs + len != mtd->size) {
		/* Does combined region extend to end? */
		if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len,
				      status_old))
			return -EINVAL;
		len = mtd->size - ofs;
	}

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
	pow = ilog2(mtd->size) - ilog2(len);
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

	status_new = (status_old & ~mask) | val;
514 515

	/* Only modify protection if it will not unlock other areas */
516 517
	if ((status_new & mask) <= (status_old & mask))
		return -EINVAL;
518

519 520
	write_enable(nor);
	return write_sr(nor, status_new);
521 522
}

523 524 525 526 527
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
528
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
529
{
530
	struct mtd_info *mtd = &nor->mtd;
531
	uint8_t status_old, status_new;
532 533
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
534 535 536

	status_old = read_sr(nor);

537 538 539 540
	/* Cannot unlock; would unlock larger region than requested */
	if (stm_is_locked_sr(nor, status_old, ofs - mtd->erasesize,
			     mtd->erasesize))
		return -EINVAL;
541

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
	pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len));
	if (ofs + len == mtd->size) {
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
559 560
	}

561 562 563 564 565 566 567 568
	status_new = (status_old & ~mask) | val;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & mask) >= (status_old & mask))
		return -EINVAL;

	write_enable(nor);
	return write_sr(nor, status_new);
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

589 590 591 592 593 594 595 596 597 598 599
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

600 601 602 603
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

634
/* Used when the "_ext_id" is two bytes at most */
635
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
636 637 638 639 640 641 642 643
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
644 645 646
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
647
		.flags = (_flags),
648

649 650 651 652 653 654 655 656 657 658 659 660 661
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
662
		.flags = (_flags),
663

664 665 666 667 668
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
669
		.flags = (_flags),
670 671 672 673

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
674 675 676 677 678 679 680
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
681
 */
682
static const struct flash_info spi_nor_ids[] = {
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
704
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
705
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
706
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
707 708 709 710 711 712 713 714

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

715 716 717
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

718 719 720
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
721
	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
722 723 724 725 726 727

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

728 729 730
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

731
	/* Macronix */
732
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
733 734 735 736
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
737
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
738
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
739
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
740
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
741 742 743 744 745 746 747 748
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
749
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
750
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
751
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
752
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
753 754 755 756 757 758
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
759 760 761 762 763 764 765 766 767

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
768
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
769
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
770 771 772 773 774 775
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
776
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
777 778
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
779 780 781 782 783
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
784
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
785 786
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
787
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
788
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
789
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
790
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
791 792 793 794 795 796 797 798 799 800

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
801
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
802
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
803
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
804
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
840
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
841 842

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
843
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
844 845 846 847 848 849 850
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
851
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
852 853
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
854
	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
855
	{ "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
856 857 858 859 860 861 862 863 864 865 866 867 868 869
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};

870
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
871 872
{
	int			tmp;
873
	u8			id[SPI_NOR_MAX_ID_LEN];
874
	const struct flash_info	*info;
875

876
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
877
	if (tmp < 0) {
878
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
879 880 881 882
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
883
		info = &spi_nor_ids[tmp];
884 885
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
886 887 888
				return &spi_nor_ids[tmp];
		}
	}
889
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
890
		id[0], id[1], id[2]);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	ret = nor->read(nor, from, len, retlen, buf);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
932
		nor->program_opcode = SPINOR_OP_BP;
933 934 935

		/* write one byte. */
		nor->write(nor, to, 1, retlen, buf);
936
		ret = spi_nor_wait_till_ready(nor);
937 938 939 940 941 942 943
		if (ret)
			goto time_out;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
944
		nor->program_opcode = SPINOR_OP_AAI_WP;
945 946 947

		/* write two bytes. */
		nor->write(nor, to, 2, retlen, buf + actual);
948
		ret = spi_nor_wait_till_ready(nor);
949 950 951 952 953 954 955 956
		if (ret)
			goto time_out;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
957
	ret = spi_nor_wait_till_ready(nor);
958 959 960 961 962 963 964
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

965
		nor->program_opcode = SPINOR_OP_BP;
966 967
		nor->write(nor, to, 1, retlen, buf + actual);

968
		ret = spi_nor_wait_till_ready(nor);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		if (ret)
			goto time_out;
		write_disable(nor);
	}
time_out:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 page_offset, page_size, i;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	page_offset = to & (nor->page_size - 1);

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= nor->page_size) {
		nor->write(nor, to, len, retlen, buf);
	} else {
		/* the size of data remaining on the first page */
		page_size = nor->page_size - page_offset;
		nor->write(nor, to, page_size, retlen, buf);

		/* write everything in nor->page_size chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > nor->page_size)
				page_size = nor->page_size;

1014
			ret = spi_nor_wait_till_ready(nor);
1015 1016 1017
			if (ret)
				goto write_err;

1018 1019 1020 1021 1022 1023
			write_enable(nor);

			nor->write(nor, to + i, page_size, retlen, buf + i);
		}
	}

1024
	ret = spi_nor_wait_till_ready(nor);
1025 1026
write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1027
	return ret;
1028 1029 1030 1031 1032 1033 1034 1035 1036
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	write_enable(nor);

1037
	write_sr(nor, val | SR_QUAD_EN_MX);
1038

1039
	if (spi_nor_wait_till_ready(nor))
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

1062
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static int micron_quad_enable(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}

	write_enable(nor);

	/* set EVCR, enable quad I/O */
	nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
1104
	ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (ret < 0) {
		dev_err(nor->dev, "error while writing EVCR register\n");
		return ret;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	/* read EVCR and check it */
	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading EVCR\n", ret);
		return ret;
	}
	if (val & EVCR_QUAD_EN_MICRON) {
		dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
		return -EINVAL;
	}

	return 0;
}

1128
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
1129 1130 1131
{
	int status;

1132
	switch (JEDEC_MFR(info)) {
1133
	case SNOR_MFR_MACRONIX:
1134 1135 1136 1137 1138 1139
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1140
	case SNOR_MFR_MICRON:
1141 1142 1143 1144 1145 1146
		status = micron_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Micron quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1160
		!nor->read_reg || !nor->write_reg) {
1161 1162 1163 1164 1165 1166 1167
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1168
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1169
{
1170
	const struct flash_info *info = NULL;
1171
	struct device *dev = nor->dev;
1172
	struct mtd_info *mtd = &nor->mtd;
1173
	struct device_node *np = spi_nor_get_flash_node(nor);
1174 1175 1176 1177 1178 1179 1180
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1181
	if (name)
1182
		info = spi_nor_match_id(name);
1183
	/* Try to auto-detect if chip name wasn't specified or not found */
1184 1185 1186
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1187 1188
		return -ENOENT;

1189 1190 1191 1192 1193
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1194
		const struct flash_info *jinfo;
1195

1196 1197 1198 1199
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1200 1201 1202 1203 1204 1205 1206 1207
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1208 1209
				 jinfo->name, info->name);
			info = jinfo;
1210 1211 1212 1213 1214 1215
		}
	}

	mutex_init(&nor->lock);

	/*
1216 1217
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
1218 1219
	 */

1220 1221
	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1222 1223
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
	    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
1224 1225 1226 1227
		write_enable(nor);
		write_sr(nor, 0);
	}

1228
	if (!mtd->name)
1229
		mtd->name = dev_name(dev);
1230
	mtd->priv = nor;
1231 1232 1233 1234 1235 1236 1237
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

1238 1239 1240
	/* NOR protection support for STmicro/Micron chips and similar */
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
	    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
1241 1242
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
1243
		nor->flash_is_locked = stm_is_locked;
1244 1245
	}

1246
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1247 1248
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
1249
		mtd->_is_locked = spi_nor_is_locked;
1250 1251 1252 1253 1254 1255 1256 1257
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1258 1259
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1260

1261
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1262 1263
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1264
		nor->erase_opcode = SPINOR_OP_BE_4K;
1265 1266
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1267
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1268
		mtd->erasesize = 4096;
1269 1270 1271
	} else
#endif
	{
1272
		nor->erase_opcode = SPINOR_OP_SE;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1300
		ret = set_quad_mode(nor, info);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1313
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1314 1315
		break;
	case SPI_NOR_DUAL:
1316
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1317 1318
		break;
	case SPI_NOR_FAST:
1319
		nor->read_opcode = SPINOR_OP_READ_FAST;
1320 1321
		break;
	case SPI_NOR_NORMAL:
1322
		nor->read_opcode = SPINOR_OP_READ;
1323 1324 1325 1326 1327 1328
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1329
	nor->program_opcode = SPINOR_OP_PP;
1330 1331 1332 1333 1334 1335

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1336
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
1337 1338 1339
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1340
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1341 1342
				break;
			case SPI_NOR_DUAL:
1343
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1344 1345
				break;
			case SPI_NOR_FAST:
1346
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1347 1348
				break;
			case SPI_NOR_NORMAL:
1349
				nor->read_opcode = SPINOR_OP_READ4;
1350 1351
				break;
			}
1352
			nor->program_opcode = SPINOR_OP_PP_4B;
1353
			/* No small sector erase for 4-byte command set */
1354
			nor->erase_opcode = SPINOR_OP_SE_4B;
1355 1356
			mtd->erasesize = info->sector_size;
		} else
1357
			set_4byte(nor, info, 1);
1358 1359 1360 1361
	} else {
		nor->addr_width = 3;
	}

1362 1363 1364 1365 1366 1367
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

1368 1369
	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

1370
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1391
EXPORT_SYMBOL_GPL(spi_nor_scan);
1392

1393
static const struct flash_info *spi_nor_match_id(const char *name)
1394
{
1395
	const struct flash_info *id = spi_nor_ids;
1396

1397
	while (id->name) {
1398 1399 1400 1401 1402 1403 1404
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1405 1406 1407 1408
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");