spi-nor.c 58.0 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42 43

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
64 65 66 67 68 69 70 71
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
72
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
73 74 75 76 77
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
78 79 80 81 82 83
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
84 85 86 87
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
88
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
89 90 91
};

#define JEDEC_MFR(info)	((info)->id[0])
92

93
static const struct flash_info *spi_nor_match_id(const char *name);
94

95 96 97 98 99 100 101 102 103 104
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

105
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
106 107 108 109 110 111 112 113
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

133 134 135
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
136
 * Returns negative if error occurred.
137 138 139 140 141 142
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

143
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
159
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
160 161 162 163 164 165 166 167
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
168
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
169 170 171
}

/*
172
 * Send write disable instruction to the chip.
173 174 175
 */
static inline int write_disable(struct spi_nor *nor)
{
176
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
177 178 179 180 181 182 183
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

static inline u8 spi_nor_convert_3to4_read(u8 opcode)
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
206 207 208 209

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static inline u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
				      const struct flash_info *info)
{
	/* Do some manufacturer fixups first */
	switch (JEDEC_MFR(info)) {
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
		nor->mtd.erasesize = info->sector_size;
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}

260
/* Enable/disable 4-byte addressing mode. */
261
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
262
			    int enable)
263 264 265 266 267
{
	int status;
	bool need_wren = false;
	u8 cmd;

268
	switch (JEDEC_MFR(info)) {
269
	case SNOR_MFR_MICRON:
270 271
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
272 273
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
274 275 276
		if (need_wren)
			write_enable(nor);

277
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
278
		status = nor->write_reg(nor, cmd, NULL, 0);
279 280 281 282 283 284 285
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
286
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
287 288
	}
}
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	return !!(val & XSR_RDY);
}

304
static inline int spi_nor_sr_ready(struct spi_nor *nor)
305
{
306 307 308 309 310 311
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
312

313 314 315 316 317 318 319 320
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
321

322 323 324
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
325 326 327 328 329

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
330 331 332 333 334 335
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
336 337
}

338 339 340 341
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
342 343
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
344 345
{
	unsigned long deadline;
346
	int timeout = 0, ret;
347

348
	deadline = jiffies + timeout_jiffies;
349

350 351 352
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
353

354 355 356 357 358
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
359 360 361 362 363

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
364 365 366 367

	return -ETIMEDOUT;
}

368 369 370 371 372 373
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

374 375 376 377 378 379 380
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
381
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
382

383
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

410 411 412 413 414 415 416 417 418 419 420
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
421 422
	unsigned int offset;
	unsigned int page;
423

424 425 426
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
427

428
	return page | offset;
429 430
}

431 432 433 434 435 436 437 438
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

439 440 441
	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
483
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
484 485
		unsigned long timeout;

486 487
		write_enable(nor);

488 489 490 491 492
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

493 494 495 496 497 498 499 500 501 502
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
503 504 505
		if (ret)
			goto erase_err;

506
	/* REVISIT in some cases we could speed up erasing large regions
507
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
508 509 510 511 512 513
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
514 515
			write_enable(nor);

516 517
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
518 519 520 521
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
522 523 524 525

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
526 527 528
		}
	}

529 530
	write_disable(nor);

531
erase_err:
532 533
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

534
	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
535 536 537 538 539
	mtd_erase_callback(instr);

	return ret;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
555 556 557 558
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
559 560 561 562
	}
}

/*
563 564
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
565
 */
566 567
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
568 569 570 571
{
	loff_t lock_offs;
	uint64_t lock_len;

572 573 574
	if (!len)
		return 1;

575 576
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
595 596 597 598
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
599
 * Supports the block protection bits BP{0,1,2} in the status register
600 601 602 603
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
604 605 606
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
607 608 609 610 611 612 613 614 615 616 617 618
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
619 620 621 622 623 624 625
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
626 627 628
 *
 * Returns negative on errors, 0 on success.
 */
629
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
630
{
631
	struct mtd_info *mtd = &nor->mtd;
632
	int status_old, status_new;
633 634
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
635
	loff_t lock_len;
636 637
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
638
	int ret;
639 640

	status_old = read_sr(nor);
641 642
	if (status_old < 0)
		return status_old;
643

644 645 646 647
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

648 649 650 651
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

652 653 654
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
655 656 657
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
658 659
		return -EINVAL;

660 661 662
	/* Prefer top, if both are valid */
	use_top = can_be_top;

663
	/* lock_len: length of region that should end up locked */
664 665 666 667
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
668 669 670 671 672 673 674 675 676 677

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
678
	pow = ilog2(mtd->size) - ilog2(lock_len);
679 680 681 682 683 684 685
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

686
	status_new = (status_old & ~mask & ~SR_TB) | val;
687

688 689 690
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

691 692 693
	if (!use_top)
		status_new |= SR_TB;

694 695 696 697
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

698
	/* Only modify protection if it will not unlock other areas */
699
	if ((status_new & mask) < (status_old & mask))
700
		return -EINVAL;
701

702
	write_enable(nor);
703 704 705 706
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
707 708
}

709 710 711 712 713
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
714
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
715
{
716
	struct mtd_info *mtd = &nor->mtd;
717
	int status_old, status_new;
718 719
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
720
	loff_t lock_len;
721 722
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
723
	int ret;
724 725

	status_old = read_sr(nor);
726 727
	if (status_old < 0)
		return status_old;
728

729 730 731 732 733 734
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
735 736 737 738 739 740 741 742
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
743
		return -EINVAL;
744

745 746 747
	/* Prefer top, if both are valid */
	use_top = can_be_top;

748
	/* lock_len: length of region that should remain locked */
749 750 751 752
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
753

754 755 756 757 758 759 760 761 762
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
763 764
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
765 766 767 768 769 770
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
771 772
	}

773
	status_new = (status_old & ~mask & ~SR_TB) | val;
774

775
	/* Don't protect status register if we're fully unlocked */
776
	if (lock_len == 0)
777 778
		status_new &= ~SR_SRWD;

779 780 781
	if (!use_top)
		status_new |= SR_TB;

782 783 784 785
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

786
	/* Only modify protection if it will not lock other areas */
787
	if ((status_new & mask) > (status_old & mask))
788 789 790
		return -EINVAL;

	write_enable(nor);
791 792 793 794
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
795 796
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

815 816 817 818 819 820 821 822 823 824 825
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

826 827 828 829
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

860
/* Used when the "_ext_id" is two bytes at most */
861
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
862 863 864 865 866 867 868 869
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
870 871 872
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
873
		.flags = (_flags),
874

875 876 877 878 879 880 881 882 883 884 885 886 887
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
888
		.flags = (_flags),
889

890 891 892 893 894
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
895
		.flags = (_flags),
896

897 898 899 900 901 902 903 904 905 906 907 908 909
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

910 911 912
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
913 914 915 916 917 918 919
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
920
 */
921
static const struct flash_info spi_nor_ids[] = {
922 923 924 925 926
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
927
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
944
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
945
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
946
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
947 948

	/* ESMT */
949
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
950 951
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
952 953 954 955

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
956
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
957

958 959 960
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

961
	/* GigaDevice */
962 963 964 965 966
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
987 988 989 990 991 992

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

993 994 995
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

996
	/* Macronix */
997
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
998 999 1000 1001
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
1002
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
1003
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
1004
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1005 1006 1007
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
1008
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1009 1010 1011
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
1012
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
1013 1014 1015 1016 1017
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
1018
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
1019
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1020
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1021
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1022
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1023 1024
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1025
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1026
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1027 1028
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1029 1030
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1031 1032 1033 1034 1035 1036 1037 1038 1039

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
1040
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1041
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1042 1043 1044 1045 1046 1047
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
1048
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1049 1050
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1051 1052 1053 1054 1055
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
1056
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1057 1058
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1059
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
1060
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1061
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
1062
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
1063
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
1064
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
1075
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
1076
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
1077
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1078
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1114
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
1115 1116

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1117
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
1118 1119 1120 1121 1122 1123
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1124 1125 1126
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
1127
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1128 1129 1130 1131 1132
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1133 1134
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1145 1146 1147 1148
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1149 1150
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
1151 1152 1153 1154 1155 1156 1157

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1158 1159 1160 1161 1162 1163 1164

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1165 1166 1167
	{ },
};

1168
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1169 1170
{
	int			tmp;
1171
	u8			id[SPI_NOR_MAX_ID_LEN];
1172
	const struct flash_info	*info;
1173

1174
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1175
	if (tmp < 0) {
1176
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1177 1178 1179 1180
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
1181
		info = &spi_nor_ids[tmp];
1182 1183
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
1184 1185 1186
				return &spi_nor_ids[tmp];
		}
	}
1187
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1188
		id[0], id[1], id[2]);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
1204
	while (len) {
1205 1206 1207 1208 1209 1210
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		ret = nor->read(nor, addr, len, buf);
M
Michal Suchanek 已提交
1211 1212 1213 1214 1215 1216 1217
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
1218

M
Michal Suchanek 已提交
1219 1220 1221 1222 1223 1224 1225
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
1226

M
Michal Suchanek 已提交
1227 1228 1229
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
1252
		nor->program_opcode = SPINOR_OP_BP;
1253 1254

		/* write one byte. */
1255
		ret = nor->write(nor, to, 1, buf);
1256 1257 1258 1259
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1260
		ret = spi_nor_wait_till_ready(nor);
1261
		if (ret)
1262
			goto sst_write_err;
1263 1264 1265 1266 1267
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
1268
		nor->program_opcode = SPINOR_OP_AAI_WP;
1269 1270

		/* write two bytes. */
1271
		ret = nor->write(nor, to, 2, buf + actual);
1272 1273 1274 1275
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
1276
		ret = spi_nor_wait_till_ready(nor);
1277
		if (ret)
1278
			goto sst_write_err;
1279 1280 1281 1282 1283 1284
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
1285
	ret = spi_nor_wait_till_ready(nor);
1286
	if (ret)
1287
		goto sst_write_err;
1288 1289 1290 1291 1292

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

1293
		nor->program_opcode = SPINOR_OP_BP;
1294
		ret = nor->write(nor, to, 1, buf + actual);
1295 1296 1297 1298
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1299
		ret = spi_nor_wait_till_ready(nor);
1300
		if (ret)
1301
			goto sst_write_err;
1302
		write_disable(nor);
1303
		actual += 1;
1304
	}
1305
sst_write_err:
1306
	*retlen += actual;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1320 1321
	size_t page_offset, page_remain, i;
	ssize_t ret;
1322 1323 1324 1325 1326 1327 1328

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

1329 1330
	for (i = 0; i < len; ) {
		ssize_t written;
1331
		loff_t addr = to + i;
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
1345

1346 1347
			page_offset = do_div(aux, nor->page_size);
		}
1348
		/* the size of data remaining on the first page */
1349 1350 1351
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

1352 1353 1354
		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

1355
		write_enable(nor);
1356
		ret = nor->write(nor, addr, page_remain, buf + i);
1357 1358
		if (ret < 0)
			goto write_err;
1359
		written = ret;
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
		if (written != page_remain) {
			dev_err(nor->dev,
				"While writing %zu bytes written %zd bytes\n",
				page_remain, written);
			ret = -EIO;
			goto write_err;
1372 1373 1374 1375 1376
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1377
	return ret;
1378 1379 1380 1381 1382 1383 1384
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
1385 1386
	if (val < 0)
		return val;
1387 1388 1389
	if (val & SR_QUAD_EN_MX)
		return 0;

1390 1391
	write_enable(nor);

1392
	write_sr(nor, val | SR_QUAD_EN_MX);
1393

1394 1395 1396
	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
1411
 * Return negative if error occurred.
1412 1413 1414 1415 1416 1417
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

1418
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

1435 1436 1437 1438 1439 1440 1441
	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1455
		!nor->read_reg || !nor->write_reg) {
1456 1457 1458 1459 1460 1461 1462
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
	if (val & XSR_PAGESIZE) {
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
		nor->mtd.size = 8 * nor->page_size * info->n_sectors;
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
struct spi_nor_read_command {
	u8			num_mode_clocks;
	u8			num_wait_states;
	u8			opcode;
	enum spi_nor_protocol	proto;
};

struct spi_nor_pp_command {
	u8			opcode;
	enum spi_nor_protocol	proto;
};

enum spi_nor_read_command_index {
	SNOR_CMD_READ,
	SNOR_CMD_READ_FAST,
1519
	SNOR_CMD_READ_1_1_1_DTR,
1520 1521 1522 1523 1524

	/* Dual SPI */
	SNOR_CMD_READ_1_1_2,
	SNOR_CMD_READ_1_2_2,
	SNOR_CMD_READ_2_2_2,
1525
	SNOR_CMD_READ_1_2_2_DTR,
1526 1527 1528 1529 1530

	/* Quad SPI */
	SNOR_CMD_READ_1_1_4,
	SNOR_CMD_READ_1_4_4,
	SNOR_CMD_READ_4_4_4,
1531
	SNOR_CMD_READ_1_4_4_DTR,
1532

1533 1534 1535 1536 1537 1538
	/* Octo SPI */
	SNOR_CMD_READ_1_1_8,
	SNOR_CMD_READ_1_8_8,
	SNOR_CMD_READ_8_8_8,
	SNOR_CMD_READ_1_8_8_DTR,

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	SNOR_CMD_READ_MAX
};

enum spi_nor_pp_command_index {
	SNOR_CMD_PP,

	/* Quad SPI */
	SNOR_CMD_PP_1_1_4,
	SNOR_CMD_PP_1_4_4,
	SNOR_CMD_PP_4_4_4,

1550 1551 1552 1553 1554
	/* Octo SPI */
	SNOR_CMD_PP_1_1_8,
	SNOR_CMD_PP_1_8_8,
	SNOR_CMD_PP_8_8_8,

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	SNOR_CMD_PP_MAX
};

struct spi_nor_flash_parameter {
	u64				size;
	u32				page_size;

	struct spi_nor_hwcaps		hwcaps;
	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];

	int (*quad_enable)(struct spi_nor *nor);
};

static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

static int spi_nor_init_params(struct spi_nor *nor,
			       const struct flash_info *info,
			       struct spi_nor_flash_parameter *params)
{
	/* Set legacy flash parameters as default. */
	memset(params, 0, sizeof(*params));

	/* Set SPI NOR sizes. */
	params->size = info->sector_size * info->n_sectors;
	params->page_size = info->page_size;

	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

	if (!(info->flags & SPI_NOR_NO_FR)) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);
	}

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

	/* Select the procedure to set the Quad Enable bit. */
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
				   SNOR_HWCAPS_PP_QUAD)) {
		switch (JEDEC_MFR(info)) {
		case SNOR_MFR_MACRONIX:
			params->quad_enable = macronix_quad_enable;
			break;

		case SNOR_MFR_MICRON:
			break;

		default:
			params->quad_enable = spansion_quad_enable;
			break;
		}
	}

	return 0;
}

static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
1670
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
1671 1672 1673
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
1674
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
1675 1676 1677
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
1678
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
1679 1680 1681 1682
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
1696 1697 1698
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

static int spi_nor_select_read(struct spi_nor *nor,
			       const struct spi_nor_flash_parameter *params,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &params->reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &params->page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

static int spi_nor_select_erase(struct spi_nor *nor,
				const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		nor->erase_opcode = SPINOR_OP_BE_4K;
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
		mtd->erasesize = 4096;
	} else
#endif
	{
		nor->erase_opcode = SPINOR_OP_SE;
		mtd->erasesize = info->sector_size;
	}
	return 0;
}

static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
			 const struct spi_nor_flash_parameter *params,
			 const struct spi_nor_hwcaps *hwcaps)
{
	u32 ignored_mask, shared_mask;
	bool enable_quad_io;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	/* SPI n-n-n protocols are not supported yet. */
	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
			SNOR_HWCAPS_READ_4_4_4 |
1796 1797 1798
			SNOR_HWCAPS_READ_8_8_8 |
			SNOR_HWCAPS_PP_4_4_4 |
			SNOR_HWCAPS_PP_8_8_8);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (shared_mask & ignored_mask) {
		dev_dbg(nor->dev,
			"SPI n-n-n protocols are not supported yet.\n");
		shared_mask &= ~ignored_mask;
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
	err = spi_nor_select_erase(nor, info);
	if (err) {
		dev_err(nor->dev,
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Enable Quad I/O if needed. */
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
	if (enable_quad_io && params->quad_enable) {
		err = params->quad_enable(nor);
		if (err) {
			dev_err(nor->dev, "quad mode not supported\n");
			return err;
		}
	}

	return 0;
}

int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
1845
{
1846
	struct spi_nor_flash_parameter params;
1847
	const struct flash_info *info = NULL;
1848
	struct device *dev = nor->dev;
1849
	struct mtd_info *mtd = &nor->mtd;
1850
	struct device_node *np = spi_nor_get_flash_node(nor);
1851 1852 1853 1854 1855 1856 1857
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1858 1859 1860 1861 1862
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

1863
	if (name)
1864
		info = spi_nor_match_id(name);
1865
	/* Try to auto-detect if chip name wasn't specified or not found */
1866 1867 1868
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1869 1870
		return -ENOENT;

1871 1872 1873 1874 1875
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1876
		const struct flash_info *jinfo;
1877

1878 1879 1880 1881
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1882 1883 1884 1885 1886 1887 1888 1889
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1890 1891
				 jinfo->name, info->name);
			info = jinfo;
1892 1893 1894 1895 1896
		}
	}

	mutex_init(&nor->lock);

1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

1905 1906 1907 1908 1909
	/* Parse the Serial Flash Discoverable Parameters table. */
	ret = spi_nor_init_params(nor, info, &params);
	if (ret)
		return ret;

1910
	/*
1911 1912
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
1913 1914
	 */

1915 1916
	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1917 1918
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
	    info->flags & SPI_NOR_HAS_LOCK) {
1919 1920
		write_enable(nor);
		write_sr(nor, 0);
1921
		spi_nor_wait_till_ready(nor);
1922 1923
	}

1924
	if (!mtd->name)
1925
		mtd->name = dev_name(dev);
1926
	mtd->priv = nor;
1927 1928 1929
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
1930
	mtd->size = params.size;
1931 1932 1933
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

1934
	/* NOR protection support for STmicro/Micron chips and similar */
1935 1936
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
			info->flags & SPI_NOR_HAS_LOCK) {
1937 1938
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
1939
		nor->flash_is_locked = stm_is_locked;
1940 1941
	}

1942
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1943 1944
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
1945
		mtd->_is_locked = spi_nor_is_locked;
1946 1947 1948 1949 1950 1951 1952 1953
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1954 1955
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1956 1957
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
1958 1959
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
1960

1961 1962 1963 1964
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
1965
	nor->page_size = params.page_size;
1966 1967 1968 1969 1970
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
1971
			params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1972
		else
1973
			params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
1974 1975
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
1976
		params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1977 1978 1979 1980
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
1981
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
	 */
	ret = spi_nor_setup(nor, info, &params, hwcaps);
	if (ret)
		return ret;
1993 1994 1995 1996 1997 1998

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1999 2000 2001 2002
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
		    info->flags & SPI_NOR_4B_OPCODES)
			spi_nor_set_4byte_opcodes(nor, info);
		else
2003
			set_4byte(nor, info, 1);
2004 2005 2006 2007
	} else {
		nor->addr_width = 3;
	}

2008 2009 2010 2011 2012 2013
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

2014 2015 2016 2017 2018 2019
	if (info->flags & SPI_S3AN) {
		ret = s3an_nor_scan(info, nor);
		if (ret)
			return ret;
	}

2020
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
2041
EXPORT_SYMBOL_GPL(spi_nor_scan);
2042

2043
static const struct flash_info *spi_nor_match_id(const char *name)
2044
{
2045
	const struct flash_info *id = spi_nor_ids;
2046

2047
	while (id->name) {
2048 2049 2050 2051 2052 2053 2054
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

2055 2056 2057 2058
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");