spi-nor.c 49.5 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
19
#include <linux/sizes.h>
20 21 22 23 24 25 26

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42 43

struct flash_info {
44 45
	char		*name;

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
64 65 66 67 68 69 70 71
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
72
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
73 74 75 76 77
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
78 79 80 81 82 83
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
84 85 86 87
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
88 89 90
};

#define JEDEC_MFR(info)	((info)->id[0])
91

92
static const struct flash_info *spi_nor_match_id(const char *name);
93

94 95 96 97 98 99 100 101 102 103
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

104
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
105 106 107 108 109 110 111 112
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

132 133 134 135 136 137 138 139 140 141
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

142
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
162
		return 8;
163 164 165 166 167 168 169 170 171 172 173 174 175
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
176
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
177 178 179 180 181 182 183 184
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
185
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
186 187 188 189 190 191 192
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
193
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
194 195 196 197 198 199 200
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

static inline u8 spi_nor_convert_3to4_read(u8 opcode)
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static inline u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
				      const struct flash_info *info)
{
	/* Do some manufacturer fixups first */
	switch (JEDEC_MFR(info)) {
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
		nor->mtd.erasesize = info->sector_size;
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}

273
/* Enable/disable 4-byte addressing mode. */
274
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
275
			    int enable)
276 277 278 279 280
{
	int status;
	bool need_wren = false;
	u8 cmd;

281
	switch (JEDEC_MFR(info)) {
282
	case SNOR_MFR_MICRON:
283 284
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
285 286
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
287 288 289
		if (need_wren)
			write_enable(nor);

290
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
291
		status = nor->write_reg(nor, cmd, NULL, 0);
292 293 294 295 296 297 298
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
299
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
300 301
	}
}
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	return !!(val & XSR_RDY);
}

317
static inline int spi_nor_sr_ready(struct spi_nor *nor)
318
{
319 320 321 322 323 324
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
	else
		return !(sr & SR_WIP);
}
325

326 327 328 329 330 331 332 333
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}
334

335 336 337
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
338 339 340 341 342

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
343 344 345 346 347 348
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
349 350
}

351 352 353 354
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
355 356
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
357 358
{
	unsigned long deadline;
359
	int timeout = 0, ret;
360

361
	deadline = jiffies + timeout_jiffies;
362

363 364 365
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
366

367 368 369 370 371
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
372 373 374 375 376

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
377 378 379 380

	return -ETIMEDOUT;
}

381 382 383 384 385 386
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

387 388 389 390 391 392 393
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
394
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
395

396
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

423 424 425 426 427 428 429 430 431 432 433
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
434 435
	unsigned int offset;
	unsigned int page;
436

437 438 439
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
440

441
	return page | offset;
442 443
}

444 445 446 447 448 449 450 451
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

452 453 454
	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
496
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
497 498
		unsigned long timeout;

499 500
		write_enable(nor);

501 502 503 504 505
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

506 507 508 509 510 511 512 513 514 515
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
516 517 518
		if (ret)
			goto erase_err;

519
	/* REVISIT in some cases we could speed up erasing large regions
520
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
521 522 523 524 525 526
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
527 528
			write_enable(nor);

529 530
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
531 532 533 534
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
535 536 537 538

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
539 540 541
		}
	}

542 543
	write_disable(nor);

544
erase_err:
545 546
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

547
	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
548 549 550 551 552
	mtd_erase_callback(instr);

	return ret;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
568 569 570 571
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
572 573 574 575
	}
}

/*
576 577
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
578
 */
579 580
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
581 582 583 584
{
	loff_t lock_offs;
	uint64_t lock_len;

585 586 587
	if (!len)
		return 1;

588 589
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
608 609 610 611
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
612
 * Supports the block protection bits BP{0,1,2} in the status register
613 614 615 616
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
617 618 619
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
620 621 622 623 624 625 626 627 628 629 630 631
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
632 633 634 635 636 637 638
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
639 640 641
 *
 * Returns negative on errors, 0 on success.
 */
642
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
643
{
644
	struct mtd_info *mtd = &nor->mtd;
645
	int status_old, status_new;
646 647
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
648
	loff_t lock_len;
649 650
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
651
	int ret;
652 653

	status_old = read_sr(nor);
654 655
	if (status_old < 0)
		return status_old;
656

657 658 659 660
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

661 662 663 664
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

665 666 667
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
668 669 670
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
671 672
		return -EINVAL;

673 674 675
	/* Prefer top, if both are valid */
	use_top = can_be_top;

676
	/* lock_len: length of region that should end up locked */
677 678 679 680
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
681 682 683 684 685 686 687 688 689 690

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
691
	pow = ilog2(mtd->size) - ilog2(lock_len);
692 693 694 695 696 697 698
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

699
	status_new = (status_old & ~mask & ~SR_TB) | val;
700

701 702 703
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

704 705 706
	if (!use_top)
		status_new |= SR_TB;

707 708 709 710
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

711
	/* Only modify protection if it will not unlock other areas */
712
	if ((status_new & mask) < (status_old & mask))
713
		return -EINVAL;
714

715
	write_enable(nor);
716 717 718 719
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
720 721
}

722 723 724 725 726
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
727
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
728
{
729
	struct mtd_info *mtd = &nor->mtd;
730
	int status_old, status_new;
731 732
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
733
	loff_t lock_len;
734 735
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
736
	int ret;
737 738

	status_old = read_sr(nor);
739 740
	if (status_old < 0)
		return status_old;
741

742 743 744 745 746 747
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
748 749 750 751 752 753 754 755
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
756
		return -EINVAL;
757

758 759 760
	/* Prefer top, if both are valid */
	use_top = can_be_top;

761
	/* lock_len: length of region that should remain locked */
762 763 764 765
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
766

767 768 769 770 771 772 773 774 775
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
776 777
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
778 779 780 781 782 783
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
784 785
	}

786
	status_new = (status_old & ~mask & ~SR_TB) | val;
787

788
	/* Don't protect status register if we're fully unlocked */
789
	if (lock_len == 0)
790 791
		status_new &= ~SR_SRWD;

792 793 794
	if (!use_top)
		status_new |= SR_TB;

795 796 797 798
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

799
	/* Only modify protection if it will not lock other areas */
800
	if ((status_new & mask) > (status_old & mask))
801 802 803
		return -EINVAL;

	write_enable(nor);
804 805 806 807
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
808 809
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

828 829 830 831 832 833 834 835 836 837 838
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

839 840 841 842
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

873
/* Used when the "_ext_id" is two bytes at most */
874
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
875 876 877 878 879 880 881 882
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
883 884 885
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
886
		.flags = (_flags),
887

888 889 890 891 892 893 894 895 896 897 898 899 900
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
901
		.flags = (_flags),
902

903 904 905 906 907
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
908
		.flags = (_flags),
909

910 911 912 913 914 915 916 917 918 919 920 921 922
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

923 924 925
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
926 927 928 929 930 931 932
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
933
 */
934
static const struct flash_info spi_nor_ids[] = {
935 936 937 938 939
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
940
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
957
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
958
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
959
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
960 961

	/* ESMT */
962
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
963 964 965 966

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
967
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
968

969 970 971
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

972
	/* GigaDevice */
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
993 994 995 996 997 998

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

999 1000 1001
	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

1002
	/* Macronix */
1003
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
1004 1005 1006 1007
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
1008
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
1009
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
1010
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1011
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1012 1013 1014
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
1015
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K) },
1016 1017 1018 1019 1020
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
1021
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
1022
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1023
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1024
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1025
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1026 1027
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1028 1029 1030 1031
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1032
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1033 1034 1035 1036 1037 1038 1039 1040 1041

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
1042
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1043
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1044 1045 1046 1047 1048 1049
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
1050
	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1051 1052
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1053 1054 1055 1056 1057
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
1058
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1059 1060
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1061
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
1062
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1063
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
1064
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
1065
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
1066
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
1077
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
1078
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
1079
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1080
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1116
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
1117 1118

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1119
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
1120 1121 1122 1123 1124 1125 1126
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1127 1128 1129 1130 1131
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1132 1133
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1155 1156 1157 1158 1159 1160 1161

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
1162 1163 1164
	{ },
};

1165
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1166 1167
{
	int			tmp;
1168
	u8			id[SPI_NOR_MAX_ID_LEN];
1169
	const struct flash_info	*info;
1170

1171
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1172
	if (tmp < 0) {
1173
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1174 1175 1176 1177
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
1178
		info = &spi_nor_ids[tmp];
1179 1180
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
1181 1182 1183
				return &spi_nor_ids[tmp];
		}
	}
1184
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1185
		id[0], id[1], id[2]);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
1201
	while (len) {
1202 1203 1204 1205 1206 1207
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		ret = nor->read(nor, addr, len, buf);
M
Michal Suchanek 已提交
1208 1209 1210 1211 1212 1213 1214
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
1215

M
Michal Suchanek 已提交
1216 1217 1218 1219 1220 1221 1222
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
1223

M
Michal Suchanek 已提交
1224 1225 1226
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
1249
		nor->program_opcode = SPINOR_OP_BP;
1250 1251

		/* write one byte. */
1252
		ret = nor->write(nor, to, 1, buf);
1253 1254 1255 1256
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1257
		ret = spi_nor_wait_till_ready(nor);
1258
		if (ret)
1259
			goto sst_write_err;
1260 1261 1262 1263 1264
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
1265
		nor->program_opcode = SPINOR_OP_AAI_WP;
1266 1267

		/* write two bytes. */
1268
		ret = nor->write(nor, to, 2, buf + actual);
1269 1270 1271 1272
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
1273
		ret = spi_nor_wait_till_ready(nor);
1274
		if (ret)
1275
			goto sst_write_err;
1276 1277 1278 1279 1280 1281
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
1282
	ret = spi_nor_wait_till_ready(nor);
1283
	if (ret)
1284
		goto sst_write_err;
1285 1286 1287 1288 1289

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

1290
		nor->program_opcode = SPINOR_OP_BP;
1291
		ret = nor->write(nor, to, 1, buf + actual);
1292 1293 1294 1295
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
1296
		ret = spi_nor_wait_till_ready(nor);
1297
		if (ret)
1298
			goto sst_write_err;
1299
		write_disable(nor);
1300
		actual += 1;
1301
	}
1302
sst_write_err:
1303
	*retlen += actual;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1317 1318
	size_t page_offset, page_remain, i;
	ssize_t ret;
1319 1320 1321 1322 1323 1324 1325

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

1326 1327
	for (i = 0; i < len; ) {
		ssize_t written;
1328
		loff_t addr = to + i;
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;

			page_offset = do_div(aux, nor->page_size);
		}
1345
		/* the size of data remaining on the first page */
1346 1347 1348
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

1349 1350 1351
		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

1352
		write_enable(nor);
1353
		ret = nor->write(nor, addr, page_remain, buf + i);
1354 1355
		if (ret < 0)
			goto write_err;
1356
		written = ret;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
		if (written != page_remain) {
			dev_err(nor->dev,
				"While writing %zu bytes written %zd bytes\n",
				page_remain, written);
			ret = -EIO;
			goto write_err;
1369 1370 1371 1372 1373
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1374
	return ret;
1375 1376 1377 1378 1379 1380 1381
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
1382 1383
	if (val < 0)
		return val;
1384 1385 1386
	if (val & SR_QUAD_EN_MX)
		return 0;

1387 1388
	write_enable(nor);

1389
	write_sr(nor, val | SR_QUAD_EN_MX);
1390

1391
	if (spi_nor_wait_till_ready(nor))
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

1414
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

1431 1432 1433 1434 1435 1436 1437
	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1448
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
1449 1450 1451
{
	int status;

1452
	switch (JEDEC_MFR(info)) {
1453
	case SNOR_MFR_MACRONIX:
1454 1455 1456 1457 1458 1459
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
1460
	case SNOR_MFR_MICRON:
1461
		return 0;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
1475
		!nor->read_reg || !nor->write_reg) {
1476 1477 1478 1479 1480 1481 1482
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
	if (val & XSR_PAGESIZE) {
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
		nor->mtd.size = 8 * nor->page_size * info->n_sectors;
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

1524
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1525
{
1526
	const struct flash_info *info = NULL;
1527
	struct device *dev = nor->dev;
1528
	struct mtd_info *mtd = &nor->mtd;
1529
	struct device_node *np = spi_nor_get_flash_node(nor);
1530 1531 1532 1533 1534 1535 1536
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

1537
	if (name)
1538
		info = spi_nor_match_id(name);
1539
	/* Try to auto-detect if chip name wasn't specified or not found */
1540 1541 1542
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
1543 1544
		return -ENOENT;

1545 1546 1547 1548 1549
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
1550
		const struct flash_info *jinfo;
1551

1552 1553 1554 1555
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
1556 1557 1558 1559 1560 1561 1562 1563
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
1564 1565
				 jinfo->name, info->name);
			info = jinfo;
1566 1567 1568 1569 1570
		}
	}

	mutex_init(&nor->lock);

1571 1572 1573 1574 1575 1576 1577 1578
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

1579
	/*
1580 1581
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
1582 1583
	 */

1584 1585
	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1586 1587
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
	    info->flags & SPI_NOR_HAS_LOCK) {
1588 1589
		write_enable(nor);
		write_sr(nor, 0);
1590
		spi_nor_wait_till_ready(nor);
1591 1592
	}

1593
	if (!mtd->name)
1594
		mtd->name = dev_name(dev);
1595
	mtd->priv = nor;
1596 1597 1598 1599 1600 1601 1602
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

1603
	/* NOR protection support for STmicro/Micron chips and similar */
1604 1605
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
			info->flags & SPI_NOR_HAS_LOCK) {
1606 1607
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
1608
		nor->flash_is_locked = stm_is_locked;
1609 1610
	}

1611
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1612 1613
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
1614
		mtd->_is_locked = spi_nor_is_locked;
1615 1616 1617 1618 1619 1620 1621 1622
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1623 1624
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
1625 1626
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
1627

1628
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1629 1630
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1631
		nor->erase_opcode = SPINOR_OP_BE_4K;
1632 1633
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1634
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1635
		mtd->erasesize = 4096;
1636 1637 1638
	} else
#endif
	{
1639
		nor->erase_opcode = SPINOR_OP_SE;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1667
		ret = set_quad_mode(nor, info);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1680
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1681 1682
		break;
	case SPI_NOR_DUAL:
1683
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1684 1685
		break;
	case SPI_NOR_FAST:
1686
		nor->read_opcode = SPINOR_OP_READ_FAST;
1687 1688
		break;
	case SPI_NOR_NORMAL:
1689
		nor->read_opcode = SPINOR_OP_READ;
1690 1691 1692 1693 1694 1695
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1696
	nor->program_opcode = SPINOR_OP_PP;
1697 1698 1699 1700 1701 1702

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
1703 1704 1705 1706
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
		    info->flags & SPI_NOR_4B_OPCODES)
			spi_nor_set_4byte_opcodes(nor, info);
		else
1707
			set_4byte(nor, info, 1);
1708 1709 1710 1711
	} else {
		nor->addr_width = 3;
	}

1712 1713 1714 1715 1716 1717
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

1718 1719
	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

1720 1721 1722 1723 1724 1725
	if (info->flags & SPI_S3AN) {
		ret = s3an_nor_scan(info, nor);
		if (ret)
			return ret;
	}

1726
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1747
EXPORT_SYMBOL_GPL(spi_nor_scan);
1748

1749
static const struct flash_info *spi_nor_match_id(const char *name)
1750
{
1751
	const struct flash_info *id = spi_nor_ids;
1752

1753
	while (id->name) {
1754 1755 1756 1757 1758 1759 1760
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

1761 1762 1763 1764
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");