spi-nor.c 143.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4 5 6 7
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 9 10 11 12 13 14 15
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
16
#include <linux/sizes.h>
17
#include <linux/slab.h>
18
#include <linux/sort.h>
19 20 21

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
22
#include <linux/sched/task_stack.h>
23 24 25 26
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
struct spi_nor_read_command {
	u8			num_mode_clocks;
	u8			num_wait_states;
	u8			opcode;
	enum spi_nor_protocol	proto;
};

struct spi_nor_pp_command {
	u8			opcode;
	enum spi_nor_protocol	proto;
};

enum spi_nor_read_command_index {
	SNOR_CMD_READ,
	SNOR_CMD_READ_FAST,
	SNOR_CMD_READ_1_1_1_DTR,

	/* Dual SPI */
	SNOR_CMD_READ_1_1_2,
	SNOR_CMD_READ_1_2_2,
	SNOR_CMD_READ_2_2_2,
	SNOR_CMD_READ_1_2_2_DTR,

	/* Quad SPI */
	SNOR_CMD_READ_1_1_4,
	SNOR_CMD_READ_1_4_4,
	SNOR_CMD_READ_4_4_4,
	SNOR_CMD_READ_1_4_4_DTR,

72
	/* Octal SPI */
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	SNOR_CMD_READ_1_1_8,
	SNOR_CMD_READ_1_8_8,
	SNOR_CMD_READ_8_8_8,
	SNOR_CMD_READ_1_8_8_DTR,

	SNOR_CMD_READ_MAX
};

enum spi_nor_pp_command_index {
	SNOR_CMD_PP,

	/* Quad SPI */
	SNOR_CMD_PP_1_1_4,
	SNOR_CMD_PP_1_4_4,
	SNOR_CMD_PP_4_4_4,

89
	/* Octal SPI */
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	SNOR_CMD_PP_1_1_8,
	SNOR_CMD_PP_1_8_8,
	SNOR_CMD_PP_8_8_8,

	SNOR_CMD_PP_MAX
};

struct spi_nor_flash_parameter {
	u64				size;
	u32				page_size;

	struct spi_nor_hwcaps		hwcaps;
	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];

	int (*quad_enable)(struct spi_nor *nor);
};

struct sfdp_parameter_header {
	u8		id_lsb;
	u8		minor;
	u8		major;
	u8		length; /* in double words */
	u8		parameter_table_pointer[3]; /* byte address */
	u8		id_msb;
};

#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
	(((p)->parameter_table_pointer[2] << 16) | \
	 ((p)->parameter_table_pointer[1] <<  8) | \
	 ((p)->parameter_table_pointer[0] <<  0))

#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
125
#define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

#define SFDP_SIGNATURE		0x50444653U
#define SFDP_JESD216_MAJOR	1
#define SFDP_JESD216_MINOR	0
#define SFDP_JESD216A_MINOR	5
#define SFDP_JESD216B_MINOR	6

struct sfdp_header {
	u32		signature; /* Ox50444653U <=> "SFDP" */
	u8		minor;
	u8		major;
	u8		nph; /* 0-base number of parameter headers */
	u8		unused;

	/* Basic Flash Parameter Table. */
	struct sfdp_parameter_header	bfpt_header;
};

/* Basic Flash Parameter Table */

/*
 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 * They are indexed from 1 but C arrays are indexed from 0.
 */
#define BFPT_DWORD(i)		((i) - 1)
#define BFPT_DWORD_MAX		16

/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216			9

/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
#define BFPT_DWORD1_DTR				BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)

/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)

/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
#define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)

/* 15th DWORD. */

/*
 * (from JESD216 rev B)
 * Quad Enable Requirements (QER):
 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 *         reads based on instruction. DQ3/HOLD# functions are hold during
 *         instruction phase.
 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         Writing only one byte to the status register has the side-effect of
 *         clearing status register 2, including the QE bit. The 100b code is
 *         used if writing one byte to the status register does not modify
 *         status register 2.
 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 *         one data byte where bit 6 is one.
 *         [...]
 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 *         [...]
 *         The status register 2 is read using instruction 3Fh.
 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         In contrast to the 001b code, writing one byte to the status
 *         register does not modify status register 2.
 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 *         Read Status instruction 05h. Status register2 is read using
204
 *         instruction 35h. QE is set via Write Status instruction 01h with
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 */
#define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */

struct sfdp_bfpt {
	u32	dwords[BFPT_DWORD_MAX];
};

/**
 * struct spi_nor_fixups - SPI NOR fixup hooks
 * @post_bfpt: called after the BFPT table has been parsed
 *
 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
 * table is broken or not available.
 */
struct spi_nor_fixups {
	int (*post_bfpt)(struct spi_nor *nor,
			 const struct sfdp_parameter_header *bfpt_header,
			 const struct sfdp_bfpt *bfpt,
			 struct spi_nor_flash_parameter *params);
};

234
struct flash_info {
235 236
	char		*name;

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
255 256 257 258 259 260 261 262
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
263
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
264 265 266 267 268
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
269 270 271 272 273 274
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
275 276 277 278
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
279
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
280
#define SPI_NOR_SKIP_SFDP	BIT(13)	/* Skip parsing of SFDP tables */
281
#define USE_CLSR		BIT(14)	/* use CLSR command */
282
#define SPI_NOR_OCTAL_READ	BIT(15)	/* Flash supports Octal Read */
283

284 285 286
	/* Part specific fixup hooks. */
	const struct spi_nor_fixups *fixups;

287
	int	(*quad_enable)(struct spi_nor *nor);
288 289 290
};

#define JEDEC_MFR(info)	((info)->id[0])
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * spi_nor_spimem_xfer_data() - helper function to read/write data to
 *                              flash's memory region
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
 * Return: number of bytes transferred on success, -errno otherwise
 */
static ssize_t spi_nor_spimem_xfer_data(struct spi_nor *nor,
					struct spi_mem_op *op)
{
	bool usebouncebuf = false;
	void *rdbuf = NULL;
	const void *buf;
	int ret;

	if (op->data.dir == SPI_MEM_DATA_IN)
		buf = op->data.buf.in;
	else
		buf = op->data.buf.out;

	if (object_is_on_stack(buf) || !virt_addr_valid(buf))
		usebouncebuf = true;

	if (usebouncebuf) {
		if (op->data.nbytes > nor->bouncebuf_size)
			op->data.nbytes = nor->bouncebuf_size;

		if (op->data.dir == SPI_MEM_DATA_IN) {
			rdbuf = op->data.buf.in;
			op->data.buf.in = nor->bouncebuf;
		} else {
			op->data.buf.out = nor->bouncebuf;
			memcpy(nor->bouncebuf, buf,
			       op->data.nbytes);
		}
	}

	ret = spi_mem_adjust_op_size(nor->spimem, op);
	if (ret)
		return ret;

	ret = spi_mem_exec_op(nor->spimem, op);
	if (ret)
		return ret;

	if (usebouncebuf && op->data.dir == SPI_MEM_DATA_IN)
		memcpy(rdbuf, nor->bouncebuf, op->data.nbytes);

	return op->data.nbytes;
}

/**
 * spi_nor_spimem_read_data() - read data from flash's memory region via
 *                              spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
					size_t len, u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
			   SPI_MEM_OP_DATA_IN(len, buf, 1));

	/* get transfer protocols. */
	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;

	return spi_nor_spimem_xfer_data(nor, &op);
}

/**
 * spi_nor_read_data() - read data from flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
				 u8 *buf)
{
	if (nor->spimem)
		return spi_nor_spimem_read_data(nor, from, len, buf);

	return nor->read(nor, from, len, buf);
}

/**
 * spi_nor_spimem_write_data() - write data to flash memory via
 *                               spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
					 size_t len, const u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
			   SPI_MEM_OP_NO_DUMMY,
			   SPI_MEM_OP_DATA_OUT(len, buf, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op.addr.nbytes = 0;

	return spi_nor_spimem_xfer_data(nor, &op);
}

/**
 * spi_nor_write_data() - write data to flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
				  const u8 *buf)
{
	if (nor->spimem)
		return spi_nor_spimem_write_data(nor, to, len, buf);

	return nor->write(nor, to, len, buf);
}

440 441 442 443 444 445 446 447 448
/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;

449 450 451 452 453 454 455 456 457 458 459 460
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->read_reg(nor, SPINOR_OP_RDSR, nor->bouncebuf, 1);
	}

461 462 463 464 465
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

466
	return nor->bouncebuf[0];
467 468
}

469 470 471 472 473 474 475 476 477
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;

478 479 480 481 482 483 484 485 486 487 488 489
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->read_reg(nor, SPINOR_OP_RDFSR, nor->bouncebuf, 1);
	}

490 491 492 493 494
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

495
	return nor->bouncebuf[0];
496 497
}

498 499 500
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
501
 * Returns negative if error occurred.
502 503 504 505 506
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;

507 508 509 510 511 512 513 514 515 516 517 518
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->read_reg(nor, SPINOR_OP_RDCR, nor->bouncebuf, 1);
	}

519 520 521 522 523
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

524
	return nor->bouncebuf[0];
525 526 527 528 529 530
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
531
static int write_sr(struct spi_nor *nor, u8 val)
532
{
533
	nor->bouncebuf[0] = val;
534 535 536 537 538 539 540 541 542 543
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));

		return spi_mem_exec_op(nor->spimem, &op);
	}

544
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->bouncebuf, 1);
545 546 547 548 549 550
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
551
static int write_enable(struct spi_nor *nor)
552
{
553 554 555 556 557 558 559 560 561 562
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

563
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
564 565 566
}

/*
567
 * Send write disable instruction to the chip.
568
 */
569
static int write_disable(struct spi_nor *nor)
570
{
571 572 573 574 575 576 577 578 579 580
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

581
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
582 583
}

584
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
585 586 587 588
{
	return mtd->priv;
}

589 590 591 592 593 594 595 596 597 598 599 600 601

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

602
static u8 spi_nor_convert_3to4_read(u8 opcode)
603 604 605 606 607 608 609 610
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
611 612
		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
613 614 615 616

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
617 618 619 620 621 622
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

623
static u8 spi_nor_convert_3to4_program(u8 opcode)
624 625 626 627 628
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
629 630
		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
631 632 633 634 635 636
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

637
static u8 spi_nor_convert_3to4_erase(u8 opcode)
638 639 640 641 642 643 644 645 646 647 648
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

649
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
650 651
{
	/* Do some manufacturer fixups first */
652
	switch (JEDEC_MFR(nor->info)) {
653 654 655
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
656
		nor->mtd.erasesize = nor->info->sector_size;
657 658 659 660 661 662 663 664 665
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
666 667 668 669 670 671 672 673 674 675 676 677

	if (!spi_nor_has_uniform_erase(nor)) {
		struct spi_nor_erase_map *map = &nor->erase_map;
		struct spi_nor_erase_type *erase;
		int i;

		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
			erase = &map->erase_type[i];
			erase->opcode =
				spi_nor_convert_3to4_erase(erase->opcode);
		}
	}
678 679
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
static int macronix_set_4byte(struct spi_nor *nor, bool enable)
{
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
						  SPINOR_OP_EN4B :
						  SPINOR_OP_EX4B,
						  1),
				  SPI_MEM_OP_NO_ADDR,
				  SPI_MEM_OP_NO_DUMMY,
				  SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->write_reg(nor, enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B,
			      NULL, 0);
}

static int spansion_set_4byte(struct spi_nor *nor, bool enable)
{
	nor->bouncebuf[0] = enable << 7;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->write_reg(nor, SPINOR_OP_BRWR, nor->bouncebuf, 1);
}

static int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
{
	nor->bouncebuf[0] = ear;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->write_reg(nor, SPINOR_OP_WREAR, nor->bouncebuf, 1);
}

733
/* Enable/disable 4-byte addressing mode. */
734
static int set_4byte(struct spi_nor *nor, bool enable)
735 736 737 738
{
	int status;
	bool need_wren = false;

739
	switch (JEDEC_MFR(nor->info)) {
740
	case SNOR_MFR_ST:
741
	case SNOR_MFR_MICRON:
742 743
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
744
		/* fall through */
745 746
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
747 748 749
		if (need_wren)
			write_enable(nor);

750
		status = macronix_set_4byte(nor, enable);
751 752 753
		if (need_wren)
			write_disable(nor);

754
		if (!status && !enable &&
755
		    JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) {
756 757 758 759 760 761 762
			/*
			 * On Winbond W25Q256FV, leaving 4byte mode causes
			 * the Extended Address Register to be set to 1, so all
			 * 3-byte-address reads come from the second 16M.
			 * We must clear the register to enable normal behavior.
			 */
			write_enable(nor);
763
			spi_nor_write_ear(nor, 0);
764 765 766
			write_disable(nor);
		}

767 768 769
		return status;
	default:
		/* Spansion style */
770
		return spansion_set_4byte(nor, enable);
771 772
	}
}
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
static int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
{
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr, 1));

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->read_reg(nor, SPINOR_OP_XRDSR, sr, 1);
}

789 790 791 792
static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;

793
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
794 795 796 797 798
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

799
	return !!(nor->bouncebuf[0] & XSR_RDY);
800 801
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static int spi_nor_clear_sr(struct spi_nor *nor)
{
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
}

817
static int spi_nor_sr_ready(struct spi_nor *nor)
818
{
819 820 821
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;
822 823 824 825 826 827 828

	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
		if (sr & SR_E_ERR)
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

829
		spi_nor_clear_sr(nor);
830 831 832 833
		return -EIO;
	}

	return !(sr & SR_WIP);
834
}
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static int spi_nor_clear_fsr(struct spi_nor *nor)
{
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
}

851
static int spi_nor_fsr_ready(struct spi_nor *nor)
852 853 854 855
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
856 857 858 859 860 861 862 863 864 865 866

	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
		if (fsr & FSR_E_ERR)
			dev_err(nor->dev, "Erase operation failed.\n");
		else
			dev_err(nor->dev, "Program operation failed.\n");

		if (fsr & FSR_PT_ERR)
			dev_err(nor->dev,
			"Attempted to modify a protected sector.\n");

867
		spi_nor_clear_fsr(nor);
868 869 870 871
		return -EIO;
	}

	return fsr & FSR_READY;
872
}
873

874 875 876
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
877 878 879 880 881

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
882 883 884 885 886 887
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
888 889
}

890 891 892 893
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
894 895
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
896 897
{
	unsigned long deadline;
898
	int timeout = 0, ret;
899

900
	deadline = jiffies + timeout_jiffies;
901

902 903 904
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
905

906 907 908 909 910
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
911 912 913 914 915

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");
916 917 918 919

	return -ETIMEDOUT;
}

920 921 922 923 924 925
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

926 927 928 929 930 931 932
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
933
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
934

935 936 937 938 939 940 941 942 943 944
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

945
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

972 973 974 975 976 977 978 979 980 981 982
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
983 984
	unsigned int offset;
	unsigned int page;
985

986 987 988
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
989

990
	return page | offset;
991 992
}

993 994 995 996 997 998 999
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	int i;

1000 1001 1002
	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

1003 1004 1005
	if (nor->erase)
		return nor->erase(nor, addr);

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
	}

1016 1017 1018 1019 1020
	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
1021
		nor->bouncebuf[i] = addr & 0xff;
1022 1023 1024
		addr >>= 8;
	}

1025 1026
	return nor->write_reg(nor, nor->erase_opcode, nor->bouncebuf,
			      nor->addr_width);
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @dividend:	dividend value
 * @remainder:	pointer to u32 remainder (will be updated)
 *
 * Return: the result of the division
 */
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
				     u64 dividend, u32 *remainder)
{
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	*remainder = (u32)dividend & erase->size_mask;
	return dividend >> erase->size_shift;
}

/**
 * spi_nor_find_best_erase_type() - find the best erase type for the given
 *				    offset in the serial flash memory and the
 *				    number of bytes to erase. The region in
 *				    which the address fits is expected to be
 *				    provided.
 * @map:	the erase map of the SPI NOR
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Return: a pointer to the best fitted erase type, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
			     const struct spi_nor_erase_region *region,
			     u64 addr, u32 len)
{
	const struct spi_nor_erase_type *erase;
	u32 rem;
	int i;
	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

	/*
1069
	 * Erase types are ordered by size, with the smallest erase type at
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	 * index 0.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		/* Does the erase region support the tested erase type? */
		if (!(erase_mask & BIT(i)))
			continue;

		erase = &map->erase_type[i];

		/* Don't erase more than what the user has asked for. */
		if (erase->size > len)
			continue;

		/* Alignment is not mandatory for overlaid regions */
		if (region->offset & SNOR_OVERLAID_REGION)
			return erase;

		spi_nor_div_by_erase_size(erase, addr, &rem);
		if (rem)
			continue;
		else
			return erase;
	}

	return NULL;
}

/**
 * spi_nor_region_next() - get the next spi nor region
 * @region:	pointer to a structure that describes a SPI NOR erase region
 *
 * Return: the next spi nor region or NULL if last region.
 */
static struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region)
{
	if (spi_nor_region_is_last(region))
		return NULL;
	region++;
	return region;
}

/**
 * spi_nor_find_erase_region() - find the region of the serial flash memory in
 *				 which the offset fits
 * @map:	the erase map of the SPI NOR
 * @addr:	offset in the serial flash memory
 *
 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
	struct spi_nor_erase_region *region = map->regions;
	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
	u64 region_end = region_start + region->size;

	while (addr < region_start || addr >= region_end) {
		region = spi_nor_region_next(region);
		if (!region)
			return ERR_PTR(-EINVAL);

		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
		region_end = region_start + region->size;
	}

	return region;
}

/**
 * spi_nor_init_erase_cmd() - initialize an erase command
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 *
 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
		       const struct spi_nor_erase_type *erase)
{
	struct spi_nor_erase_command *cmd;

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&cmd->list);
	cmd->opcode = erase->opcode;
	cmd->count = 1;

	if (region->offset & SNOR_OVERLAID_REGION)
		cmd->size = region->size;
	else
		cmd->size = erase->size;

	return cmd;
}

/**
 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
 * @erase_list:	list of erase commands
 */
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
	struct spi_nor_erase_command *cmd, *next;

	list_for_each_entry_safe(cmd, next, erase_list, list) {
		list_del(&cmd->list);
		kfree(cmd);
	}
}

/**
 * spi_nor_init_erase_cmd_list() - initialize erase command list
 * @nor:	pointer to a 'struct spi_nor'
 * @erase_list:	list of erase commands to be executed once we validate that the
 *		erase can be performed
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Builds the list of best fitted erase commands and verifies if the erase can
 * be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
				       struct list_head *erase_list,
				       u64 addr, u32 len)
{
	const struct spi_nor_erase_map *map = &nor->erase_map;
	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
	struct spi_nor_erase_region *region;
	struct spi_nor_erase_command *cmd = NULL;
	u64 region_end;
	int ret = -EINVAL;

	region = spi_nor_find_erase_region(map, addr);
	if (IS_ERR(region))
		return PTR_ERR(region);

	region_end = spi_nor_region_end(region);

	while (len) {
		erase = spi_nor_find_best_erase_type(map, region, addr, len);
		if (!erase)
			goto destroy_erase_cmd_list;

		if (prev_erase != erase ||
		    region->offset & SNOR_OVERLAID_REGION) {
			cmd = spi_nor_init_erase_cmd(region, erase);
			if (IS_ERR(cmd)) {
				ret = PTR_ERR(cmd);
				goto destroy_erase_cmd_list;
			}

			list_add_tail(&cmd->list, erase_list);
		} else {
			cmd->count++;
		}

		addr += cmd->size;
		len -= cmd->size;

		if (len && addr >= region_end) {
			region = spi_nor_region_next(region);
			if (!region)
				goto destroy_erase_cmd_list;
			region_end = spi_nor_region_end(region);
		}

		prev_erase = erase;
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(erase_list);
	return ret;
}

/**
 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Build a list of best fitted erase commands and execute it once we validate
 * that the erase can be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
	LIST_HEAD(erase_list);
	struct spi_nor_erase_command *cmd, *next;
	int ret;

	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
	if (ret)
		return ret;

	list_for_each_entry_safe(cmd, next, &erase_list, list) {
		nor->erase_opcode = cmd->opcode;
		while (cmd->count) {
			write_enable(nor);

			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
				goto destroy_erase_cmd_list;

			addr += cmd->size;
			cmd->count--;

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto destroy_erase_cmd_list;
		}
		list_del(&cmd->list);
		kfree(cmd);
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(&erase_list);
	return ret;
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

1314 1315 1316 1317 1318
	if (spi_nor_has_uniform_erase(nor)) {
		div_u64_rem(instr->len, mtd->erasesize, &rem);
		if (rem)
			return -EINVAL;
	}
1319 1320 1321 1322 1323 1324 1325 1326 1327

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
1328
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1329 1330
		unsigned long timeout;

1331 1332
		write_enable(nor);

1333 1334 1335 1336 1337
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1348 1349 1350
		if (ret)
			goto erase_err;

1351
	/* REVISIT in some cases we could speed up erasing large regions
1352
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1353 1354 1355 1356
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
1357
	} else if (spi_nor_has_uniform_erase(nor)) {
1358
		while (len) {
1359 1360
			write_enable(nor);

1361 1362
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
1363 1364 1365 1366
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
1367 1368 1369 1370

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
1371
		}
1372 1373 1374 1375 1376 1377

	/* erase multiple sectors */
	} else {
		ret = spi_nor_erase_multi_sectors(nor, addr, len);
		if (ret)
			goto erase_err;
1378 1379
	}

1380 1381
	write_disable(nor);

1382
erase_err:
1383 1384 1385 1386 1387
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	return ret;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
	int ret;

	write_enable(nor);
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	ret = read_sr(nor);
	if (ret < 0)
		return ret;

	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
1424 1425 1426 1427
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
1428 1429 1430 1431
	}
}

/*
1432 1433
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
1434
 */
1435 1436
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
1437 1438 1439 1440
{
	loff_t lock_offs;
	uint64_t lock_len;

1441 1442 1443
	if (!len)
		return 1;

1444 1445
	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
1464 1465 1466 1467
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1468
 * Supports the block protection bits BP{0,1,2} in the status register
1469 1470 1471 1472
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
1473 1474 1475
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1488 1489 1490 1491 1492 1493 1494
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1495 1496 1497
 *
 * Returns negative on errors, 0 on success.
 */
1498
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1499
{
1500
	struct mtd_info *mtd = &nor->mtd;
1501
	int status_old, status_new;
1502 1503
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
1504
	loff_t lock_len;
1505 1506
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1507 1508

	status_old = read_sr(nor);
1509 1510
	if (status_old < 0)
		return status_old;
1511

1512 1513 1514 1515
	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

1516 1517 1518 1519
	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

1520 1521 1522
	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
1523 1524 1525
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
1526 1527
		return -EINVAL;

1528 1529 1530
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1531
	/* lock_len: length of region that should end up locked */
1532 1533 1534 1535
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
1546
	pow = ilog2(mtd->size) - ilog2(lock_len);
1547 1548 1549 1550 1551 1552 1553
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

1554
	status_new = (status_old & ~mask & ~SR_TB) | val;
1555

1556 1557 1558
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

1559 1560 1561
	if (!use_top)
		status_new |= SR_TB;

1562 1563 1564 1565
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1566
	/* Only modify protection if it will not unlock other areas */
1567
	if ((status_new & mask) < (status_old & mask))
1568
		return -EINVAL;
1569

1570
	return write_sr_and_check(nor, status_new, mask);
1571 1572
}

1573 1574 1575 1576 1577
/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
1578
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1579
{
1580
	struct mtd_info *mtd = &nor->mtd;
1581
	int status_old, status_new;
1582 1583
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
1584
	loff_t lock_len;
1585 1586
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1587 1588

	status_old = read_sr(nor);
1589 1590
	if (status_old < 0)
		return status_old;
1591

1592 1593 1594 1595 1596 1597
	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
1598 1599 1600 1601 1602 1603 1604 1605
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
1606
		return -EINVAL;
1607

1608 1609 1610
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1611
	/* lock_len: length of region that should remain locked */
1612 1613 1614 1615
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
1626 1627
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
1628 1629 1630 1631 1632 1633
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
1634 1635
	}

1636
	status_new = (status_old & ~mask & ~SR_TB) | val;
1637

1638
	/* Don't protect status register if we're fully unlocked */
1639
	if (lock_len == 0)
1640 1641
		status_new &= ~SR_SRWD;

1642 1643 1644
	if (!use_top)
		status_new |= SR_TB;

1645 1646 1647 1648
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1649
	/* Only modify protection if it will not lock other areas */
1650
	if ((status_new & mask) > (status_old & mask))
1651 1652
		return -EINVAL;

1653
	return write_sr_and_check(nor, status_new, mask);
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

1685 1686 1687 1688
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occurred.
 */
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
	int ret;

	write_enable(nor);

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(2, sr_cr, 1));

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
	}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

	return 0;
}

/**
 * macronix_quad_enable() - set QE bit in Status Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register.
 *
 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	if (val < 0)
		return val;
	if (val & SR_QUAD_EN_MX)
		return 0;

	write_enable(nor);

	write_sr(nor, val | SR_QUAD_EN_MX);

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * spansion_quad_enable() - set QE bit in Configuraiton Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function is kept for legacy purpose because it has been used for a
 * long time without anybody complaining but it should be considered as
 * deprecated and maybe buggy.
 * First, this function doesn't care about the previous values of the Status
 * and Configuration Registers when it sets the QE bit (bit 1) in the
 * Configuration Register: all other bits are cleared, which may have unwanted
 * side effects like removing some block protections.
 * Secondly, it uses the Read Configuration Register (35h) instruction though
 * some very old and few memories don't support this instruction. If a pull-up
 * resistor is present on the MISO/IO1 line, we might still be able to pass the
 * "read back" test because the QSPI memory doesn't recognize the command,
 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_quad_enable(struct spi_nor *nor)
{
1821
	u8 *sr_cr = nor->bouncebuf;
1822 1823
	int ret;

1824 1825
	sr_cr[0] = 0;
	sr_cr[1] = CR_QUAD_EN_SPAN;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories not supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
1855
	u8 *sr_cr = nor->bouncebuf;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	int ret;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(nor->dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;
	sr_cr[1] = CR_QUAD_EN_SPAN;

	return write_sr_cr(nor, sr_cr);
}

/**
 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
	struct device *dev = nor->dev;
1886
	u8 *sr_cr = nor->bouncebuf;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	int ret;

	/* Check current Quad Enable bit value. */
	ret = read_cr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading configuration register\n");
		return -EINVAL;
	}

	if (ret & CR_QUAD_EN_SPAN)
		return 0;

	sr_cr[1] = ret | CR_QUAD_EN_SPAN;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* Read back and check it. */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static int spi_nor_write_sr2(struct spi_nor *nor, u8 *sr2)
{
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->write_reg(nor, SPINOR_OP_WRSR2, sr2, 1);
}

static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
{
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr2, 1));

		return spi_mem_exec_op(nor->spimem, &op);
	}

	return nor->read_reg(nor, SPINOR_OP_RDSR2, sr2, 1);
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/**
 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int sr2_bit7_quad_enable(struct spi_nor *nor)
{
1967
	u8 *sr2 = nor->bouncebuf;
1968 1969 1970
	int ret;

	/* Check current Quad Enable bit value. */
1971
	ret = spi_nor_read_sr2(nor, sr2);
1972 1973
	if (ret)
		return ret;
1974
	if (*sr2 & SR2_QUAD_EN_BIT7)
1975 1976 1977
		return 0;

	/* Update the Quad Enable bit. */
1978
	*sr2 |= SR2_QUAD_EN_BIT7;
1979 1980 1981

	write_enable(nor);

1982
	ret = spi_nor_write_sr2(nor, sr2);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (ret < 0) {
		dev_err(nor->dev, "error while writing status register 2\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret < 0) {
		dev_err(nor->dev, "timeout while writing status register 2\n");
		return ret;
	}

	/* Read back and check it. */
1995
	ret = spi_nor_read_sr2(nor, sr2);
1996
	if (!(ret > 0 && (*sr2 & SR2_QUAD_EN_BIT7))) {
1997 1998 1999 2000 2001 2002
		dev_err(nor->dev, "SR2 Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}
A
Andy Yan 已提交
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/**
 * spi_nor_clear_sr_bp() - clear the Status Register Block Protection bits.
 * @nor:        pointer to a 'struct spi_nor'
 *
 * Read-modify-write function that clears the Block Protection bits from the
 * Status Register without affecting other bits.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_clear_sr_bp(struct spi_nor *nor)
{
	int ret;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;

	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(nor->dev, "error while reading status register\n");
		return ret;
	}

	write_enable(nor);

	ret = write_sr(nor, ret & ~mask);
	if (ret) {
		dev_err(nor->dev, "write to status register failed\n");
		return ret;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		dev_err(nor->dev, "timeout while writing status register\n");
	return ret;
}

/**
 * spi_nor_spansion_clear_sr_bp() - clear the Status Register Block Protection
 * bits on spansion flashes.
 * @nor:        pointer to a 'struct spi_nor'
 *
 * Read-modify-write function that clears the Block Protection bits from the
 * Status Register without affecting other bits. The function is tightly
 * coupled with the spansion_quad_enable() function. Both assume that the Write
 * Register with 16 bits, together with the Read Configuration Register (35h)
 * instructions are supported.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_spansion_clear_sr_bp(struct spi_nor *nor)
{
	int ret;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
2055
	u8 *sr_cr =  nor->bouncebuf;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

	/* Check current Quad Enable bit value. */
	ret = read_cr(nor);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while reading configuration register\n");
		return ret;
	}

	/*
	 * When the configuration register Quad Enable bit is one, only the
	 * Write Status (01h) command with two data bytes may be used.
	 */
	if (ret & CR_QUAD_EN_SPAN) {
		sr_cr[1] = ret;

		ret = read_sr(nor);
		if (ret < 0) {
			dev_err(nor->dev,
				"error while reading status register\n");
			return ret;
		}
		sr_cr[0] = ret & ~mask;

		ret = write_sr_cr(nor, sr_cr);
		if (ret)
			dev_err(nor->dev, "16-bit write register failed\n");
		return ret;
	}

	/*
	 * If the Quad Enable bit is zero, use the Write Status (01h) command
	 * with one data byte.
	 */
	return spi_nor_clear_sr_bp(nor);
}

2093
/* Used when the "_ext_id" is two bytes at most */
2094
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
2095 2096 2097 2098 2099 2100 2101 2102
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
2103 2104 2105
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
2106
		.flags = (_flags),
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
2121
		.flags = (_flags),
2122

2123 2124 2125 2126 2127
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
2128
		.flags = (_flags),
2129

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
static int
is25lp256_post_bfpt_fixups(struct spi_nor *nor,
			   const struct sfdp_parameter_header *bfpt_header,
			   const struct sfdp_bfpt *bfpt,
			   struct spi_nor_flash_parameter *params)
{
	/*
	 * IS25LP256 supports 4B opcodes, but the BFPT advertises a
	 * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
	 * Overwrite the address width advertised by the BFPT.
	 */
	if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
		BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
		nor->addr_width = 4;

	return 0;
}

static struct spi_nor_fixups is25lp256_fixups = {
	.post_bfpt = is25lp256_post_bfpt_fixups,
};

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
			    const struct sfdp_parameter_header *bfpt_header,
			    const struct sfdp_bfpt *bfpt,
			    struct spi_nor_flash_parameter *params)
{
	/*
	 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
	 * Unfortunately, Macronix has re-used the same JEDEC ID for both
	 * variants which prevents us from defining a new entry in the parts
	 * table.
	 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
	 * seems that the F version advertises support for Fast Read 4-4-4 in
	 * its BFPT table.
	 */
	if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
		nor->flags |= SNOR_F_4B_OPCODES;

	return 0;
}

static struct spi_nor_fixups mx25l25635_fixups = {
	.post_bfpt = mx25l25635_post_bfpt_fixups,
};

2190 2191 2192
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
2193 2194 2195 2196 2197 2198 2199
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
2200
 */
2201
static const struct flash_info spi_nor_ids[] = {
2202 2203 2204 2205 2206
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
2207
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
2224 2225
	{ "en25q80a",   INFO(0x1c3014, 0, 64 * 1024,   16,
			SECT_4K | SPI_NOR_DUAL_READ) },
2226
	{ "en25qh32",   INFO(0x1c7016, 0, 64 * 1024,   64, 0) },
2227 2228
	{ "en25qh64",   INFO(0x1c7017, 0, 64 * 1024,  128,
			SECT_4K | SPI_NOR_DUAL_READ) },
2229
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
2230
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
2231
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
2232 2233

	/* ESMT */
2234
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2235 2236
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
2237 2238

	/* Everspin */
2239
	{ "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2240 2241
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2242
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2243

2244 2245 2246
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

2247
	/* GigaDevice */
2248 2249 2250 2251 2252
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2253 2254 2255 2256 2257
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2258 2259 2260 2261 2262
	{
		"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
A
Andy Yan 已提交
2278 2279 2280 2281 2282 2283
	{
		"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
			.quad_enable = macronix_quad_enable,
	},
2284 2285 2286 2287 2288 2289

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

2290
	/* ISSI */
S
Sean Nyekjaer 已提交
2291 2292
	{ "is25cd512",  INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
	{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024,   8,
2293
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2294 2295
	{ "is25lp016d", INFO(0x9d6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2296 2297
	{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024,  16,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2298 2299 2300 2301
	{ "is25lp032",  INFO(0x9d6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ) },
	{ "is25lp064",  INFO(0x9d6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ) },
S
Sean Nyekjaer 已提交
2302
	{ "is25lp128",  INFO(0x9d6018, 0, 64 * 1024, 256,
2303
			SECT_4K | SPI_NOR_DUAL_READ) },
2304
	{ "is25lp256",  INFO(0x9d6019, 0, 64 * 1024, 512,
2305
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2306 2307
			SPI_NOR_4B_OPCODES)
			.fixups = &is25lp256_fixups },
2308 2309 2310 2311 2312 2313
	{ "is25wp032",  INFO(0x9d7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp064",  INFO(0x9d7017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp128",  INFO(0x9d7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2314

2315
	/* Macronix */
2316
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
2317 2318 2319 2320
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
2321
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
2322
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
2323
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
2324
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
2325 2326
	{ "mx25u3235f",	 INFO(0xc22536, 0, 64 * 1024,  64,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2327 2328
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
2329
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
2330 2331
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
2332 2333
	{ "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2334 2335 2336
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
			 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
			 .fixups = &mx25l25635_fixups },
2337
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
2338 2339
	{ "mx25v8035f",  INFO(0xc22314, 0, 64 * 1024,  16,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2340
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
2341
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2342
	{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2343
	{ "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2344 2345
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

2346
	/* Micron <--> ST Micro */
2347
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
2348
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
2349
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
2350
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
2351
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
2352 2353
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
2354
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2355
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
2356 2357
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
2358 2359
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2360 2361 2362
	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096,
			      SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
			      NO_CHIP_ERASE) },
2363
	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2364

2365 2366 2367
	/* Micron */
	{
		"mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
2368 2369
			SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
			SPI_NOR_4B_OPCODES)
2370 2371
	},

2372 2373 2374 2375 2376
	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

2377
	/* Spansion/Cypress -- single (large) sector size only, at least
2378 2379
	 * for the chips listed here (without boot sectors).
	 */
2380
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2381
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2382 2383 2384 2385
	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2386 2387
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2388 2389 2390
	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | USE_CLSR) },
2391
	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2392 2393 2394
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
2395 2396
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2397 2398 2399 2400 2401
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
2402
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2403 2404
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2405
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
2406
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2407
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
2408
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
2409
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
2410
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
2411
	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2412 2413
	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
2424
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
2425
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
2426
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
2427
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2428
	{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
2464
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
2465 2466

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
2467
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
2468 2469 2470 2471 2472
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
2473 2474 2475 2476 2477
	{
		"w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2478
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
2479 2480 2481 2482 2483
	{
		"w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2484 2485 2486
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
2487
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
2488 2489 2490 2491 2492
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2493 2494 2495 2496 2497
	{
		"w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2498 2499
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2510 2511 2512 2513 2514
	{
		"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2515 2516 2517
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2518
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2519 2520
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2521 2522 2523 2524 2525 2526 2527

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2528 2529 2530 2531 2532 2533 2534

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2535 2536 2537 2538

	/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
	{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2539 2540 2541
	{ },
};

2542
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2543 2544
{
	int			tmp;
2545
	u8			*id = nor->bouncebuf;
2546
	const struct flash_info	*info;
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));

		tmp = spi_mem_exec_op(nor->spimem, &op);
	} else {
		tmp = nor->read_reg(nor, SPINOR_OP_RDID, id,
				    SPI_NOR_MAX_ID_LEN);
	}
2560
	if (tmp < 0) {
2561
		dev_err(nor->dev, "error %d reading JEDEC ID\n", tmp);
2562 2563 2564 2565
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
2566
		info = &spi_nor_ids[tmp];
2567 2568
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
2569 2570 2571
				return &spi_nor_ids[tmp];
		}
	}
2572 2573
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
		SPI_NOR_MAX_ID_LEN, id);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

M
Michal Suchanek 已提交
2589
	while (len) {
2590 2591 2592 2593 2594
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

2595
		ret = spi_nor_read_data(nor, addr, len, buf);
M
Michal Suchanek 已提交
2596 2597 2598 2599 2600 2601 2602
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
2603

M
Michal Suchanek 已提交
2604 2605 2606 2607 2608 2609 2610
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
2611

M
Michal Suchanek 已提交
2612 2613 2614
read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
2637
		nor->program_opcode = SPINOR_OP_BP;
2638 2639

		/* write one byte. */
2640
		ret = spi_nor_write_data(nor, to, 1, buf);
2641 2642 2643 2644
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
2645
		ret = spi_nor_wait_till_ready(nor);
2646
		if (ret)
2647
			goto sst_write_err;
2648 2649 2650 2651 2652
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
2653
		nor->program_opcode = SPINOR_OP_AAI_WP;
2654 2655

		/* write two bytes. */
2656
		ret = spi_nor_write_data(nor, to, 2, buf + actual);
2657 2658 2659 2660
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
2661
		ret = spi_nor_wait_till_ready(nor);
2662
		if (ret)
2663
			goto sst_write_err;
2664 2665 2666 2667 2668 2669
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
2670
	ret = spi_nor_wait_till_ready(nor);
2671
	if (ret)
2672
		goto sst_write_err;
2673 2674 2675 2676 2677

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

2678
		nor->program_opcode = SPINOR_OP_BP;
2679
		ret = spi_nor_write_data(nor, to, 1, buf + actual);
2680 2681 2682 2683
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
2684
		ret = spi_nor_wait_till_ready(nor);
2685
		if (ret)
2686
			goto sst_write_err;
2687
		write_disable(nor);
2688
		actual += 1;
2689
	}
2690
sst_write_err:
2691
	*retlen += actual;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2705 2706
	size_t page_offset, page_remain, i;
	ssize_t ret;
2707 2708 2709 2710 2711 2712 2713

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

2714 2715
	for (i = 0; i < len; ) {
		ssize_t written;
2716
		loff_t addr = to + i;
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
2730

2731 2732
			page_offset = do_div(aux, nor->page_size);
		}
2733
		/* the size of data remaining on the first page */
2734 2735 2736
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

2737 2738 2739
		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

2740
		write_enable(nor);
2741
		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2742 2743
		if (ret < 0)
			goto write_err;
2744
		written = ret;
2745

2746 2747 2748 2749 2750
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
2751 2752 2753 2754
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
2755
	return ret;
2756 2757
}

2758
static int spi_nor_check(struct spi_nor *nor)
2759
{
2760 2761 2762 2763
	if (!nor->dev ||
	    (!nor->spimem &&
	    (!nor->read || !nor->write || !nor->read_reg ||
	      !nor->write_reg))) {
2764 2765 2766 2767 2768 2769 2770
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

2771
static int s3an_nor_scan(struct spi_nor *nor)
2772 2773 2774
{
	int ret;

2775
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
2797
	if (nor->bouncebuf[0] & XSR_PAGESIZE) {
2798 2799 2800
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
2801
		nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2802 2803 2804 2805 2806 2807 2808 2809 2810
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

2884 2885 2886 2887
/*
 * Serial Flash Discoverable Parameters (SFDP) parsing.
 */

2888 2889 2890 2891 2892 2893 2894 2895
/**
 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
 *			addr_width and read_dummy members of the struct spi_nor
 *			should be previously
 * set.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to read
2896
 * @buf:	buffer where the data is copied into (dma-safe memory)
2897 2898 2899 2900 2901 2902 2903 2904
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
	int ret;

	while (len) {
2905
		ret = spi_nor_read_data(nor, addr, len, buf);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		if (!ret || ret > len)
			return -EIO;
		if (ret < 0)
			return ret;

		buf += ret;
		addr += ret;
		len -= ret;
	}
	return 0;
}

2918 2919 2920 2921 2922
/**
 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
2923
 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
 *
 * Whatever the actual numbers of bytes for address and dummy cycles are
 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 * followed by a 3-byte address and 8 dummy clock cycles.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
			     size_t len, void *buf)
{
	u8 addr_width, read_opcode, read_dummy;
	int ret;

	read_opcode = nor->read_opcode;
	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;

	nor->read_opcode = SPINOR_OP_RDSFDP;
	nor->addr_width = 3;
	nor->read_dummy = 8;

2945
	ret = spi_nor_read_raw(nor, addr, len, buf);
2946 2947 2948 2949 2950 2951 2952 2953

	nor->read_opcode = read_opcode;
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;

	return ret;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/**
 * spi_nor_spimem_check_op - check if the operation is supported
 *                           by controller
 *@nor:        pointer to a 'struct spi_nor'
 *@op:         pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_op(struct spi_nor *nor,
				   struct spi_mem_op *op)
{
	/*
	 * First test with 4 address bytes. The opcode itself might
	 * be a 3B addressing opcode but we don't care, because
	 * SPI controller implementation should not check the opcode,
	 * but just the sequence.
	 */
	op->addr.nbytes = 4;
	if (!spi_mem_supports_op(nor->spimem, op)) {
		if (nor->mtd.size > SZ_16M)
			return -ENOTSUPP;

		/* If flash size <= 16MB, 3 address bytes are sufficient */
		op->addr.nbytes = 3;
		if (!spi_mem_supports_op(nor->spimem, op))
			return -ENOTSUPP;
	}

	return 0;
}

/**
 * spi_nor_spimem_check_readop - check if the read op is supported
 *                               by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@read:        pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
				       const struct spi_nor_read_command *read)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_DUMMY(0, 1),
					  SPI_MEM_OP_DATA_IN(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
			  op.dummy.buswidth / 8;

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_check_pp - check if the page program op is supported
 *                           by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@pp:          pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
				   const struct spi_nor_pp_command *pp)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_NO_DUMMY,
					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
 *                                based on SPI controller capabilities
 * @nor:        pointer to a 'struct spi_nor'
 * @params:     pointer to the 'struct spi_nor_flash_parameter'
 *              representing SPI NOR flash capabilities
 * @hwcaps:     pointer to resulting capabilities after adjusting
 *              according to controller and flash's capability
 */
static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 *hwcaps)
{
	unsigned int cap;

	/* DTR modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_DTR;

	/* X-X-X modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_X_X_X;

	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
		int rdidx, ppidx;

		if (!(*hwcaps & BIT(cap)))
			continue;

		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
		if (rdidx >= 0 &&
		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
			*hwcaps &= ~BIT(cap);

		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
		if (ppidx < 0)
			continue;

		if (spi_nor_spimem_check_pp(nor,
					    &params->page_programs[ppidx]))
			*hwcaps &= ~BIT(cap);
	}
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
/**
 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
 * @buf:	buffer where the SFDP data are copied into
 *
 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 * guaranteed to be dma-safe.
 *
 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 *          otherwise.
 */
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
					size_t len, void *buf)
{
	void *dma_safe_buf;
	int ret;

	dma_safe_buf = kmalloc(len, GFP_KERNEL);
	if (!dma_safe_buf)
		return -ENOMEM;

	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
	memcpy(buf, dma_safe_buf, len);
	kfree(dma_safe_buf);

	return ret;
}

3107 3108
/* Fast Read settings. */

3109
static void
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
				    u16 half,
				    enum spi_nor_protocol proto)
{
	read->num_mode_clocks = (half >> 5) & 0x07;
	read->num_wait_states = (half >> 0) & 0x1f;
	read->opcode = (half >> 8) & 0xff;
	read->proto = proto;
}

struct sfdp_bfpt_read {
	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
	u32			hwcaps;

	/*
	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
	 * whether the Fast Read x-y-z command is supported.
	 */
	u32			supported_dword;
	u32			supported_bit;

	/*
	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
	 * encodes the op code, the number of mode clocks and the number of wait
	 * states to be used by Fast Read x-y-z command.
	 */
	u32			settings_dword;
	u32			settings_shift;

	/* The SPI protocol for this Fast Read x-y-z command. */
	enum spi_nor_protocol	proto;
};

static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
	/* Fast Read 1-1-2 */
	{
		SNOR_HWCAPS_READ_1_1_2,
		BFPT_DWORD(1), BIT(16),	/* Supported bit */
		BFPT_DWORD(4), 0,	/* Settings */
		SNOR_PROTO_1_1_2,
	},

	/* Fast Read 1-2-2 */
	{
		SNOR_HWCAPS_READ_1_2_2,
		BFPT_DWORD(1), BIT(20),	/* Supported bit */
		BFPT_DWORD(4), 16,	/* Settings */
		SNOR_PROTO_1_2_2,
	},

	/* Fast Read 2-2-2 */
	{
		SNOR_HWCAPS_READ_2_2_2,
		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
		BFPT_DWORD(6), 16,	/* Settings */
		SNOR_PROTO_2_2_2,
	},

	/* Fast Read 1-1-4 */
	{
		SNOR_HWCAPS_READ_1_1_4,
		BFPT_DWORD(1), BIT(22),	/* Supported bit */
		BFPT_DWORD(3), 16,	/* Settings */
		SNOR_PROTO_1_1_4,
	},

	/* Fast Read 1-4-4 */
	{
		SNOR_HWCAPS_READ_1_4_4,
		BFPT_DWORD(1), BIT(21),	/* Supported bit */
		BFPT_DWORD(3), 0,	/* Settings */
		SNOR_PROTO_1_4_4,
	},

	/* Fast Read 4-4-4 */
	{
		SNOR_HWCAPS_READ_4_4_4,
		BFPT_DWORD(5), BIT(4),	/* Supported bit */
		BFPT_DWORD(7), 16,	/* Settings */
		SNOR_PROTO_4_4_4,
	},
};

struct sfdp_bfpt_erase {
	/*
	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
	 * op code and erase sector size to be used by Sector Erase commands.
	 */
	u32			dword;
	u32			shift;
};

static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
	/* Erase Type 1 in DWORD8 bits[15:0] */
	{BFPT_DWORD(8), 0},

	/* Erase Type 2 in DWORD8 bits[31:16] */
	{BFPT_DWORD(8), 16},

	/* Erase Type 3 in DWORD9 bits[15:0] */
	{BFPT_DWORD(9), 0},

	/* Erase Type 4 in DWORD9 bits[31:16] */
	{BFPT_DWORD(9), 16},
};

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/**
 * spi_nor_set_erase_type() - set a SPI NOR erase type
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 */
static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase,
				   u32 size, u8 opcode)
{
	erase->size = size;
	erase->opcode = opcode;
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	erase->size_shift = ffs(erase->size) - 1;
	erase->size_mask = (1 << erase->size_shift) - 1;
}

/**
 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 * @i:		erase type index as sorted in the Basic Flash Parameter Table
 *
 * The supported Erase Types will be sorted at init in ascending order, with
 * the smallest Erase Type size being the first member in the erase_type array
 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
 * the Basic Flash Parameter Table since it will be used later on to
 * synchronize with the supported Erase Types defined in SFDP optional tables.
 */
static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
				     u32 size, u8 opcode, u8 i)
{
	erase->idx = i;
	spi_nor_set_erase_type(erase, size, opcode);
}

/**
 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
 * @l:	member in the left half of the map's erase_type array
 * @r:	member in the right half of the map's erase_type array
 *
 * Comparison function used in the sort() call to sort in ascending order the
 * map's erase types, the smallest erase type size being the first member in the
 * sorted erase_type array.
 *
 * Return: the result of @l->size - @r->size
 */
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
{
	const struct spi_nor_erase_type *left = l, *right = r;

	return left->size - right->size;
}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
/**
 * spi_nor_sort_erase_mask() - sort erase mask
 * @map:	the erase map of the SPI NOR
 * @erase_mask:	the erase type mask to be sorted
 *
 * Replicate the sort done for the map's erase types in BFPT: sort the erase
 * mask in ascending order with the smallest erase type size starting from
 * BIT(0) in the sorted erase mask.
 *
 * Return: sorted erase mask.
 */
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
{
	struct spi_nor_erase_type *erase_type = map->erase_type;
	int i;
	u8 sorted_erase_mask = 0;

	if (!erase_mask)
		return 0;

	/* Replicate the sort done for the map's erase types. */
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
			sorted_erase_mask |= BIT(i);

	return sorted_erase_mask;
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/**
 * spi_nor_regions_sort_erase_types() - sort erase types in each region
 * @map:	the erase map of the SPI NOR
 *
 * Function assumes that the erase types defined in the erase map are already
 * sorted in ascending order, with the smallest erase type size being the first
 * member in the erase_type array. It replicates the sort done for the map's
 * erase types. Each region's erase bitmask will indicate which erase types are
 * supported from the sorted erase types defined in the erase map.
 * Sort the all region's erase type at init in order to speed up the process of
 * finding the best erase command at runtime.
 */
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
{
	struct spi_nor_erase_region *region = map->regions;
	u8 region_erase_mask, sorted_erase_mask;

	while (region) {
		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

3319 3320
		sorted_erase_mask = spi_nor_sort_erase_mask(map,
							    region_erase_mask);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

		/* Overwrite erase mask. */
		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
				 sorted_erase_mask;

		region = spi_nor_region_next(region);
	}
}

/**
 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
 * @map:		the erase map of the SPI NOR
 * @erase_mask:		bitmask encoding erase types that can erase the entire
 *			flash memory
 * @flash_size:		the spi nor flash memory size
 */
static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
					   u8 erase_mask, u64 flash_size)
{
	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
				     SNOR_LAST_REGION;
	map->uniform_region.size = flash_size;
	map->regions = &map->uniform_region;
	map->uniform_erase_type = erase_mask;
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
static int
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
			 const struct sfdp_parameter_header *bfpt_header,
			 const struct sfdp_bfpt *bfpt,
			 struct spi_nor_flash_parameter *params)
{
	if (nor->info->fixups && nor->info->fixups->post_bfpt)
		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
						    params);

	return 0;
}

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
/**
 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 * @nor:		pointer to a 'struct spi_nor'
 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the Basic Flash Parameter Table length and version
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Basic Flash Parameter Table is the main and only mandatory table as
 * defined by the SFDP (JESD216) specification.
 * It provides us with the total size (memory density) of the data array and
 * the number of address bytes for Fast Read, Page Program and Sector Erase
 * commands.
 * For Fast READ commands, it also gives the number of mode clock cycles and
 * wait states (regrouped in the number of dummy clock cycles) for each
 * supported instruction op code.
 * For Page Program, the page size is now available since JESD216 rev A, however
 * the supported instruction op codes are still not provided.
 * For Sector Erase commands, this table stores the supported instruction op
 * codes and the associated sector sizes.
 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 * rev A. The QER bits encode the manufacturer dependent procedure to be
 * executed to set the Quad Enable (QE) bit in some internal register of the
 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 * and IO3 hence enabling 4 (Quad) I/O lines.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_bfpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *bfpt_header,
			      struct spi_nor_flash_parameter *params)
{
3395 3396
	struct spi_nor_erase_map *map = &nor->erase_map;
	struct spi_nor_erase_type *erase_type = map->erase_type;
3397 3398 3399 3400 3401
	struct sfdp_bfpt bfpt;
	size_t len;
	int i, cmd, err;
	u32 addr;
	u16 half;
3402
	u8 erase_mask;
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
		return -EINVAL;

	/* Read the Basic Flash Parameter Table. */
	len = min_t(size_t, sizeof(bfpt),
		    bfpt_header->length * sizeof(u32));
	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
	memset(&bfpt, 0, sizeof(bfpt));
3413
	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	if (err < 0)
		return err;

	/* Fix endianness of the BFPT DWORDs. */
	for (i = 0; i < BFPT_DWORD_MAX; i++)
		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);

	/* Number of address bytes. */
	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
		nor->addr_width = 3;
		break;

	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
		nor->addr_width = 4;
		break;

	default:
		break;
	}

	/* Flash Memory Density (in bits). */
	params->size = bfpt.dwords[BFPT_DWORD(2)];
	if (params->size & BIT(31)) {
		params->size &= ~BIT(31);
3439 3440 3441 3442 3443 3444 3445 3446 3447

		/*
		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
		 * bits is unlikely to exist so this error probably means
		 * the BFPT we are reading is corrupted/wrong.
		 */
		if (params->size > 63)
			return -EINVAL;

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
		params->size = 1ULL << params->size;
	} else {
		params->size++;
	}
	params->size >>= 3; /* Convert to bytes. */

	/* Fast Read settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
		struct spi_nor_read_command *read;

		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
			params->hwcaps.mask &= ~rd->hwcaps;
			continue;
		}

		params->hwcaps.mask |= rd->hwcaps;
		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
		read = &params->reads[cmd];
		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
	}

3471 3472 3473 3474 3475 3476
	/*
	 * Sector Erase settings. Reinitialize the uniform erase map using the
	 * Erase Types defined in the bfpt table.
	 */
	erase_mask = 0;
	memset(&nor->erase_map, 0, sizeof(nor->erase_map));
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
		u32 erasesize;
		u8 opcode;

		half = bfpt.dwords[er->dword] >> er->shift;
		erasesize = half & 0xff;

		/* erasesize == 0 means this Erase Type is not supported. */
		if (!erasesize)
			continue;

		erasesize = 1U << erasesize;
		opcode = (half >> 8) & 0xff;
3491 3492 3493
		erase_mask |= BIT(i);
		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
						     opcode, i);
3494
	}
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
	/*
	 * Sort all the map's Erase Types in ascending order with the smallest
	 * erase size being the first member in the erase_type array.
	 */
	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
	     spi_nor_map_cmp_erase_type, NULL);
	/*
	 * Sort the erase types in the uniform region in order to update the
	 * uniform_erase_type bitmask. The bitmask will be used later on when
	 * selecting the uniform erase.
	 */
	spi_nor_regions_sort_erase_types(map);
	map->uniform_erase_type = map->uniform_region.offset &
				  SNOR_ERASE_TYPE_MASK;
3510 3511 3512

	/* Stop here if not JESD216 rev A or later. */
	if (bfpt_header->length < BFPT_DWORD_MAX)
3513 3514
		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
						params);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
	params->page_size = 1U << params->page_size;

	/* Quad Enable Requirements. */
	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
	case BFPT_DWORD15_QER_NONE:
		params->quad_enable = NULL;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
		params->quad_enable = spansion_no_read_cr_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR1_BIT6:
		params->quad_enable = macronix_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT7:
		params->quad_enable = sr2_bit7_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1:
		params->quad_enable = spansion_read_cr_quad_enable;
		break;

	default:
		return -EINVAL;
	}

3549
	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
3550 3551
}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)

#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
#define SMPT_CMD_READ_DUMMY_SHIFT		16
#define SMPT_CMD_READ_DUMMY(_cmd) \
	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL

#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
#define SMPT_CMD_READ_DATA_SHIFT		24
#define SMPT_CMD_READ_DATA(_cmd) \
	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)

#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
#define SMPT_CMD_OPCODE_SHIFT			8
#define SMPT_CMD_OPCODE(_cmd) \
	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)

#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
#define SMPT_MAP_REGION_COUNT_SHIFT		16
#define SMPT_MAP_REGION_COUNT(_header) \
	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)

#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
#define SMPT_MAP_ID_SHIFT			8
#define SMPT_MAP_ID(_header) \
	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)

#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
#define SMPT_MAP_REGION_SIZE_SHIFT		8
#define SMPT_MAP_REGION_SIZE(_region) \
	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)

#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)

#define SMPT_DESC_TYPE_MAP			BIT(1)
#define SMPT_DESC_END				BIT(0)

/**
 * spi_nor_smpt_addr_width() - return the address width used in the
 *			       configuration detection command.
 * @nor:	pointer to a 'struct spi_nor'
 * @settings:	configuration detection command descriptor, dword1
 */
static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
{
	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
	case SMPT_CMD_ADDRESS_LEN_0:
		return 0;
	case SMPT_CMD_ADDRESS_LEN_3:
		return 3;
	case SMPT_CMD_ADDRESS_LEN_4:
		return 4;
	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
		/* fall through */
	default:
		return nor->addr_width;
	}
}

/**
 * spi_nor_smpt_read_dummy() - return the configuration detection command read
 *			       latency, in clock cycles.
 * @nor:	pointer to a 'struct spi_nor'
 * @settings:	configuration detection command descriptor, dword1
 *
 * Return: the number of dummy cycles for an SMPT read
 */
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
{
	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);

	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
		return nor->read_dummy;
	return read_dummy;
}

/**
 * spi_nor_get_map_in_use() - get the configuration map in use
 * @nor:	pointer to a 'struct spi_nor'
 * @smpt:	pointer to the sector map parameter table
3641
 * @smpt_len:	sector map parameter table length
3642 3643
 *
 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
3644
 */
3645 3646
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
					 u8 smpt_len)
3647
{
3648
	const u32 *ret;
3649
	u8 *buf;
3650
	u32 addr;
3651
	int err;
3652
	u8 i;
3653
	u8 addr_width, read_opcode, read_dummy;
3654 3655 3656 3657 3658 3659
	u8 read_data_mask, map_id;

	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
	if (!buf)
		return ERR_PTR(-ENOMEM);
3660 3661 3662 3663 3664 3665 3666

	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;
	read_opcode = nor->read_opcode;

	map_id = 0;
	/* Determine if there are any optional Detection Command Descriptors */
3667 3668 3669 3670
	for (i = 0; i < smpt_len; i += 2) {
		if (smpt[i] & SMPT_DESC_TYPE_MAP)
			break;

3671 3672 3673 3674 3675 3676
		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
		addr = smpt[i + 1];

3677
		err = spi_nor_read_raw(nor, addr, 1, buf);
3678 3679
		if (err) {
			ret = ERR_PTR(err);
3680
			goto out;
3681
		}
3682 3683 3684 3685 3686

		/*
		 * Build an index value that is used to select the Sector Map
		 * Configuration that is currently in use.
		 */
3687
		map_id = map_id << 1 | !!(*buf & read_data_mask);
3688 3689
	}

3690 3691 3692 3693 3694 3695 3696
	/*
	 * If command descriptors are provided, they always precede map
	 * descriptors in the table. There is no need to start the iteration
	 * over smpt array all over again.
	 *
	 * Find the matching configuration map.
	 */
3697
	ret = ERR_PTR(-EINVAL);
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	while (i < smpt_len) {
		if (SMPT_MAP_ID(smpt[i]) == map_id) {
			ret = smpt + i;
			break;
		}

		/*
		 * If there are no more configuration map descriptors and no
		 * configuration ID matched the configuration identifier, the
		 * sector address map is unknown.
		 */
3709
		if (smpt[i] & SMPT_DESC_END)
3710 3711
			break;

3712 3713 3714 3715 3716 3717
		/* increment the table index to the next map */
		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
	}

	/* fall through */
out:
3718
	kfree(buf);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;
	nor->read_opcode = read_opcode;
	return ret;
}

/**
 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @erase_type:	erase type bitmask
 */
static void
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
			     const struct spi_nor_erase_type *erase,
			     const u8 erase_type)
{
	int i;

	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		if (!(erase_type & BIT(i)))
			continue;
		if (region->size & erase[i].size_mask) {
			spi_nor_region_mark_overlay(region);
			return;
		}
	}
}

/**
 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
 * @nor:	pointer to a 'struct spi_nor'
 * @smpt:	pointer to the sector map parameter table
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
					      const u32 *smpt)
{
	struct spi_nor_erase_map *map = &nor->erase_map;
3759
	struct spi_nor_erase_type *erase = map->erase_type;
3760 3761 3762 3763
	struct spi_nor_erase_region *region;
	u64 offset;
	u32 region_count;
	int i, j;
3764 3765
	u8 uniform_erase_type, save_uniform_erase_type;
	u8 erase_type, regions_erase_type;
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

	region_count = SMPT_MAP_REGION_COUNT(*smpt);
	/*
	 * The regions will be freed when the driver detaches from the
	 * device.
	 */
	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
			      GFP_KERNEL);
	if (!region)
		return -ENOMEM;
	map->regions = region;

3778
	uniform_erase_type = 0xff;
3779
	regions_erase_type = 0;
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	offset = 0;
	/* Populate regions. */
	for (i = 0; i < region_count; i++) {
		j = i + 1; /* index for the region dword */
		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
		region[i].offset = offset | erase_type;

		spi_nor_region_check_overlay(&region[i], erase, erase_type);

		/*
		 * Save the erase types that are supported in all regions and
		 * can erase the entire flash memory.
		 */
3794
		uniform_erase_type &= erase_type;
3795

3796 3797 3798 3799 3800 3801
		/*
		 * regions_erase_type mask will indicate all the erase types
		 * supported in this configuration map.
		 */
		regions_erase_type |= erase_type;

3802 3803 3804 3805
		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
			 region[i].size;
	}

3806
	save_uniform_erase_type = map->uniform_erase_type;
3807 3808 3809
	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
							  uniform_erase_type);

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	if (!regions_erase_type) {
		/*
		 * Roll back to the previous uniform_erase_type mask, SMPT is
		 * broken.
		 */
		map->uniform_erase_type = save_uniform_erase_type;
		return -EINVAL;
	}

	/*
	 * BFPT advertises all the erase types supported by all the possible
	 * map configurations. Mask out the erase types that are not supported
	 * by the current map configuration.
	 */
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
		if (!(regions_erase_type & BIT(erase[i].idx)))
			spi_nor_set_erase_type(&erase[i], 0, 0xFF);

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	spi_nor_region_mark_end(&region[i - 1]);

	return 0;
}

/**
 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
 * @nor:		pointer to a 'struct spi_nor'
 * @smpt_header:	sector map parameter table header
 *
 * This table is optional, but when available, we parse it to identify the
 * location and size of sectors within the main data array of the flash memory
 * device and to identify which Erase Types are supported by each sector.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_smpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *smpt_header)
{
	const u32 *sector_map;
	u32 *smpt;
	size_t len;
	u32 addr;
	int i, ret;

	/* Read the Sector Map Parameter Table. */
	len = smpt_header->length * sizeof(*smpt);
3855
	smpt = kmalloc(len, GFP_KERNEL);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	if (!smpt)
		return -ENOMEM;

	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
	if (ret)
		goto out;

	/* Fix endianness of the SMPT DWORDs. */
	for (i = 0; i < smpt_header->length; i++)
		smpt[i] = le32_to_cpu(smpt[i]);

3868
	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
3869 3870
	if (IS_ERR(sector_map)) {
		ret = PTR_ERR(sector_map);
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
		goto out;
	}

	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
	if (ret)
		goto out;

	spi_nor_regions_sort_erase_types(&nor->erase_map);
	/* fall through */
out:
	kfree(smpt);
	return ret;
}

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
#define SFDP_4BAIT_DWORD_MAX	2

struct sfdp_4bait {
	/* The hardware capability. */
	u32		hwcaps;

	/*
	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
	 * the associated 4-byte address op code is supported.
	 */
	u32		supported_bit;
};

/**
 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
 * @nor:		pointer to a 'struct spi_nor'.
 * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the 4-Byte Address Instruction Table length and version.
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_4bait(struct spi_nor *nor,
			       const struct sfdp_parameter_header *param_header,
			       struct spi_nor_flash_parameter *params)
{
	static const struct sfdp_4bait reads[] = {
		{ SNOR_HWCAPS_READ,		BIT(0) },
		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
	};
	static const struct sfdp_4bait programs[] = {
		{ SNOR_HWCAPS_PP,		BIT(6) },
		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
	};
	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
		{ 0u /* not used */,		BIT(9) },
		{ 0u /* not used */,		BIT(10) },
		{ 0u /* not used */,		BIT(11) },
		{ 0u /* not used */,		BIT(12) },
	};
	struct spi_nor_pp_command *params_pp = params->page_programs;
	struct spi_nor_erase_map *map = &nor->erase_map;
	struct spi_nor_erase_type *erase_type = map->erase_type;
	u32 *dwords;
	size_t len;
	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
	int i, ret;

	if (param_header->major != SFDP_JESD216_MAJOR ||
	    param_header->length < SFDP_4BAIT_DWORD_MAX)
		return -EINVAL;

	/* Read the 4-byte Address Instruction Table. */
	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;

	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
	dwords = kmalloc(len, GFP_KERNEL);
	if (!dwords)
		return -ENOMEM;

	addr = SFDP_PARAM_HEADER_PTP(param_header);
	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
	if (ret)
		return ret;

	/* Fix endianness of the 4BAIT DWORDs. */
	for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++)
		dwords[i] = le32_to_cpu(dwords[i]);

	/*
	 * Compute the subset of (Fast) Read commands for which the 4-byte
	 * version is supported.
	 */
	discard_hwcaps = 0;
	read_hwcaps = 0;
	for (i = 0; i < ARRAY_SIZE(reads); i++) {
		const struct sfdp_4bait *read = &reads[i];

		discard_hwcaps |= read->hwcaps;
		if ((params->hwcaps.mask & read->hwcaps) &&
		    (dwords[0] & read->supported_bit))
			read_hwcaps |= read->hwcaps;
	}

	/*
	 * Compute the subset of Page Program commands for which the 4-byte
	 * version is supported.
	 */
	pp_hwcaps = 0;
	for (i = 0; i < ARRAY_SIZE(programs); i++) {
		const struct sfdp_4bait *program = &programs[i];

		/*
		 * The 4 Byte Address Instruction (Optional) Table is the only
		 * SFDP table that indicates support for Page Program Commands.
		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
		 * authority for specifying Page Program support.
		 */
		discard_hwcaps |= program->hwcaps;
		if (dwords[0] & program->supported_bit)
			pp_hwcaps |= program->hwcaps;
	}

	/*
	 * Compute the subset of Sector Erase commands for which the 4-byte
	 * version is supported.
	 */
	erase_mask = 0;
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		const struct sfdp_4bait *erase = &erases[i];

		if (dwords[0] & erase->supported_bit)
			erase_mask |= BIT(i);
	}

	/* Replicate the sort done for the map's erase types in BFPT. */
	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);

	/*
	 * We need at least one 4-byte op code per read, program and erase
	 * operation; the .read(), .write() and .erase() hooks share the
	 * nor->addr_width value.
	 */
	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
		goto out;

	/*
	 * Discard all operations from the 4-byte instruction set which are
	 * not supported by this memory.
	 */
	params->hwcaps.mask &= ~discard_hwcaps;
	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);

	/* Use the 4-byte address instruction set. */
	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
		struct spi_nor_read_command *read_cmd = &params->reads[i];

		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
	}

	/* 4BAIT is the only SFDP table that indicates page program support. */
	if (pp_hwcaps & SNOR_HWCAPS_PP)
		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
					SPINOR_OP_PP_1_1_4_4B,
					SNOR_PROTO_1_1_4);
	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
					SPINOR_OP_PP_1_4_4_4B,
					SNOR_PROTO_1_4_4);

	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		if (erase_mask & BIT(i))
			erase_type[i].opcode = (dwords[1] >>
						erase_type[i].idx * 8) & 0xFF;
		else
			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
	}

	/*
	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
	 * later because we already did the conversion to 4byte opcodes. Also,
	 * this latest function implements a legacy quirk for the erase size of
	 * Spansion memory. However this quirk is no longer needed with new
	 * SFDP compliant memories.
	 */
	nor->addr_width = 4;
	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;

	/* fall through */
out:
	kfree(dwords);
	return ret;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
/**
 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 * @nor:		pointer to a 'struct spi_nor'
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 * specification. This is a standard which tends to supported by almost all
 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 * runtime the main parameters needed to perform basic SPI flash operations such
 * as Fast Read, Page Program or Sector Erase commands.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_sfdp(struct spi_nor *nor,
			      struct spi_nor_flash_parameter *params)
{
	const struct sfdp_parameter_header *param_header, *bfpt_header;
	struct sfdp_parameter_header *param_headers = NULL;
	struct sfdp_header header;
	struct device *dev = nor->dev;
	size_t psize;
	int i, err;

	/* Get the SFDP header. */
4095
	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
4096 4097 4098 4099 4100
	if (err < 0)
		return err;

	/* Check the SFDP header version. */
	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
4101
	    header.major != SFDP_JESD216_MAJOR)
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		return -EINVAL;

	/*
	 * Verify that the first and only mandatory parameter header is a
	 * Basic Flash Parameter Table header as specified in JESD216.
	 */
	bfpt_header = &header.bfpt_header;
	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
	    bfpt_header->major != SFDP_JESD216_MAJOR)
		return -EINVAL;

	/*
	 * Allocate memory then read all parameter headers with a single
	 * Read SFDP command. These parameter headers will actually be parsed
	 * twice: a first time to get the latest revision of the basic flash
	 * parameter table, then a second time to handle the supported optional
	 * tables.
	 * Hence we read the parameter headers once for all to reduce the
	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
	 * because we don't need to keep these parameter headers: the allocated
	 * memory is always released with kfree() before exiting this function.
	 */
	if (header.nph) {
		psize = header.nph * sizeof(*param_headers);

		param_headers = kmalloc(psize, GFP_KERNEL);
		if (!param_headers)
			return -ENOMEM;

		err = spi_nor_read_sfdp(nor, sizeof(header),
					psize, param_headers);
		if (err < 0) {
			dev_err(dev, "failed to read SFDP parameter headers\n");
			goto exit;
		}
	}

	/*
	 * Check other parameter headers to get the latest revision of
	 * the basic flash parameter table.
	 */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
		    param_header->major == SFDP_JESD216_MAJOR &&
		    (param_header->minor > bfpt_header->minor ||
		     (param_header->minor == bfpt_header->minor &&
		      param_header->length > bfpt_header->length)))
			bfpt_header = param_header;
	}

	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
	if (err)
		goto exit;

4158
	/* Parse optional parameter tables. */
4159 4160 4161 4162 4163
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		switch (SFDP_PARAM_HEADER_ID(param_header)) {
		case SFDP_SECTOR_MAP_ID:
4164
			err = spi_nor_parse_smpt(nor, param_header);
4165 4166
			break;

4167 4168 4169 4170
		case SFDP_4BAIT_ID:
			err = spi_nor_parse_4bait(nor, param_header, params);
			break;

4171 4172 4173 4174
		default:
			break;
		}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
		if (err) {
			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
				 SFDP_PARAM_HEADER_ID(param_header));
			/*
			 * Let's not drop all information we extracted so far
			 * if optional table parsers fail. In case of failing,
			 * each optional parser is responsible to roll back to
			 * the previously known spi_nor data.
			 */
			err = 0;
		}
4186 4187 4188 4189 4190 4191 4192
	}

exit:
	kfree(param_headers);
	return err;
}

4193 4194 4195
static int spi_nor_init_params(struct spi_nor *nor,
			       struct spi_nor_flash_parameter *params)
{
4196
	struct spi_nor_erase_map *map = &nor->erase_map;
4197
	const struct flash_info *info = nor->info;
4198 4199
	u8 i, erase_mask;

4200 4201 4202 4203
	/* Set legacy flash parameters as default. */
	memset(params, 0, sizeof(*params));

	/* Set SPI NOR sizes. */
4204
	params->size = (u64)info->sector_size * info->n_sectors;
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
	params->page_size = info->page_size;

	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

	if (!(info->flags & SPI_NOR_NO_FR)) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);
	}

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

4234 4235 4236 4237 4238 4239 4240
	if (info->flags & SPI_NOR_OCTAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
					  0, 8, SPINOR_OP_READ_1_1_8,
					  SNOR_PROTO_1_1_8);
	}

4241 4242 4243 4244 4245
	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	/*
	 * Sector Erase settings. Sort Erase Types in ascending order, with the
	 * smallest erase size starting at BIT(0).
	 */
	erase_mask = 0;
	i = 0;
	if (info->flags & SECT_4K_PMC) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K_PMC);
		i++;
	} else if (info->flags & SECT_4K) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K);
		i++;
	}
	erase_mask |= BIT(i);
	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
			       SPINOR_OP_SE);
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);

4268 4269 4270 4271 4272 4273 4274 4275
	/* Select the procedure to set the Quad Enable bit. */
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
				   SNOR_HWCAPS_PP_QUAD)) {
		switch (JEDEC_MFR(info)) {
		case SNOR_MFR_MACRONIX:
			params->quad_enable = macronix_quad_enable;
			break;

4276
		case SNOR_MFR_ST:
4277 4278 4279 4280
		case SNOR_MFR_MICRON:
			break;

		default:
4281
			/* Kept only for backward compatibility purpose. */
4282
			params->quad_enable = spansion_quad_enable;
4283 4284
			if (nor->clear_sr_bp)
				nor->clear_sr_bp = spi_nor_spansion_clear_sr_bp;
4285 4286
			break;
		}
4287 4288 4289 4290 4291 4292 4293 4294 4295

		/*
		 * Some manufacturer like GigaDevice may use different
		 * bit to set QE on different memories, so the MFR can't
		 * indicate the quad_enable method for this case, we need
		 * set it in flash info list.
		 */
		if (info->quad_enable)
			params->quad_enable = info->quad_enable;
4296 4297
	}

4298 4299 4300
	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
		struct spi_nor_flash_parameter sfdp_params;
4301
		struct spi_nor_erase_map prev_map;
4302 4303

		memcpy(&sfdp_params, params, sizeof(sfdp_params));
4304 4305
		memcpy(&prev_map, &nor->erase_map, sizeof(prev_map));

4306 4307
		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
			nor->addr_width = 0;
4308
			nor->flags &= ~SNOR_F_4B_OPCODES;
4309 4310 4311
			/* restore previous erase map */
			memcpy(&nor->erase_map, &prev_map,
			       sizeof(nor->erase_map));
4312
		} else {
4313
			memcpy(params, &sfdp_params, sizeof(*params));
4314
		}
4315 4316
	}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	return 0;
}

static int spi_nor_select_read(struct spi_nor *nor,
			       const struct spi_nor_flash_parameter *params,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &params->reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &params->page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
/**
 * spi_nor_select_uniform_erase() - select optimum uniform erase type
 * @map:		the erase map of the SPI NOR
 * @wanted_size:	the erase type size to search for. Contains the value of
 *			info->sector_size or of the "small sector" size in case
 *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
 *
 * Once the optimum uniform sector erase command is found, disable all the
 * other.
 *
 * Return: pointer to erase type on success, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
			     const u32 wanted_size)
4387
{
4388 4389 4390
	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
	int i;
	u8 uniform_erase_type = map->uniform_erase_type;
4391

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (!(uniform_erase_type & BIT(i)))
			continue;

		tested_erase = &map->erase_type[i];

		/*
		 * If the current erase size is the one, stop here:
		 * we have found the right uniform Sector Erase command.
		 */
		if (tested_erase->size == wanted_size) {
			erase = tested_erase;
			break;
		}
4406

4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		/*
		 * Otherwise, the current erase size is still a valid canditate.
		 * Select the biggest valid candidate.
		 */
		if (!erase && tested_erase->size)
			erase = tested_erase;
			/* keep iterating to find the wanted_size */
	}

	if (!erase)
		return NULL;

	/* Disable all other Sector Erase commands. */
	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
	map->uniform_erase_type |= BIT(erase - map->erase_type);
	return erase;
}

static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size)
{
	struct spi_nor_erase_map *map = &nor->erase_map;
	const struct spi_nor_erase_type *erase = NULL;
	struct mtd_info *mtd = &nor->mtd;
	int i;

	/*
	 * The previous implementation handling Sector Erase commands assumed
	 * that the SPI flash memory has an uniform layout then used only one
	 * of the supported erase sizes for all Sector Erase commands.
	 * So to be backward compatible, the new implementation also tries to
	 * manage the SPI flash memory as uniform with a single erase sector
	 * size, when possible.
	 */
4440 4441
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
4442
	wanted_size = 4096u;
4443
#endif
4444 4445 4446 4447 4448 4449 4450 4451

	if (spi_nor_has_uniform_erase(nor)) {
		erase = spi_nor_select_uniform_erase(map, wanted_size);
		if (!erase)
			return -EINVAL;
		nor->erase_opcode = erase->opcode;
		mtd->erasesize = erase->size;
		return 0;
4452
	}
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

	/*
	 * For non-uniform SPI flash memory, set mtd->erasesize to the
	 * maximum erase sector size. No need to set nor->erase_opcode.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (map->erase_type[i].size) {
			erase = &map->erase_type[i];
			break;
		}
	}

	if (!erase)
		return -EINVAL;

	mtd->erasesize = erase->size;
4469 4470 4471
	return 0;
}

4472
static int spi_nor_setup(struct spi_nor *nor,
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
			 const struct spi_nor_flash_parameter *params,
			 const struct spi_nor_hwcaps *hwcaps)
{
	u32 ignored_mask, shared_mask;
	bool enable_quad_io;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
	if (nor->spimem) {
		/*
		 * When called from spi_nor_probe(), all caps are set and we
		 * need to discard some of them based on what the SPI
		 * controller actually supports (using spi_mem_supports_op()).
		 */
		spi_nor_spimem_adjust_hwcaps(nor, params, &shared_mask);
	} else {
		/*
		 * SPI n-n-n protocols are not supported when the SPI
		 * controller directly implements the spi_nor interface.
		 * Yet another reason to switch to spi-mem.
		 */
		ignored_mask = SNOR_HWCAPS_X_X_X;
		if (shared_mask & ignored_mask) {
			dev_dbg(nor->dev,
				"SPI n-n-n protocols are not supported.\n");
			shared_mask &= ~ignored_mask;
		}
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
4524
	err = spi_nor_select_erase(nor, nor->info->sector_size);
4525 4526 4527 4528 4529 4530 4531 4532 4533
	if (err) {
		dev_err(nor->dev,
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Enable Quad I/O if needed. */
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	if (enable_quad_io && params->quad_enable)
		nor->quad_enable = params->quad_enable;
	else
		nor->quad_enable = NULL;

	return 0;
}

static int spi_nor_init(struct spi_nor *nor)
{
	int err;

4546 4547 4548 4549 4550 4551 4552
	if (nor->clear_sr_bp) {
		err = nor->clear_sr_bp(nor);
		if (err) {
			dev_err(nor->dev,
				"fail to clear block protection bits\n");
			return err;
		}
4553 4554 4555 4556
	}

	if (nor->quad_enable) {
		err = nor->quad_enable(nor);
4557 4558 4559 4560 4561 4562
		if (err) {
			dev_err(nor->dev, "quad mode not supported\n");
			return err;
		}
	}

4563
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
4564 4565 4566 4567 4568 4569 4570 4571 4572
		/*
		 * If the RESET# pin isn't hooked up properly, or the system
		 * otherwise doesn't perform a reset command in the boot
		 * sequence, it's impossible to 100% protect against unexpected
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
		 * designer) that this is bad.
		 */
		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
			  "enabling reset hack; may not recover from unexpected reboots\n");
4573
		set_4byte(nor, true);
4574
	}
4575

4576 4577 4578
	return 0;
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	struct device *dev = nor->dev;
	int ret;

	/* re-initialize the nor chip */
	ret = spi_nor_init(nor);
	if (ret)
		dev_err(dev, "resume() failed\n");
}

4592 4593 4594
void spi_nor_restore(struct spi_nor *nor)
{
	/* restore the addressing mode */
4595 4596
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
	    nor->flags & SNOR_F_BROKEN_RESET)
4597
		set_4byte(nor, false);
4598 4599 4600
}
EXPORT_SYMBOL_GPL(spi_nor_restore);

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
static const struct flash_info *spi_nor_match_id(const char *name)
{
	const struct flash_info *id = spi_nor_ids;

	while (id->name) {
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

4613 4614
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
4615
{
4616
	struct spi_nor_flash_parameter params;
4617
	const struct flash_info *info = NULL;
4618
	struct device *dev = nor->dev;
4619
	struct mtd_info *mtd = &nor->mtd;
4620
	struct device_node *np = spi_nor_get_flash_node(nor);
4621 4622 4623 4624 4625 4626 4627
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

4628 4629 4630 4631 4632
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

4633 4634 4635
	/*
	 * We need the bounce buffer early to read/write registers when going
	 * through the spi-mem layer (buffers have to be DMA-able).
4636 4637 4638 4639
	 * For spi-mem drivers, we'll reallocate a new buffer if
	 * nor->page_size turns out to be greater than PAGE_SIZE (which
	 * shouldn't happen before long since NOR pages are usually less
	 * than 1KB) after spi_nor_scan() returns.
4640 4641 4642 4643 4644 4645 4646
	 */
	nor->bouncebuf_size = PAGE_SIZE;
	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
				      GFP_KERNEL);
	if (!nor->bouncebuf)
		return -ENOMEM;

4647
	if (name)
4648
		info = spi_nor_match_id(name);
4649
	/* Try to auto-detect if chip name wasn't specified or not found */
4650 4651 4652
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
4653 4654
		return -ENOENT;

4655 4656 4657 4658 4659
	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
4660
		const struct flash_info *jinfo;
4661

4662 4663 4664 4665
		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
4666 4667 4668 4669 4670 4671 4672 4673
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
4674 4675
				 jinfo->name, info->name);
			info = jinfo;
4676 4677 4678
		}
	}

4679 4680
	nor->info = info;

4681 4682
	mutex_init(&nor->lock);

4683 4684 4685 4686 4687 4688 4689 4690
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
	/*
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set.
	 */
	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
	    nor->info->flags & SPI_NOR_HAS_LOCK)
		nor->clear_sr_bp = spi_nor_clear_sr_bp;

4701
	/* Parse the Serial Flash Discoverable Parameters table. */
4702
	ret = spi_nor_init_params(nor, &params);
4703 4704 4705
	if (ret)
		return ret;

4706
	if (!mtd->name)
4707
		mtd->name = dev_name(dev);
4708
	mtd->priv = nor;
4709 4710 4711
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
4712
	mtd->size = params.size;
4713 4714
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;
4715
	mtd->_resume = spi_nor_resume;
4716

4717
	/* NOR protection support for STmicro/Micron chips and similar */
4718 4719 4720
	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
	    info->flags & SPI_NOR_HAS_LOCK) {
4721 4722
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
4723
		nor->flash_is_locked = stm_is_locked;
4724 4725
	}

4726
	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
4727 4728
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
4729
		mtd->_is_locked = spi_nor_is_locked;
4730 4731 4732 4733 4734 4735 4736 4737
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

4738 4739
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
4740 4741
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
4742 4743
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
4744 4745
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;
4746

4747 4748 4749 4750
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
4751
	nor->page_size = params.page_size;
4752 4753 4754 4755 4756
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
4757
			params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
4758
		else
4759
			params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
4760 4761
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
4762
		params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
4763 4764
	}

4765 4766 4767
	if (of_property_read_bool(np, "broken-flash-reset"))
		nor->flags |= SNOR_F_BROKEN_RESET;

4768 4769
	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
4770
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
4771

4772 4773 4774 4775 4776 4777 4778
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
	 */
4779
	ret = spi_nor_setup(nor, &params, hwcaps);
4780 4781
	if (ret)
		return ret;
4782

4783 4784 4785
	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (info->addr_width) {
4786
		nor->addr_width = info->addr_width;
4787
	} else if (mtd->size > 0x1000000) {
4788 4789 4790 4791 4792 4793
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
	} else {
		nor->addr_width = 3;
	}

4794 4795 4796 4797
	if (info->flags & SPI_NOR_4B_OPCODES ||
	    (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M))
		nor->flags |= SNOR_F_4B_OPCODES;

4798 4799
	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
	    !(nor->flags & SNOR_F_HAS_4BAIT))
4800
		spi_nor_set_4byte_opcodes(nor);
4801

4802 4803 4804 4805 4806 4807
	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

4808
	if (info->flags & SPI_S3AN) {
4809
		ret = s3an_nor_scan(nor);
4810 4811 4812 4813
		if (ret)
			return ret;
	}

4814 4815 4816 4817 4818
	/* Send all the required SPI flash commands to initialize device */
	ret = spi_nor_init(nor);
	if (ret)
		return ret;

4819
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
4840
EXPORT_SYMBOL_GPL(spi_nor_scan);
4841

4842 4843 4844 4845 4846
static int spi_nor_probe(struct spi_mem *spimem)
{
	struct spi_device *spi = spimem->spi;
	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
	struct spi_nor *nor;
4847 4848 4849 4850 4851
	/*
	 * Enable all caps by default. The core will mask them after
	 * checking what's really supported using spi_mem_supports_op().
	 */
	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
	char *flash_name;
	int ret;

	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
	if (!nor)
		return -ENOMEM;

	nor->spimem = spimem;
	nor->dev = &spi->dev;
	spi_nor_set_flash_node(nor, spi->dev.of_node);

	spi_mem_set_drvdata(spimem, nor);

	if (data && data->name)
		nor->mtd.name = data->name;

	if (!nor->mtd.name)
		nor->mtd.name = spi_mem_get_name(spimem);

	/*
	 * For some (historical?) reason many platforms provide two different
	 * names in flash_platform_data: "name" and "type". Quite often name is
	 * set to "m25p80" and then "type" provides a real chip name.
	 * If that's the case, respect "type" and ignore a "name".
	 */
	if (data && data->type)
		flash_name = data->type;
	else if (!strcmp(spi->modalias, "spi-nor"))
		flash_name = NULL; /* auto-detect */
	else
		flash_name = spi->modalias;

	ret = spi_nor_scan(nor, flash_name, &hwcaps);
	if (ret)
		return ret;

	/*
	 * None of the existing parts have > 512B pages, but let's play safe
	 * and add this logic so that if anyone ever adds support for such
	 * a NOR we don't end up with buffer overflows.
	 */
	if (nor->page_size > PAGE_SIZE) {
		nor->bouncebuf_size = nor->page_size;
		devm_kfree(nor->dev, nor->bouncebuf);
		nor->bouncebuf = devm_kmalloc(nor->dev,
					      nor->bouncebuf_size,
					      GFP_KERNEL);
		if (!nor->bouncebuf)
			return -ENOMEM;
	}

	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
				   data ? data->nr_parts : 0);
}

static int spi_nor_remove(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);

	/* Clean up MTD stuff. */
	return mtd_device_unregister(&nor->mtd);
}

static void spi_nor_shutdown(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);
}

/*
 * Do NOT add to this array without reading the following:
 *
 * Historically, many flash devices are bound to this driver by their name. But
 * since most of these flash are compatible to some extent, and their
 * differences can often be differentiated by the JEDEC read-ID command, we
 * encourage new users to add support to the spi-nor library, and simply bind
 * against a generic string here (e.g., "jedec,spi-nor").
 *
 * Many flash names are kept here in this list (as well as in spi-nor.c) to
 * keep them available as module aliases for existing platforms.
 */
static const struct spi_device_id spi_nor_dev_ids[] = {
	/*
	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
	 * hack around the fact that the SPI core does not provide uevent
	 * matching for .of_match_table
	 */
	{"spi-nor"},

	/*
	 * Entries not used in DTs that should be safe to drop after replacing
	 * them with "spi-nor" in platform data.
	 */
	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},

	/*
	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
	 * should be kept for backward compatibility.
	 */
	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
	{"mx25l25635e"},{"mx66l51235l"},
	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
	{"s25fl064k"},
	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
	{"m25p64"},	{"m25p128"},
	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
	{"w25q80bl"},	{"w25q128"},	{"w25q256"},

	/* Flashes that can't be detected using JEDEC */
	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},

	/* Everspin MRAMs (non-JEDEC) */
	{ "mr25h128" }, /* 128 Kib, 40 MHz */
	{ "mr25h256" }, /* 256 Kib, 40 MHz */
	{ "mr25h10" },  /*   1 Mib, 40 MHz */
	{ "mr25h40" },  /*   4 Mib, 40 MHz */

	{ },
};
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);

static const struct of_device_id spi_nor_of_table[] = {
	/*
	 * Generic compatibility for SPI NOR that can be identified by the
	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
	 */
	{ .compatible = "jedec,spi-nor" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spi_nor_of_table);

/*
 * REVISIT: many of these chips have deep power-down modes, which
 * should clearly be entered on suspend() to minimize power use.
 * And also when they're otherwise idle...
 */
static struct spi_mem_driver spi_nor_driver = {
	.spidrv = {
		.driver = {
			.name = "spi-nor",
			.of_match_table = spi_nor_of_table,
		},
		.id_table = spi_nor_dev_ids,
	},
	.probe = spi_nor_probe,
	.remove = spi_nor_remove,
	.shutdown = spi_nor_shutdown,
};
module_spi_mem_driver(spi_nor_driver);

5010
MODULE_LICENSE("GPL v2");
5011 5012 5013
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");