amd_iommu.c 104.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

J
Joerg Roedel 已提交
20
#define pr_fmt(fmt)     "AMD-Vi: " fmt
21
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
22

23
#include <linux/ratelimit.h>
24
#include <linux/pci.h>
25
#include <linux/acpi.h>
26
#include <linux/amba/bus.h>
27
#include <linux/platform_device.h>
28
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
29
#include <linux/bitmap.h>
30
#include <linux/slab.h>
31
#include <linux/debugfs.h>
32
#include <linux/scatterlist.h>
33
#include <linux/dma-mapping.h>
34
#include <linux/dma-direct.h>
35
#include <linux/iommu-helper.h>
36
#include <linux/iommu.h>
37
#include <linux/delay.h>
38
#include <linux/amd-iommu.h>
39 40
#include <linux/notifier.h>
#include <linux/export.h>
41 42
#include <linux/irq.h>
#include <linux/msi.h>
43
#include <linux/dma-contiguous.h>
44
#include <linux/irqdomain.h>
45
#include <linux/percpu.h>
46
#include <linux/iova.h>
47 48 49 50
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
51
#include <asm/msidef.h>
52
#include <asm/proto.h>
53
#include <asm/iommu.h>
54
#include <asm/gart.h>
55
#include <asm/dma.h>
56 57 58

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
59
#include "irq_remapping.h"
60 61 62

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

63
#define LOOP_TIMEOUT	100000
64

65 66 67 68
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

69 70 71 72 73 74
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

75 76 77 78 79 80
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
81
 * 512GB Pages are not supported due to a hardware bug
82
 */
J
Joerg Roedel 已提交
83
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
84

85
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
86
static DEFINE_SPINLOCK(pd_bitmap_lock);
87

88
/* List of all available dev_data structures */
89
static LLIST_HEAD(dev_data_list);
90

91 92
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
93
LIST_HEAD(acpihid_map);
94

95 96 97 98
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
99
const struct iommu_ops amd_iommu_ops;
100

101
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
102
int amd_iommu_max_glx_val = -1;
103

104
static const struct dma_map_ops amd_iommu_dma_ops;
105

106 107 108
/*
 * general struct to manage commands send to an IOMMU
 */
109
struct iommu_cmd {
110 111 112
	u32 data[4];
};

113 114
struct kmem_cache *amd_iommu_irq_cache;

115
static void update_domain(struct protection_domain *domain);
116
static int protection_domain_init(struct protection_domain *domain);
117
static void detach_device(struct device *dev);
118
static void iova_domain_flush_tlb(struct iova_domain *iovad);
119

120 121 122 123 124 125 126
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

127 128
	/* IOVA RB-Tree */
	struct iova_domain iovad;
129 130
};

131 132 133
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

134 135 136 137 138 139
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

140 141
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
142
{
143
	struct acpi_device *adev = ACPI_COMPANION(dev);
144 145
	const char *hid, *uid;

146 147 148 149 150
	if (!adev)
		return -ENODEV;

	hid = acpi_device_hid(adev);
	uid = acpi_device_uid(adev);
151 152 153 154 155 156 157 158 159 160 161

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
162 163
}

164
static inline u16 get_pci_device_id(struct device *dev)
165 166 167
{
	struct pci_dev *pdev = to_pci_dev(dev);

168
	return pci_dev_id(pdev);
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

198 199 200 201 202
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

203 204 205 206 207 208
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

209
static struct iommu_dev_data *alloc_dev_data(u16 devid)
210 211 212 213 214 215 216
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

217
	dev_data->devid = devid;
218 219
	ratelimit_default_init(&dev_data->rs);

220
	llist_add(&dev_data->dev_data_list, &dev_data_list);
221 222 223
	return dev_data;
}

224 225 226
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
227
	struct llist_node *node;
228

229 230
	if (llist_empty(&dev_data_list))
		return NULL;
231

232 233
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
234
		if (dev_data->devid == devid)
235
			return dev_data;
236 237
	}

238
	return NULL;
239 240
}

241 242 243 244 245 246 247 248 249 250 251
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

252
	/* The callers make sure that get_device_id() does not fail here */
253
	devid = get_device_id(dev);
254 255 256 257 258

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

259
	ivrs_alias = amd_iommu_alias_table[devid];
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

287 288
	pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
		"for device [%04x:%04x], kernel reported alias "
289
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
290
		PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
291 292 293 294 295 296 297 298 299
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
300
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
301 302
		pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
303 304 305 306 307
	}

	return ivrs_alias;
}

308 309 310
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
311
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
312 313 314

	dev_data = search_dev_data(devid);

315
	if (dev_data == NULL) {
316
		dev_data = alloc_dev_data(devid);
317 318
		if (!dev_data)
			return NULL;
319

320 321 322 323
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

324 325 326
	return dev_data;
}

327
struct iommu_dev_data *get_dev_data(struct device *dev)
328 329 330
{
	return dev->archdata.iommu;
}
331
EXPORT_SYMBOL(get_dev_data);
332

333 334 335 336
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
337
{
338
	struct acpihid_map_entry *p, *entry = NULL;
339
	int devid;
340 341 342 343 344 345 346 347 348 349 350 351

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
352 353
	else
		iommu_group_ref_get(entry->group);
354 355

	return entry->group;
356 357
}

358 359 360 361
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
362 363
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
364 365 366
	};
	int i, pos;

G
Gil Kupfer 已提交
367 368 369
	if (pci_ats_disabled())
		return false;

370 371 372 373 374 375 376 377 378
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

379 380 381 382 383 384 385 386 387
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

388 389 390 391 392 393
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
394
	int devid;
395 396 397 398 399

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
400
	if (devid < 0)
401
		return false;
402 403 404 405 406 407 408 409 410 411 412

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

413
static void init_iommu_group(struct device *dev)
414 415 416
{
	struct iommu_group *group;

417
	group = iommu_group_get_for_dev(dev);
418 419 420 421
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
422 423 424 425 426
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
427
	struct amd_iommu *iommu;
428
	int devid;
429 430 431 432

	if (dev->archdata.iommu)
		return 0;

433
	devid = get_device_id(dev);
434
	if (devid < 0)
435 436
		return devid;

437 438
	iommu = amd_iommu_rlookup_table[devid];

439
	dev_data = find_dev_data(devid);
440 441 442
	if (!dev_data)
		return -ENOMEM;

443 444
	dev_data->alias = get_alias(dev);

Y
Yu Zhao 已提交
445 446 447 448 449 450 451 452
	/*
	 * By default we use passthrough mode for IOMMUv2 capable device.
	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
	 * invalid address), we ignore the capability for the device so
	 * it'll be forced to go into translation mode.
	 */
	if ((iommu_pass_through || !amd_iommu_force_isolation) &&
	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
453 454
		struct amd_iommu *iommu;

455
		iommu = amd_iommu_rlookup_table[dev_data->devid];
456 457 458
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

459 460
	dev->archdata.iommu = dev_data;

461
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
462

463 464 465
	return 0;
}

466 467
static void iommu_ignore_device(struct device *dev)
{
468 469
	u16 alias;
	int devid;
470 471

	devid = get_device_id(dev);
472
	if (devid < 0)
473 474
		return;

475
	alias = get_alias(dev);
476 477 478 479 480 481 482 483

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

484 485
static void iommu_uninit_device(struct device *dev)
{
486
	struct iommu_dev_data *dev_data;
487 488
	struct amd_iommu *iommu;
	int devid;
489

490
	devid = get_device_id(dev);
491
	if (devid < 0)
492
		return;
493

494 495
	iommu = amd_iommu_rlookup_table[devid];

496
	dev_data = search_dev_data(devid);
497 498 499
	if (!dev_data)
		return;

500 501 502
	if (dev_data->domain)
		detach_device(dev);

503
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
504

505 506
	iommu_group_remove_device(dev);

507
	/* Remove dma-ops */
508
	dev->dma_ops = NULL;
509

510
	/*
511 512
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
513
	 */
514
}
J
Joerg Roedel 已提交
515

516 517 518 519 520 521
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

522 523 524 525
static void dump_dte_entry(u16 devid)
{
	int i;

526
	for (i = 0; i < 4; ++i)
J
Joerg Roedel 已提交
527
		pr_err("DTE[%d]: %016llx\n", i,
528 529 530
			amd_iommu_dev_table[devid].data[i]);
}

531 532
static void dump_command(unsigned long phys_addr)
{
533
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
534 535 536
	int i;

	for (i = 0; i < 4; ++i)
J
Joerg Roedel 已提交
537
		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
538 539
}

540 541 542 543 544 545
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

546 547
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
548 549 550 551
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
552
		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
553 554
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
555
		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
556 557 558 559 560 561 562 563
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

564
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
565
{
566
	struct device *dev = iommu->iommu.dev;
567
	int type, devid, pasid, flags, tag;
568 569 570 571 572 573 574
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
575
	pasid   = PPR_PASID(*(u64 *)&event[0]);
576 577 578 579 580 581
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
J
Joerg Roedel 已提交
582
			pr_err("No event written to event log\n");
583 584 585 586 587
			return;
		}
		udelay(1);
		goto retry;
	}
588

589
	if (type == EVENT_TYPE_IO_FAULT) {
590
		amd_iommu_report_page_fault(devid, pasid, address, flags);
591 592
		return;
	}
593 594 595

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
596
		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
597
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598
			pasid, address, flags);
599
		dump_dte_entry(devid);
600 601
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
602
		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
603
			"address=0x%llx flags=0x%04x]\n",
604 605
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
606 607
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
608
		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
609
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610
			pasid, address, flags);
611 612
		break;
	case EVENT_TYPE_ILL_CMD:
613
		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
614
		dump_command(address);
615 616
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
617
		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
618
			address, flags);
619 620
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
621
		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
622 623
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
624 625
		break;
	case EVENT_TYPE_INV_DEV_REQ:
626
		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
627
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628
			pasid, address, flags);
629
		break;
630 631 632 633
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
634
		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
635
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636
			pasid, address, flags, tag);
637 638
		break;
	default:
639
		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
640
			event[0], event[1], event[2], event[3]);
641
	}
642 643

	memset(__evt, 0, 4 * sizeof(u32));
644 645 646 647 648 649 650 651 652 653
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
654
		iommu_print_event(iommu, iommu->evt_buf + head);
655
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
656 657 658 659 660
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

661
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
662 663 664 665
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
J
Joerg Roedel 已提交
666
		pr_err_ratelimited("Unknown PPR request received\n");
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
706

707 708 709
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
710

711 712 713 714 715 716 717
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
718 719
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
720 721 722 723 724 725

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
726 727 728 729
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

J
Joerg Roedel 已提交
771
			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
772 773 774 775
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
J
Joerg Roedel 已提交
776
				pr_err("GA log notifier failed.\n");
777 778 779 780 781 782 783 784 785 786 787 788 789
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

790
irqreturn_t amd_iommu_int_thread(int irq, void *data)
791
{
792 793
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
794

795 796 797
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
798
			iommu->mmio_base + MMIO_STATUS_OFFSET);
799

800
		if (status & MMIO_STATUS_EVT_INT_MASK) {
J
Joerg Roedel 已提交
801
			pr_devel("Processing IOMMU Event Log\n");
802 803
			iommu_poll_events(iommu);
		}
804

805
		if (status & MMIO_STATUS_PPR_INT_MASK) {
J
Joerg Roedel 已提交
806
			pr_devel("Processing IOMMU PPR Log\n");
807 808
			iommu_poll_ppr_log(iommu);
		}
809

810 811
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
J
Joerg Roedel 已提交
812
			pr_devel("Processing IOMMU GA Log\n");
813 814 815 816
			iommu_poll_ga_log(iommu);
		}
#endif

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
832
	return IRQ_HANDLED;
833 834
}

835 836 837 838 839
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

840 841 842 843 844 845
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

846 847 848 849 850 851 852 853 854 855
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
J
Joerg Roedel 已提交
856
		pr_alert("Completion-Wait loop timed out\n");
857 858 859 860 861 862 863
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864
			       struct iommu_cmd *cmd)
865 866 867
{
	u8 *target;

868 869 870 871
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
872 873 874 875 876

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
877
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
878
}
879

880
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
881
{
882 883
	u64 paddr = iommu_virt_to_phys((void *)address);

884 885
	WARN_ON(address & 0x7ULL);

886
	memset(cmd, 0, sizeof(*cmd));
887 888
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
889
	cmd->data[2] = 1;
890 891 892
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

893 894 895 896 897 898 899
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

900 901 902 903
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
904
	bool s;
905 906

	pages = iommu_num_pages(address, size, PAGE_SIZE);
907
	s     = false;
908 909 910 911 912 913 914

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
915
		s = true;
916 917 918 919 920 921 922 923 924 925 926
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
927
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
928 929 930
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

931 932 933 934
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
935
	bool s;
936 937

	pages = iommu_num_pages(address, size, PAGE_SIZE);
938
	s     = false;
939 940 941 942 943 944 945

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
946
		s = true;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

962 963 964 965 966 967 968
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

969
	cmd->data[0]  = pasid;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
988
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
989 990
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
991
	cmd->data[1] |= (pasid & 0xff) << 16;
992 993 994 995 996 997 998 999
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1000 1001 1002 1003 1004 1005 1006
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1007
		cmd->data[1]  = pasid;
1008 1009 1010 1011 1012 1013 1014 1015
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1016 1017 1018 1019
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1020 1021
}

1022 1023 1024 1025 1026 1027 1028
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1029 1030
/*
 * Writes the command to the IOMMUs command buffer and informs the
1031
 * hardware about the new command.
1032
 */
1033 1034 1035
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1036
{
1037
	unsigned int count = 0;
1038
	u32 left, next_tail;
1039

1040
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1041
again:
1042
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1043

1044
	if (left <= 0x20) {
1045 1046 1047
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
J
Joerg Roedel 已提交
1048
				pr_err("Command buffer timeout\n");
1049 1050
				return -EIO;
			}
1051

1052 1053
			udelay(1);
		}
1054

1055 1056 1057
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1058 1059

		goto again;
1060 1061
	}

1062
	copy_cmd_to_buffer(iommu, cmd);
1063

1064
	/* Do we need to make sure all commands are processed? */
1065
	iommu->need_sync = sync;
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1077
	raw_spin_lock_irqsave(&iommu->lock, flags);
1078
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1079
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1080

1081
	return ret;
1082 1083
}

1084 1085 1086 1087 1088
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1089 1090 1091 1092
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1093
static int iommu_completion_wait(struct amd_iommu *iommu)
1094 1095
{
	struct iommu_cmd cmd;
1096
	unsigned long flags;
1097
	int ret;
1098

1099
	if (!iommu->need_sync)
1100
		return 0;
1101

1102

1103 1104
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1105
	raw_spin_lock_irqsave(&iommu->lock, flags);
1106 1107 1108 1109

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1110
	if (ret)
1111 1112 1113 1114 1115
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1116
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1117

1118
	return ret;
1119 1120
}

1121
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1122
{
1123
	struct iommu_cmd cmd;
1124

1125
	build_inv_dte(&cmd, devid);
1126

1127 1128
	return iommu_queue_command(iommu, &cmd);
}
1129

1130
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1131 1132
{
	u32 devid;
1133

1134 1135
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1136

1137 1138
	iommu_completion_wait(iommu);
}
1139

1140 1141 1142 1143
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1144
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1145 1146
{
	u32 dom_id;
1147

1148 1149 1150 1151 1152 1153
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1154

1155
	iommu_completion_wait(iommu);
1156 1157
}

1158
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1159
{
1160
	struct iommu_cmd cmd;
1161

1162
	build_inv_all(&cmd);
1163

1164 1165 1166 1167
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1168 1169 1170 1171 1172 1173 1174 1175 1176
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1177
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1178 1179 1180 1181 1182 1183 1184 1185 1186
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1187 1188
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1189
	if (iommu_feature(iommu, FEATURE_IA)) {
1190
		amd_iommu_flush_all(iommu);
1191
	} else {
1192 1193 1194
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1195 1196 1197
	}
}

1198
/*
1199
 * Command send function for flushing on-device TLB
1200
 */
1201 1202
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1203 1204
{
	struct amd_iommu *iommu;
1205
	struct iommu_cmd cmd;
1206
	int qdep;
1207

1208 1209
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1210

1211
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1212 1213

	return iommu_queue_command(iommu, &cmd);
1214 1215
}

1216 1217 1218
/*
 * Command send function for invalidating a device table entry
 */
1219
static int device_flush_dte(struct iommu_dev_data *dev_data)
1220
{
1221
	struct amd_iommu *iommu;
1222
	u16 alias;
1223
	int ret;
1224

1225
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1226
	alias = dev_data->alias;
1227

1228
	ret = iommu_flush_dte(iommu, dev_data->devid);
1229 1230
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1231 1232 1233
	if (ret)
		return ret;

1234
	if (dev_data->ats.enabled)
1235
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1236 1237

	return ret;
1238 1239
}

1240 1241 1242 1243 1244
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1245 1246
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1247
{
1248
	struct iommu_dev_data *dev_data;
1249 1250
	struct iommu_cmd cmd;
	int ret = 0, i;
1251

1252
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1253

1254
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1255 1256 1257 1258 1259 1260 1261
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1262
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1263 1264
	}

1265 1266
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1267
		if (!dev_data->ats.enabled)
1268 1269
			continue;

1270
		ret |= device_flush_iotlb(dev_data, address, size);
1271 1272
	}

1273
	WARN_ON(ret);
1274 1275
}

1276 1277
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1278
{
1279
	__domain_flush_pages(domain, address, size, 0);
1280
}
1281

1282
/* Flush the whole IO/TLB for a given protection domain */
1283
static void domain_flush_tlb(struct protection_domain *domain)
1284
{
1285
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1286 1287
}

1288
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1289
static void domain_flush_tlb_pde(struct protection_domain *domain)
1290
{
1291
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1292 1293
}

1294
static void domain_flush_complete(struct protection_domain *domain)
1295
{
1296
	int i;
1297

1298
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1299
		if (domain && !domain->dev_iommu[i])
1300
			continue;
1301

1302 1303 1304 1305 1306
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1307
	}
1308 1309
}

1310

1311
/*
1312
 * This function flushes the DTEs for all devices in domain
1313
 */
1314
static void domain_flush_devices(struct protection_domain *domain)
1315
{
1316
	struct iommu_dev_data *dev_data;
1317

1318
	list_for_each_entry(dev_data, &domain->dev_list, list)
1319
		device_flush_dte(dev_data);
1320 1321
}

1322 1323 1324 1325 1326 1327 1328
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static void free_page_list(struct page *freelist)
{
	while (freelist != NULL) {
		unsigned long p = (unsigned long)page_address(freelist);
		freelist = freelist->freelist;
		free_page(p);
	}
}

static struct page *free_pt_page(unsigned long pt, struct page *freelist)
{
	struct page *p = virt_to_page((void *)pt);

	p->freelist = freelist;

	return p;
}

#define DEFINE_FREE_PT_FN(LVL, FN)						\
static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
{										\
	unsigned long p;							\
	u64 *pt;								\
	int i;									\
										\
	pt = (u64 *)__pt;							\
										\
	for (i = 0; i < 512; ++i) {						\
		/* PTE present? */						\
		if (!IOMMU_PTE_PRESENT(pt[i]))					\
			continue;						\
										\
		/* Large PTE? */						\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
		    PM_PTE_LEVEL(pt[i]) == 7)					\
			continue;						\
										\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
		freelist = FN(p, freelist);					\
	}									\
										\
	return free_pt_page((unsigned long)pt, freelist);			\
}

DEFINE_FREE_PT_FN(l2, free_pt_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1379 1380
static struct page *free_sub_pt(unsigned long root, int mode,
				struct page *freelist)
1381
{
1382
	switch (mode) {
1383
	case PAGE_MODE_NONE:
1384
	case PAGE_MODE_7_LEVEL:
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		break;
	case PAGE_MODE_1_LEVEL:
		freelist = free_pt_page(root, freelist);
		break;
	case PAGE_MODE_2_LEVEL:
		freelist = free_pt_l2(root, freelist);
		break;
	case PAGE_MODE_3_LEVEL:
		freelist = free_pt_l3(root, freelist);
		break;
	case PAGE_MODE_4_LEVEL:
		freelist = free_pt_l4(root, freelist);
		break;
	case PAGE_MODE_5_LEVEL:
		freelist = free_pt_l5(root, freelist);
		break;
	case PAGE_MODE_6_LEVEL:
		freelist = free_pt_l6(root, freelist);
		break;
	default:
		BUG();
	}

1408 1409 1410 1411 1412 1413 1414 1415
	return freelist;
}

static void free_pagetable(struct protection_domain *domain)
{
	unsigned long root = (unsigned long)domain->pt_root;
	struct page *freelist = NULL;

1416 1417 1418
	BUG_ON(domain->mode < PAGE_MODE_NONE ||
	       domain->mode > PAGE_MODE_6_LEVEL);

1419 1420
	free_sub_pt(root, domain->mode, freelist);

1421 1422 1423
	free_page_list(freelist);
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1443
					iommu_virt_to_phys(domain->pt_root));
1444 1445 1446 1447 1448 1449 1450 1451 1452
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1453
		      unsigned long page_size,
1454 1455 1456
		      u64 **pte_page,
		      gfp_t gfp)
{
1457
	int level, end_lvl;
1458
	u64 *pte, *page;
1459 1460

	BUG_ON(!is_power_of_2(page_size));
1461 1462 1463 1464

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1465 1466 1467 1468
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1469 1470

	while (level > end_lvl) {
1471
		u64 __pte, __npte;
1472
		int pte_level;
1473

1474 1475
		__pte     = *pte;
		pte_level = PM_PTE_LEVEL(__pte);
1476

1477 1478
		if (!IOMMU_PTE_PRESENT(__pte) ||
		    pte_level == PAGE_MODE_7_LEVEL) {
1479 1480 1481
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1482

1483
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1484

1485
			/* pte could have been changed somewhere. */
1486
			if (cmpxchg64(pte, __pte, __npte) != __pte)
1487
				free_page((unsigned long)page);
1488
			else if (pte_level == PAGE_MODE_7_LEVEL)
1489
				domain->updated = true;
1490 1491

			continue;
1492 1493
		}

1494
		/* No level skipping support yet */
1495
		if (pte_level != level)
1496 1497
			return NULL;

1498 1499
		level -= 1;

1500
		pte = IOMMU_PTE_PAGE(__pte);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1515 1516 1517
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1518 1519 1520 1521
{
	int level;
	u64 *pte;

1522 1523
	*page_size = 0;

1524 1525 1526
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1527 1528 1529
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1530

1531 1532 1533
	while (level > 0) {

		/* Not Present */
1534 1535 1536
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1537
		/* Large PTE */
1538 1539 1540
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1541 1542 1543 1544 1545

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1546 1547
		level -= 1;

1548
		/* Walk to the next level */
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1564 1565 1566 1567 1568
	}

	return pte;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
{
	unsigned long pt;
	int mode;

	while (cmpxchg64(pte, pteval, 0) != pteval) {
		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
		pteval = *pte;
	}

	if (!IOMMU_PTE_PRESENT(pteval))
		return freelist;

	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
	mode = IOMMU_PTE_MODE(pteval);

	return free_sub_pt(pt, mode, freelist);
}

1588 1589 1590 1591 1592 1593 1594
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1595 1596 1597
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1598
			  unsigned long page_size,
1599
			  int prot,
1600
			  gfp_t gfp)
1601
{
1602
	struct page *freelist = NULL;
1603
	u64 __pte, *pte;
1604
	int i, count;
1605

1606 1607 1608
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1609
	if (!(prot & IOMMU_PROT_MASK))
1610 1611
		return -EINVAL;

1612
	count = PAGE_SIZE_PTE_COUNT(page_size);
1613
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1614

1615 1616 1617
	if (!pte)
		return -ENOMEM;

1618
	for (i = 0; i < count; ++i)
1619 1620 1621 1622
		freelist = free_clear_pte(&pte[i], pte[i], freelist);

	if (freelist != NULL)
		dom->updated = true;
1623

1624
	if (count > 1) {
1625
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1626
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1627
	} else
1628
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1629 1630 1631 1632 1633 1634

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1635 1636
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1637

1638 1639
	update_domain(dom);

1640 1641 1642
	/* Everything flushed out, free pages now */
	free_page_list(freelist);

1643 1644 1645
	return 0;
}

1646 1647 1648
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1649
{
1650 1651
	unsigned long long unmapped;
	unsigned long unmap_size;
1652 1653 1654 1655 1656
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1657

1658 1659
	while (unmapped < page_size) {

1660 1661 1662 1663 1664 1665
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1666 1667 1668 1669 1670 1671 1672 1673
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1674
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1675

1676
	return unmapped;
1677 1678
}

1679 1680 1681
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1682
 * interface functions.
1683 1684
 *
 ****************************************************************************/
1685

1686

1687 1688 1689
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1690
{
1691
	unsigned long pfn = 0;
1692

1693
	pages = __roundup_pow_of_two(pages);
1694

1695 1696
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1697
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1698

1699
	if (!pfn)
1700 1701
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1702

1703
	return (pfn << PAGE_SHIFT);
1704 1705
}

1706 1707 1708
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1709
{
1710 1711
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1712

1713
	free_iova_fast(&dma_dom->iovad, address, pages);
1714 1715
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1726 1727 1728 1729
static u16 domain_id_alloc(void)
{
	int id;

1730
	spin_lock(&pd_bitmap_lock);
1731 1732 1733 1734 1735 1736
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1737
	spin_unlock(&pd_bitmap_lock);
1738 1739 1740 1741

	return id;
}

1742 1743
static void domain_id_free(int id)
{
1744
	spin_lock(&pd_bitmap_lock);
1745 1746
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1747
	spin_unlock(&pd_bitmap_lock);
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1759
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1774
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1775 1776 1777 1778 1779

		free_gcr3_tbl_level1(ptr);
	}
}

1780 1781
static void free_gcr3_table(struct protection_domain *domain)
{
1782 1783 1784 1785
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1786 1787
	else
		BUG_ON(domain->glx != 0);
1788

1789 1790 1791
	free_page((unsigned long)domain->gcr3_tbl);
}

1792 1793 1794 1795
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1796 1797
}

1798
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1799
{
1800
	struct dma_ops_domain *dom;
1801

1802
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1803 1804 1805 1806

	dma_ops_domain_flush_tlb(dom);
}

1807 1808 1809 1810
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1811 1812 1813 1814 1815
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1816
	put_iova_domain(&dom->iovad);
1817

1818
	free_pagetable(&dom->domain);
1819

1820 1821 1822
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1823 1824 1825
	kfree(dom);
}

1826 1827
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1828
 * It also initializes the page table and the address allocator data
1829 1830
 * structures required for the dma_ops interface
 */
1831
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1832 1833 1834 1835 1836 1837 1838
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1839
	if (protection_domain_init(&dma_dom->domain))
1840
		goto free_dma_dom;
1841

1842
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1843
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1844
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1845 1846 1847
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1848
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1849

1850
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1851 1852
		goto free_dma_dom;

1853 1854
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1855

1856 1857 1858 1859 1860 1861 1862 1863
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1873 1874
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1875
{
1876
	u64 pte_root = 0;
1877
	u64 flags = 0;
1878

1879
	if (domain->mode != PAGE_MODE_NONE)
1880
		pte_root = iommu_virt_to_phys(domain->pt_root);
1881

1882 1883
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1884
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1885

1886 1887
	flags = amd_iommu_dev_table[devid].data[1];

1888 1889 1890
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1891 1892 1893 1894 1895 1896 1897
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1898
	if (domain->flags & PD_IOMMUV2_MASK) {
1899
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1924
	flags &= ~DEV_DOMID_MASK;
1925 1926 1927 1928
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1929 1930 1931 1932 1933
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1934
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1935
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1936 1937

	amd_iommu_apply_erratum_63(devid);
1938 1939
}

1940 1941
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1942 1943
{
	struct amd_iommu *iommu;
1944
	u16 alias;
1945
	bool ats;
1946

1947
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1948
	alias = dev_data->alias;
1949
	ats   = dev_data->ats.enabled;
1950 1951 1952 1953 1954 1955 1956 1957 1958

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1959
	/* Update device table */
1960
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1961
	if (alias != dev_data->devid)
1962
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1963

1964
	device_flush_dte(dev_data);
1965 1966
}

1967
static void do_detach(struct iommu_dev_data *dev_data)
1968
{
1969
	struct protection_domain *domain = dev_data->domain;
1970
	struct amd_iommu *iommu;
1971
	u16 alias;
1972

1973
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1974
	alias = dev_data->alias;
1975

1976 1977 1978
	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1979
	clear_dte_entry(dev_data->devid);
1980 1981
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1982

1983
	/* Flush the DTE entry */
1984
	device_flush_dte(dev_data);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	/* Flush IOTLB */
	domain_flush_tlb_pde(domain);

	/* Wait for the flushes to finish */
	domain_flush_complete(domain);

	/* decrease reference counters - needs to happen after the flushes */
	domain->dev_iommu[iommu->index] -= 1;
	domain->dev_cnt                 -= 1;
1995 1996 1997
}

/*
1998 1999
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2000
 */
2001
static int __attach_device(struct iommu_dev_data *dev_data,
2002
			   struct protection_domain *domain)
2003
{
2004
	int ret;
2005

2006 2007 2008
	/* lock domain */
	spin_lock(&domain->lock);

2009
	ret = -EBUSY;
2010
	if (dev_data->domain != NULL)
2011
		goto out_unlock;
2012

2013
	/* Attach alias group root */
2014
	do_attach(dev_data, domain);
2015

2016 2017 2018 2019
	ret = 0;

out_unlock:

2020 2021
	/* ready */
	spin_unlock(&domain->lock);
2022

2023
	return ret;
2024
}
2025

2026 2027 2028 2029 2030 2031 2032 2033

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2034 2035 2036 2037 2038 2039
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2040
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2041 2042 2043
	if (!pos)
		return -EINVAL;

2044 2045 2046
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2047 2048 2049 2050

	return 0;
}

2051 2052
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2053 2054 2055 2056 2057 2058 2059 2060
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2072 2073
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2074 2075 2076
	if (ret)
		goto out_err;

2077 2078 2079 2080 2081 2082
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2096
/*
2097 2098
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2099
 */
2100 2101
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2102
{
2103
	struct pci_dev *pdev;
2104
	struct iommu_dev_data *dev_data;
2105
	unsigned long flags;
2106
	int ret;
2107

2108 2109
	dev_data = get_dev_data(dev);

2110 2111 2112 2113
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2114
	if (domain->flags & PD_IOMMUV2_MASK) {
2115
		if (!dev_data->passthrough)
2116 2117
			return -EINVAL;

2118 2119 2120
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2121

2122 2123
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2124
			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2125
		}
2126 2127
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2128 2129 2130
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2131

2132
skip_ats_check:
2133
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2134
	ret = __attach_device(dev_data, domain);
2135
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2136

2137 2138 2139 2140 2141
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2142
	domain_flush_tlb_pde(domain);
2143 2144

	return ret;
2145 2146
}

2147 2148 2149
/*
 * Removes a device from a protection domain (unlocked)
 */
2150
static void __detach_device(struct iommu_dev_data *dev_data)
2151
{
2152
	struct protection_domain *domain;
2153

2154
	domain = dev_data->domain;
2155

2156
	spin_lock(&domain->lock);
2157

2158
	do_detach(dev_data);
2159

2160
	spin_unlock(&domain->lock);
2161 2162 2163 2164 2165
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2166
static void detach_device(struct device *dev)
2167
{
2168
	struct protection_domain *domain;
2169
	struct iommu_dev_data *dev_data;
2170 2171
	unsigned long flags;

2172
	dev_data = get_dev_data(dev);
2173
	domain   = dev_data->domain;
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2184
	/* lock device table */
2185
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2186
	__detach_device(dev_data);
2187
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2188

2189 2190 2191
	if (!dev_is_pci(dev))
		return;

2192
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2193 2194
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2195
		pci_disable_ats(to_pci_dev(dev));
2196 2197

	dev_data->ats.enabled = false;
2198
}
2199

2200
static int amd_iommu_add_device(struct device *dev)
2201
{
2202
	struct iommu_dev_data *dev_data;
2203
	struct iommu_domain *domain;
2204
	struct amd_iommu *iommu;
2205
	int ret, devid;
2206

2207
	if (!check_device(dev) || get_dev_data(dev))
2208
		return 0;
2209

2210
	devid = get_device_id(dev);
2211
	if (devid < 0)
2212 2213
		return devid;

2214
	iommu = amd_iommu_rlookup_table[devid];
2215

2216
	ret = iommu_init_device(dev);
2217 2218
	if (ret) {
		if (ret != -ENOTSUPP)
2219
			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2220

2221
		iommu_ignore_device(dev);
2222
		dev->dma_ops = NULL;
2223 2224 2225
		goto out;
	}
	init_iommu_group(dev);
2226

2227
	dev_data = get_dev_data(dev);
2228

2229
	BUG_ON(!dev_data);
2230

2231
	if (iommu_pass_through || dev_data->iommu_v2)
2232
		iommu_request_dm_for_dev(dev);
2233

2234 2235
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2236
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2237
		dev_data->passthrough = true;
2238
	else
2239
		dev->dma_ops = &amd_iommu_dma_ops;
2240

2241
out:
2242 2243 2244 2245 2246
	iommu_completion_wait(iommu);

	return 0;
}

2247
static void amd_iommu_remove_device(struct device *dev)
2248
{
2249
	struct amd_iommu *iommu;
2250
	int devid;
2251 2252 2253 2254 2255

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2256
	if (devid < 0)
2257 2258
		return;

2259 2260 2261 2262
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2263 2264
}

2265 2266 2267 2268 2269 2270 2271 2272
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2286
static struct protection_domain *get_domain(struct device *dev)
2287
{
2288
	struct protection_domain *domain;
2289
	struct iommu_domain *io_domain;
2290

2291
	if (!check_device(dev))
2292
		return ERR_PTR(-EINVAL);
2293

2294
	domain = get_dev_data(dev)->domain;
2295 2296 2297 2298 2299 2300
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2301 2302 2303
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2304
	if (!dma_ops_domain(domain))
2305
		return ERR_PTR(-EBUSY);
2306

2307
	return domain;
2308 2309
}

2310 2311
static void update_device_table(struct protection_domain *domain)
{
2312
	struct iommu_dev_data *dev_data;
2313

2314
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2315 2316
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2317 2318 2319 2320 2321

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2322 2323
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2324
	}
2325 2326 2327 2328 2329 2330 2331 2332
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2333 2334 2335

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2336 2337 2338 2339

	domain->updated = false;
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2351

2352 2353
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2354 2355
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2356 2357
 * Must be called with the domain lock held.
 */
2358 2359 2360 2361
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2362
			       enum dma_data_direction direction,
2363
			       u64 dma_mask)
2364 2365
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2366
	dma_addr_t address, start, ret;
2367
	unsigned int pages;
2368
	int prot = 0;
2369 2370
	int i;

2371
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2372 2373
	paddr &= PAGE_MASK;

2374
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2375
	if (!address)
2376
		goto out;
2377

2378
	prot = dir2prot(direction);
2379

2380 2381
	start = address;
	for (i = 0; i < pages; ++i) {
2382 2383 2384
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2385 2386
			goto out_unmap;

2387 2388 2389 2390 2391
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2392 2393 2394 2395
	if (unlikely(amd_iommu_np_cache)) {
		domain_flush_pages(&dma_dom->domain, address, size);
		domain_flush_complete(&dma_dom->domain);
	}
2396

2397 2398
out:
	return address;
2399 2400 2401 2402 2403

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2404
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2405 2406
	}

2407 2408 2409 2410
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2411

2412
	return DMA_MAPPING_ERROR;
2413 2414
}

2415 2416 2417 2418
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2419
static void __unmap_single(struct dma_ops_domain *dma_dom,
2420 2421 2422 2423 2424 2425 2426
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2427
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2428 2429 2430 2431
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2432
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2433 2434 2435
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2436 2437 2438
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2439
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2440
	} else {
2441 2442
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2443
	}
2444 2445
}

2446 2447 2448
/*
 * The exported map_single function for dma_ops.
 */
2449 2450 2451
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2452
			   unsigned long attrs)
2453
{
2454
	phys_addr_t paddr = page_to_phys(page) + offset;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	u64 dma_mask;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
		return (dma_addr_t)paddr;
	else if (IS_ERR(domain))
		return DMA_MAPPING_ERROR;

	dma_mask = *dev->dma_mask;
	dma_dom = to_dma_ops_domain(domain);
2467

2468
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2469 2470
}

2471 2472 2473
/*
 * The exported unmap_single function for dma_ops.
 */
2474
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2475
		       enum dma_data_direction dir, unsigned long attrs)
2476
{
2477 2478 2479 2480 2481 2482 2483 2484
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return;

	dma_dom = to_dma_ops_domain(domain);
2485 2486

	__unmap_single(dma_dom, dma_addr, size, dir);
2487 2488
}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2515 2516 2517 2518
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2519
static int map_sg(struct device *dev, struct scatterlist *sglist,
2520
		  int nelems, enum dma_data_direction direction,
2521
		  unsigned long attrs)
2522
{
2523
	int mapped_pages = 0, npages = 0, prot = 0, i;
2524 2525
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
2526
	struct scatterlist *s;
2527
	unsigned long address;
2528
	u64 dma_mask;
2529
	int ret;
2530

2531 2532 2533 2534 2535 2536 2537
	domain = get_domain(dev);
	if (IS_ERR(domain))
		return 0;

	dma_dom  = to_dma_ops_domain(domain);
	dma_mask = *dev->dma_mask;

2538 2539 2540
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2541
	if (address == DMA_MAPPING_ERROR)
2542 2543 2544 2545 2546
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2547
	for_each_sg(sglist, s, nelems, i) {
2548 2549 2550 2551
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
2552

2553 2554 2555 2556 2557
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2558

2559 2560
			mapped_pages += 1;
		}
2561 2562
	}

2563 2564
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
2565 2566 2567 2568 2569 2570
		/*
		 * Add in the remaining piece of the scatter-gather offset that
		 * was masked out when we were determining the physical address
		 * via (sg_phys(s) & PAGE_MASK) earlier.
		 */
		s->dma_address += address + (s->offset & ~PAGE_MASK);
2571 2572 2573 2574 2575 2576
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
2577 2578
	dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
		npages, ret);
2579 2580 2581 2582 2583 2584

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2585

2586 2587 2588
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

2589
			if (--mapped_pages == 0)
2590 2591
				goto out_free_iova;
		}
2592 2593
	}

2594
out_free_iova:
2595
	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2596 2597

out_err:
2598
	return 0;
2599 2600
}

2601 2602 2603 2604
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2605
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2606
		     int nelems, enum dma_data_direction dir,
2607
		     unsigned long attrs)
2608
{
2609 2610 2611
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	unsigned long startaddr;
2612
	int npages;
2613 2614 2615 2616 2617 2618 2619 2620

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return;

	startaddr = sg_dma_address(sglist) & PAGE_MASK;
	dma_dom   = to_dma_ops_domain(domain);
	npages    = sg_num_pages(dev, sglist, nelems);
2621

2622
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2623 2624
}

2625 2626 2627
/*
 * The exported alloc_coherent function for dma_ops.
 */
2628
static void *alloc_coherent(struct device *dev, size_t size,
2629
			    dma_addr_t *dma_addr, gfp_t flag,
2630
			    unsigned long attrs)
2631
{
2632
	u64 dma_mask = dev->coherent_dma_mask;
2633
	struct protection_domain *domain;
2634 2635 2636
	struct dma_ops_domain *dma_dom;
	struct page *page;

2637 2638 2639 2640 2641 2642
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
2643
		return NULL;
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2654
			return NULL;
2655

2656
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2657
					get_order(size), flag & __GFP_NOWARN);
2658 2659 2660
		if (!page)
			return NULL;
	}
2661

2662 2663 2664
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2665 2666 2667
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2668
	if (*dma_addr == DMA_MAPPING_ERROR)
2669
		goto out_free;
2670 2671

	return page_address(page);
2672 2673

out_free:
2674 2675 2676 2677

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2678
	return NULL;
2679 2680
}

2681 2682 2683
/*
 * The exported free_coherent function for dma_ops.
 */
2684
static void free_coherent(struct device *dev, size_t size,
2685
			  void *virt_addr, dma_addr_t dma_addr,
2686
			  unsigned long attrs)
2687
{
2688 2689 2690
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2691

2692
	page = virt_to_page(virt_addr);
2693 2694
	size = PAGE_ALIGN(size);

2695 2696 2697 2698 2699 2700
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;

	dma_dom = to_dma_ops_domain(domain);

2701
	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2702 2703

free_mem:
2704 2705
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2706 2707
}

2708 2709 2710 2711 2712 2713
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2714
	if (!dma_direct_supported(dev, mask))
2715
		return 0;
2716
	return check_device(dev);
2717 2718
}

2719
static const struct dma_map_ops amd_iommu_dma_ops = {
2720 2721 2722 2723 2724 2725 2726
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2727 2728
};

2729 2730 2731 2732 2733
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2734
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
2772
				pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2773 2774 2775 2776 2777 2778 2779 2780
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2781
int __init amd_iommu_init_api(void)
2782
{
2783
	int ret, err = 0;
2784 2785 2786 2787

	ret = iova_cache_get();
	if (ret)
		return ret;
2788

2789 2790 2791 2792
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2793 2794 2795 2796 2797 2798 2799 2800
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2801 2802 2803
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2804

2805
	return 0;
2806 2807
}

2808 2809
int __init amd_iommu_init_dma_ops(void)
{
2810
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2811 2812
	iommu_detected = 1;

2813
	if (amd_iommu_unmap_flush)
J
Joerg Roedel 已提交
2814
		pr_info("IO/TLB flush on unmap enabled\n");
2815
	else
J
Joerg Roedel 已提交
2816
		pr_info("Lazy IO/TLB flushing enabled\n");
2817

2818
	return 0;
2819

2820
}
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2834
	struct iommu_dev_data *entry;
2835 2836
	unsigned long flags;

2837
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2838

2839 2840 2841
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2842
		BUG_ON(!entry->domain);
2843
		__detach_device(entry);
2844
	}
2845

2846
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2847 2848
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2872
static struct protection_domain *protection_domain_alloc(void)
2873 2874 2875 2876 2877
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2878
		return NULL;
2879

2880
	if (protection_domain_init(domain))
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		goto out_err;

	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2891
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2892
{
2893
	struct protection_domain *pdomain;
2894
	struct dma_ops_domain *dma_domain;
2895

2896 2897 2898 2899 2900
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2901

2902 2903 2904 2905 2906 2907
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2908

2909 2910 2911
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2912

2913 2914 2915 2916
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
J
Joerg Roedel 已提交
2917
			pr_err("Failed to allocate\n");
2918 2919 2920 2921
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2922 2923 2924 2925
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2926

2927 2928
		pdomain->mode = PAGE_MODE_NONE;
		break;
2929 2930 2931
	default:
		return NULL;
	}
2932

2933
	return &pdomain->domain;
2934 2935
}

2936
static void amd_iommu_domain_free(struct iommu_domain *dom)
2937
{
2938
	struct protection_domain *domain;
2939
	struct dma_ops_domain *dma_dom;
2940

2941 2942
	domain = to_pdomain(dom);

2943 2944 2945 2946 2947
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2948 2949
	if (!dom)
		return;
2950

2951 2952
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2953
		/* Now release the domain */
2954
		dma_dom = to_dma_ops_domain(domain);
2955 2956 2957 2958 2959
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2960

2961 2962 2963 2964 2965 2966
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2967 2968
}

2969 2970 2971
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2972
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2973
	struct amd_iommu *iommu;
2974
	int devid;
2975

2976
	if (!check_device(dev))
2977 2978
		return;

2979
	devid = get_device_id(dev);
2980
	if (devid < 0)
2981
		return;
2982

2983
	if (dev_data->domain != NULL)
2984
		detach_device(dev);
2985 2986 2987 2988 2989

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2990 2991 2992 2993 2994 2995
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2996 2997 2998
	iommu_completion_wait(iommu);
}

2999 3000 3001
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3002
	struct protection_domain *domain = to_pdomain(dom);
3003
	struct iommu_dev_data *dev_data;
3004
	struct amd_iommu *iommu;
3005
	int ret;
3006

3007
	if (!check_device(dev))
3008 3009
		return -EINVAL;

3010 3011
	dev_data = dev->archdata.iommu;

3012
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3013 3014 3015
	if (!iommu)
		return -EINVAL;

3016
	if (dev_data->domain)
3017
		detach_device(dev);
3018

3019
	ret = attach_device(dev, domain);
3020

3021 3022 3023 3024 3025 3026 3027 3028 3029
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3030 3031
	iommu_completion_wait(iommu);

3032
	return ret;
3033 3034
}

3035
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3036
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3037
{
3038
	struct protection_domain *domain = to_pdomain(dom);
3039 3040 3041
	int prot = 0;
	int ret;

3042 3043 3044
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3045 3046 3047 3048 3049
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3050
	mutex_lock(&domain->api_lock);
3051
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3052 3053
	mutex_unlock(&domain->api_lock);

3054
	return ret;
3055 3056
}

3057 3058
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3059
{
3060
	struct protection_domain *domain = to_pdomain(dom);
3061
	size_t unmap_size;
3062

3063
	if (domain->mode == PAGE_MODE_NONE)
3064
		return 0;
3065

3066
	mutex_lock(&domain->api_lock);
3067
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3068
	mutex_unlock(&domain->api_lock);
3069

3070
	return unmap_size;
3071 3072
}

3073
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3074
					  dma_addr_t iova)
3075
{
3076
	struct protection_domain *domain = to_pdomain(dom);
3077
	unsigned long offset_mask, pte_pgsize;
3078
	u64 *pte, __pte;
3079

3080 3081 3082
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3083
	pte = fetch_pte(domain, iova, &pte_pgsize);
3084

3085
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3086 3087
		return 0;

3088
	offset_mask = pte_pgsize - 1;
3089
	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3090

3091
	return (__pte & ~offset_mask) | (iova & offset_mask);
3092 3093
}

3094
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3095
{
3096 3097
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3098
		return true;
3099
	case IOMMU_CAP_INTR_REMAP:
3100
		return (irq_remapping_enabled == 1);
3101 3102
	case IOMMU_CAP_NOEXEC:
		return false;
3103 3104
	default:
		break;
3105 3106
	}

3107
	return false;
S
Sheng Yang 已提交
3108 3109
}

3110 3111
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3112
{
3113
	struct iommu_resv_region *region;
3114
	struct unity_map_entry *entry;
3115
	int devid;
3116 3117

	devid = get_device_id(dev);
3118
	if (devid < 0)
3119
		return;
3120 3121

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3122
		int type, prot = 0;
3123
		size_t length;
3124 3125 3126 3127

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3128
		type   = IOMMU_RESV_DIRECT;
3129 3130 3131 3132 3133
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;
3134 3135 3136
		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
			/* Exclusion range */
			type = IOMMU_RESV_RESERVED;
3137 3138

		region = iommu_alloc_resv_region(entry->address_start,
3139
						 length, prot, type);
3140
		if (!region) {
3141
			dev_err(dev, "Out of memory allocating dm-regions\n");
3142 3143 3144 3145
			return;
		}
		list_add_tail(&region->list, head);
	}
3146 3147 3148

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3149
					 0, IOMMU_RESV_MSI);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3160 3161
}

3162
static void amd_iommu_put_resv_regions(struct device *dev,
3163 3164
				     struct list_head *head)
{
3165
	struct iommu_resv_region *entry, *next;
3166 3167 3168 3169 3170

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3171
static void amd_iommu_apply_resv_region(struct device *dev,
3172
				      struct iommu_domain *domain,
3173
				      struct iommu_resv_region *region)
3174
{
3175
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3176 3177 3178
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3179
	end   = IOVA_PFN(region->start + region->length - 1);
3180 3181 3182 3183

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3184 3185 3186 3187 3188 3189 3190
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3204
const struct iommu_ops amd_iommu_ops = {
3205
	.capable = amd_iommu_capable,
3206 3207
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3208 3209
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3210 3211
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3212
	.iova_to_phys = amd_iommu_iova_to_phys,
3213 3214
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3215
	.device_group = amd_iommu_device_group,
3216 3217 3218
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3219
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3220
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3221 3222 3223
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3224 3225
};

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3248 3249 3250

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3251
	struct protection_domain *domain = to_pdomain(dom);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3269 3270 3271

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3272
	struct protection_domain *domain = to_pdomain(dom);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3333
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3350 3351 3352 3353 3354 3355
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3387
	struct protection_domain *domain = to_pdomain(dom);
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3407
	struct protection_domain *domain = to_pdomain(dom);
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3440
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3441 3442
		}

3443
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3487
	struct protection_domain *domain = to_pdomain(dom);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3501
	struct protection_domain *domain = to_pdomain(dom);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3529 3530 3531

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3532
	struct protection_domain *pdomain;
3533

3534 3535
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3536 3537 3538
		return NULL;

	/* Only return IOMMUv2 domains */
3539
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3540 3541
		return NULL;

3542
	return &pdomain->domain;
3543 3544
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3572 3573 3574 3575 3576
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3602 3603 3604 3605 3606 3607 3608 3609 3610

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3611
static struct irq_chip amd_ir_chip;
3612
static DEFINE_SPINLOCK(iommu_table_lock);
3613

3614 3615 3616 3617 3618 3619
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3620
	dte	|= iommu_virt_to_phys(table->table);
3621 3622 3623 3624 3625 3626 3627
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3667 3668 3669 3670 3671 3672 3673 3674
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3675
static struct irq_remap_table *alloc_irq_table(u16 devid)
3676 3677
{
	struct irq_remap_table *table = NULL;
3678
	struct irq_remap_table *new_table = NULL;
3679 3680 3681 3682
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3683
	spin_lock_irqsave(&iommu_table_lock, flags);
3684 3685 3686 3687 3688 3689 3690

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3691
		goto out_unlock;
3692 3693 3694 3695

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3696
		set_remap_table_entry(iommu, devid, table);
3697
		goto out_wait;
3698
	}
3699
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3700 3701

	/* Nothing there yet, allocate new irq remapping table */
3702 3703 3704
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3705

3706
	spin_lock_irqsave(&iommu_table_lock, flags);
3707

3708 3709
	table = irq_lookup_table[devid];
	if (table)
3710
		goto out_unlock;
3711

3712 3713 3714 3715
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3716 3717
	}

3718 3719
	table = new_table;
	new_table = NULL;
3720

3721 3722 3723
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3724

3725
out_wait:
3726 3727 3728
	iommu_completion_wait(iommu);

out_unlock:
3729
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3730

3731 3732 3733 3734
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3735 3736 3737
	return table;
}

3738
static int alloc_irq_index(u16 devid, int count, bool align)
3739 3740
{
	struct irq_remap_table *table;
3741
	int index, c, alignment = 1;
3742
	unsigned long flags;
3743 3744 3745 3746
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3747

3748
	table = alloc_irq_table(devid);
3749 3750 3751
	if (!table)
		return -ENODEV;

3752 3753 3754
	if (align)
		alignment = roundup_pow_of_two(count);

3755
	raw_spin_lock_irqsave(&table->lock, flags);
3756 3757

	/* Scan table for free entries */
3758
	for (index = ALIGN(table->min_index, alignment), c = 0;
3759
	     index < MAX_IRQS_PER_TABLE;) {
3760
		if (!iommu->irte_ops->is_allocated(table, index)) {
3761
			c += 1;
3762 3763
		} else {
			c     = 0;
3764
			index = ALIGN(index + 1, alignment);
3765 3766
			continue;
		}
3767 3768 3769

		if (c == count)	{
			for (; c != 0; --c)
3770
				iommu->irte_ops->set_allocated(table, index - c + 1);
3771 3772 3773 3774

			index -= count - 1;
			goto out;
		}
3775 3776

		index++;
3777 3778 3779 3780 3781
	}

	index = -ENOSPC;

out:
3782
	raw_spin_unlock_irqrestore(&table->lock, flags);
3783 3784 3785 3786

	return index;
}

3787 3788
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3789 3790 3791 3792
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3793
	struct irte_ga *entry;
3794 3795 3796 3797 3798

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3799
	table = get_irq_table(devid);
3800 3801 3802
	if (!table)
		return -ENOMEM;

3803
	raw_spin_lock_irqsave(&table->lock, flags);
3804 3805 3806 3807 3808 3809 3810

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3811 3812
	if (data)
		data->ref = entry;
3813

3814
	raw_spin_unlock_irqrestore(&table->lock, flags);
3815 3816 3817 3818 3819 3820 3821 3822

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3823 3824 3825 3826 3827 3828 3829 3830 3831
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3832
	table = get_irq_table(devid);
3833 3834 3835
	if (!table)
		return -ENOMEM;

3836
	raw_spin_lock_irqsave(&table->lock, flags);
3837
	table->table[index] = irte->val;
3838
	raw_spin_unlock_irqrestore(&table->lock, flags);
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3856
	table = get_irq_table(devid);
3857 3858 3859
	if (!table)
		return;

3860
	raw_spin_lock_irqsave(&table->lock, flags);
3861
	iommu->irte_ops->clear_allocated(table, index);
3862
	raw_spin_unlock_irqrestore(&table->lock, flags);
3863 3864 3865 3866 3867

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3868 3869
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3870
			 u8 vector, u32 dest_apicid, int devid)
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3884
			    u8 vector, u32 dest_apicid, int devid)
3885 3886 3887 3888 3889 3890 3891 3892
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3893 3894
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3911
	modify_irte_ga(devid, index, irte, NULL);
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3927
	modify_irte_ga(devid, index, irte, NULL);
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3945
	if (!irte->lo.fields_remap.guest_mode) {
3946
		irte->hi.fields.vector = vector;
3947 3948 3949 3950
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3951 3952
		modify_irte_ga(devid, index, irte, NULL);
	}
3953 3954
}

3955
#define IRTE_ALLOCATED (~1U)
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4001
static int get_devid(struct irq_alloc_info *info)
4002
{
4003
	int devid = -1;
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4020

4021 4022
	return devid;
}
4023

4024 4025 4026 4027
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4028

4029 4030
	if (!info)
		return NULL;
4031

4032 4033 4034 4035 4036 4037
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4038

4039
	return NULL;
4040 4041
}

4042
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4043
{
4044 4045
	struct amd_iommu *iommu;
	int devid;
4046

4047 4048
	if (!info)
		return NULL;
4049

4050 4051 4052 4053
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4054
		if (devid < 0)
4055 4056
			return NULL;

4057 4058 4059
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4060 4061 4062 4063
		break;
	default:
		break;
	}
4064

4065 4066
	return NULL;
}
4067

4068 4069 4070 4071 4072 4073
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4074 4075 4076
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4077

4078 4079 4080 4081 4082 4083 4084 4085
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4086 4087 4088 4089
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4090

4091 4092
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4093 4094
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4095
				 irq_cfg->dest_apicid, devid);
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4111

4112 4113 4114 4115 4116 4117 4118
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4119

4120 4121 4122 4123
	default:
		BUG_ON(1);
		break;
	}
4124 4125
}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4146 4147
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4148
{
4149 4150
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4151
	struct amd_ir_data *data = NULL;
4152
	struct irq_cfg *cfg;
4153
	int i, ret, devid;
4154
	int index;
4155

4156 4157 4158 4159
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4160 4161
		return -EINVAL;

4162 4163 4164 4165 4166 4167
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4168

4169 4170 4171
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4172

4173 4174 4175
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4176

4177
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4194
			index = info->ioapic_pin;
4195
		} else {
4196
			index = -ENOMEM;
4197
		}
4198
	} else {
4199 4200 4201
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4202 4203 4204
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4205
		ret = index;
4206 4207
		goto out_free_parent;
	}
4208

4209 4210 4211 4212 4213 4214 4215
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4216

4217 4218 4219 4220 4221
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4232 4233 4234 4235 4236 4237
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4238

4239
	return 0;
4240

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4252 4253
}

4254 4255
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4256
{
4257 4258 4259 4260
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4261

4262 4263 4264 4265 4266 4267
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4268
			kfree(data->entry);
4269 4270 4271 4272 4273
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4274

4275 4276 4277 4278 4279
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4280
static int irq_remapping_activate(struct irq_domain *domain,
4281
				  struct irq_data *irq_data, bool reserve)
4282 4283 4284
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4285
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4286
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4287

4288 4289 4290 4291 4292 4293
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4294
	return 0;
4295 4296
}

4297 4298
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4299
{
4300 4301
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4302
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4303

4304 4305 4306
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4307
}
4308

4309
static const struct irq_domain_ops amd_ir_domain_ops = {
4310 4311 4312 4313
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4314
};
4315

4316 4317 4318 4319 4320 4321 4322 4323
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4324 4325 4326 4327 4328 4329 4330 4331
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4332 4333 4334 4335 4336 4337 4338 4339

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
J
Joerg Roedel 已提交
4340
		pr_debug("%s: Fall back to using intr legacy remap\n",
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4354
		irte->lo.fields_vapic.ga_log_intr = 1;
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4367 4368 4369 4370
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4400 4401 4402 4403 4404 4405 4406
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4407
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4408
	int ret;
4409

4410 4411 4412
	if (!iommu)
		return -ENODEV;

4413 4414 4415
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4416

4417
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4418 4419 4420 4421 4422
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4423
	send_cleanup_vector(cfg);
4424 4425

	return IRQ_SET_MASK_OK_DONE;
4426 4427
}

4428
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4429
{
4430
	struct amd_ir_data *ir_data = irq_data->chip_data;
4431

4432 4433
	*msg = ir_data->msi_entry;
}
4434

4435
static struct irq_chip amd_ir_chip = {
4436
	.name			= "AMD-IR",
4437
	.irq_ack		= apic_ack_irq,
4438 4439 4440
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4441
};
4442

4443 4444
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4445 4446 4447 4448 4449 4450 4451
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4452 4453
	if (!iommu->ir_domain)
		return -ENOMEM;
4454

4455
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4456 4457 4458
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4459 4460
	return 0;
}
4461 4462 4463 4464 4465

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4466
	struct irq_remap_table *table;
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4480 4481
	table = get_irq_table(devid);
	if (!table)
4482 4483
		return -ENODEV;

4484
	raw_spin_lock_irqsave(&table->lock, flags);
4485 4486

	if (ref->lo.fields_vapic.guest_mode) {
4487 4488 4489 4490 4491 4492
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4493 4494 4495 4496
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4497
	raw_spin_unlock_irqrestore(&table->lock, flags);
4498 4499 4500 4501 4502 4503

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4504
#endif