amd_iommu.c 103.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222
	struct llist_node *node;
223

224 225
	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
289
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
290 291 292 293 294 295 296 297
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

298 299 300
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
301
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
302 303 304

	dev_data = search_dev_data(devid);

305
	if (dev_data == NULL) {
306
		dev_data = alloc_dev_data(devid);
307 308
		if (!dev_data)
			return NULL;
309

310 311 312 313
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

314 315 316
	return dev_data;
}

317
struct iommu_dev_data *get_dev_data(struct device *dev)
318 319 320
{
	return dev->archdata.iommu;
}
321
EXPORT_SYMBOL(get_dev_data);
322

323 324 325 326
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
327
{
328
	struct acpihid_map_entry *p, *entry = NULL;
329
	int devid;
330 331 332 333 334 335 336 337 338 339 340 341

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
342 343
	else
		iommu_group_ref_get(entry->group);
344 345

	return entry->group;
346 347
}

348 349 350 351
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
352 353
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
354 355 356
	};
	int i, pos;

G
Gil Kupfer 已提交
357 358 359
	if (pci_ats_disabled())
		return false;

360 361 362 363 364 365 366 367 368
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

369 370 371 372 373 374 375 376 377
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

378 379 380 381 382 383
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
384
	int devid;
385 386 387 388 389

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
390
	if (devid < 0)
391
		return false;
392 393 394 395 396 397 398 399 400 401 402

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

403
static void init_iommu_group(struct device *dev)
404 405 406
{
	struct iommu_group *group;

407
	group = iommu_group_get_for_dev(dev);
408 409 410 411
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
412 413 414 415 416
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
417
	struct amd_iommu *iommu;
418
	int devid;
419 420 421 422

	if (dev->archdata.iommu)
		return 0;

423
	devid = get_device_id(dev);
424
	if (devid < 0)
425 426
		return devid;

427 428
	iommu = amd_iommu_rlookup_table[devid];

429
	dev_data = find_dev_data(devid);
430 431 432
	if (!dev_data)
		return -ENOMEM;

433 434
	dev_data->alias = get_alias(dev);

435
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
436 437
		struct amd_iommu *iommu;

438
		iommu = amd_iommu_rlookup_table[dev_data->devid];
439 440 441
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

442 443
	dev->archdata.iommu = dev_data;

444
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
445

446 447 448
	return 0;
}

449 450
static void iommu_ignore_device(struct device *dev)
{
451 452
	u16 alias;
	int devid;
453 454

	devid = get_device_id(dev);
455
	if (devid < 0)
456 457
		return;

458
	alias = get_alias(dev);
459 460 461 462 463 464 465 466

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

467 468
static void iommu_uninit_device(struct device *dev)
{
469
	struct iommu_dev_data *dev_data;
470 471
	struct amd_iommu *iommu;
	int devid;
472

473
	devid = get_device_id(dev);
474
	if (devid < 0)
475
		return;
476

477 478
	iommu = amd_iommu_rlookup_table[devid];

479
	dev_data = search_dev_data(devid);
480 481 482
	if (!dev_data)
		return;

483 484 485
	if (dev_data->domain)
		detach_device(dev);

486
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
487

488 489
	iommu_group_remove_device(dev);

490
	/* Remove dma-ops */
491
	dev->dma_ops = NULL;
492

493
	/*
494 495
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
496
	 */
497
}
J
Joerg Roedel 已提交
498

499 500 501 502 503 504
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

505 506 507 508
static void dump_dte_entry(u16 devid)
{
	int i;

509 510
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
511 512 513
			amd_iommu_dev_table[devid].data[i]);
}

514 515
static void dump_command(unsigned long phys_addr)
{
516
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
517 518 519 520 521 522
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

523 524 525 526 527 528
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

529 530
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

547
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
548
{
549
	struct device *dev = iommu->iommu.dev;
550
	int type, devid, pasid, flags, tag;
551 552 553 554 555 556 557
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
558
	pasid   = PPR_PASID(*(u64 *)&event[0]);
559 560 561 562 563 564 565 566 567 568 569 570
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
571

572
	if (type == EVENT_TYPE_IO_FAULT) {
573
		amd_iommu_report_page_fault(devid, pasid, address, flags);
574 575
		return;
	} else {
576
		dev_err(dev, "AMD-Vi: Event logged [");
577
	}
578 579 580

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
581
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
582
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
583
			pasid, address, flags);
584
		dump_dte_entry(devid);
585 586
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
587 588 589 590
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
591 592
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
593
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
594
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
595
			pasid, address, flags);
596 597
		break;
	case EVENT_TYPE_ILL_CMD:
598
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
599
		dump_command(address);
600 601
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
602 603
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
604 605
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
606
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
607 608
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
609 610
		break;
	case EVENT_TYPE_INV_DEV_REQ:
611
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
612
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
613
			pasid, address, flags);
614
		break;
615 616 617 618 619 620 621
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
622 623
		break;
	default:
624
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
625
			event[0], event[1], event[2], event[3]);
626
	}
627 628

	memset(__evt, 0, 4 * sizeof(u32));
629 630 631 632 633 634 635 636 637 638
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
639
		iommu_print_event(iommu, iommu->evt_buf + head);
640
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
641 642 643 644 645
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

646
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
691

692 693 694
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
695

696 697 698 699 700 701 702
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
703 704
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
705 706 707 708 709 710

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 712 713 714
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

775
irqreturn_t amd_iommu_int_thread(int irq, void *data)
776
{
777 778
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
779

780 781 782
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
783
			iommu->mmio_base + MMIO_STATUS_OFFSET);
784

785 786 787 788
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
789

790 791 792 793
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
794

795 796 797 798 799 800 801
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
817
	return IRQ_HANDLED;
818 819
}

820 821 822 823 824
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

825 826 827 828 829 830
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
849
			       struct iommu_cmd *cmd)
850 851 852
{
	u8 *target;

853 854 855 856
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
857 858 859 860 861

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
862
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
863
}
864

865
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
866
{
867 868
	u64 paddr = iommu_virt_to_phys((void *)address);

869 870
	WARN_ON(address & 0x7ULL);

871
	memset(cmd, 0, sizeof(*cmd));
872 873
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
874
	cmd->data[2] = 1;
875 876 877
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

878 879 880 881 882 883 884
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

885 886 887 888
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
889
	bool s;
890 891

	pages = iommu_num_pages(address, size, PAGE_SIZE);
892
	s     = false;
893 894 895 896 897 898 899

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
900
		s = true;
901 902 903 904 905 906 907 908 909 910 911
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
912
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
913 914 915
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

916 917 918 919
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
920
	bool s;
921 922

	pages = iommu_num_pages(address, size, PAGE_SIZE);
923
	s     = false;
924 925 926 927 928 929 930

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
931
		s = true;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

947 948 949 950 951 952 953
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

954
	cmd->data[0]  = pasid;
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
973
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
974 975
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
976
	cmd->data[1] |= (pasid & 0xff) << 16;
977 978 979 980 981 982 983 984
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

985 986 987 988 989 990 991
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
992
		cmd->data[1]  = pasid;
993 994 995 996 997 998 999 1000
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1001 1002 1003 1004
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1005 1006
}

1007 1008 1009 1010 1011 1012 1013
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1014 1015
/*
 * Writes the command to the IOMMUs command buffer and informs the
1016
 * hardware about the new command.
1017
 */
1018 1019 1020
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1021
{
1022
	unsigned int count = 0;
1023
	u32 left, next_tail;
1024

1025
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1026
again:
1027
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1028

1029
	if (left <= 0x20) {
1030 1031 1032 1033 1034 1035
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1036

1037 1038
			udelay(1);
		}
1039

1040 1041 1042
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1043 1044

		goto again;
1045 1046
	}

1047
	copy_cmd_to_buffer(iommu, cmd);
1048

1049
	/* Do we need to make sure all commands are processed? */
1050
	iommu->need_sync = sync;
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1062
	raw_spin_lock_irqsave(&iommu->lock, flags);
1063
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1064
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1065

1066
	return ret;
1067 1068
}

1069 1070 1071 1072 1073
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1074 1075 1076 1077
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1078
static int iommu_completion_wait(struct amd_iommu *iommu)
1079 1080
{
	struct iommu_cmd cmd;
1081
	unsigned long flags;
1082
	int ret;
1083

1084
	if (!iommu->need_sync)
1085
		return 0;
1086

1087

1088 1089
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1090
	raw_spin_lock_irqsave(&iommu->lock, flags);
1091 1092 1093 1094

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1095
	if (ret)
1096 1097 1098 1099 1100
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1101
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1102

1103
	return ret;
1104 1105
}

1106
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1107
{
1108
	struct iommu_cmd cmd;
1109

1110
	build_inv_dte(&cmd, devid);
1111

1112 1113
	return iommu_queue_command(iommu, &cmd);
}
1114

1115
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1116 1117
{
	u32 devid;
1118

1119 1120
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1121

1122 1123
	iommu_completion_wait(iommu);
}
1124

1125 1126 1127 1128
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1129
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1130 1131
{
	u32 dom_id;
1132

1133 1134 1135 1136 1137 1138
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1139

1140
	iommu_completion_wait(iommu);
1141 1142
}

1143
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1144
{
1145
	struct iommu_cmd cmd;
1146

1147
	build_inv_all(&cmd);
1148

1149 1150 1151 1152
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1153 1154 1155 1156 1157 1158 1159 1160 1161
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1162
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1163 1164 1165 1166 1167 1168 1169 1170 1171
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1172 1173
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1174
	if (iommu_feature(iommu, FEATURE_IA)) {
1175
		amd_iommu_flush_all(iommu);
1176
	} else {
1177 1178 1179
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1180 1181 1182
	}
}

1183
/*
1184
 * Command send function for flushing on-device TLB
1185
 */
1186 1187
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1188 1189
{
	struct amd_iommu *iommu;
1190
	struct iommu_cmd cmd;
1191
	int qdep;
1192

1193 1194
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1195

1196
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1197 1198

	return iommu_queue_command(iommu, &cmd);
1199 1200
}

1201 1202 1203
/*
 * Command send function for invalidating a device table entry
 */
1204
static int device_flush_dte(struct iommu_dev_data *dev_data)
1205
{
1206
	struct amd_iommu *iommu;
1207
	u16 alias;
1208
	int ret;
1209

1210
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1211
	alias = dev_data->alias;
1212

1213
	ret = iommu_flush_dte(iommu, dev_data->devid);
1214 1215
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1216 1217 1218
	if (ret)
		return ret;

1219
	if (dev_data->ats.enabled)
1220
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1221 1222

	return ret;
1223 1224
}

1225 1226 1227 1228 1229
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1230 1231
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1232
{
1233
	struct iommu_dev_data *dev_data;
1234 1235
	struct iommu_cmd cmd;
	int ret = 0, i;
1236

1237
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1238

1239
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1240 1241 1242 1243 1244 1245 1246
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1247
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1248 1249
	}

1250 1251
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1252
		if (!dev_data->ats.enabled)
1253 1254
			continue;

1255
		ret |= device_flush_iotlb(dev_data, address, size);
1256 1257
	}

1258
	WARN_ON(ret);
1259 1260
}

1261 1262
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1263
{
1264
	__domain_flush_pages(domain, address, size, 0);
1265
}
1266

1267
/* Flush the whole IO/TLB for a given protection domain */
1268
static void domain_flush_tlb(struct protection_domain *domain)
1269
{
1270
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1271 1272
}

1273
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1274
static void domain_flush_tlb_pde(struct protection_domain *domain)
1275
{
1276
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1277 1278
}

1279
static void domain_flush_complete(struct protection_domain *domain)
1280
{
1281
	int i;
1282

1283
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1284
		if (domain && !domain->dev_iommu[i])
1285
			continue;
1286

1287 1288 1289 1290 1291
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1292
	}
1293 1294
}

1295

1296
/*
1297
 * This function flushes the DTEs for all devices in domain
1298
 */
1299
static void domain_flush_devices(struct protection_domain *domain)
1300
{
1301
	struct iommu_dev_data *dev_data;
1302

1303
	list_for_each_entry(dev_data, &domain->dev_list, list)
1304
		device_flush_dte(dev_data);
1305 1306
}

1307 1308 1309 1310 1311 1312 1313
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1333
					iommu_virt_to_phys(domain->pt_root));
1334 1335 1336 1337 1338 1339 1340 1341 1342
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1343
		      unsigned long page_size,
1344 1345 1346
		      u64 **pte_page,
		      gfp_t gfp)
{
1347
	int level, end_lvl;
1348
	u64 *pte, *page;
1349 1350

	BUG_ON(!is_power_of_2(page_size));
1351 1352 1353 1354

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1355 1356 1357 1358
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1359 1360

	while (level > end_lvl) {
1361 1362 1363 1364 1365
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1366 1367 1368
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1369

1370
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1371

1372 1373
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1374 1375 1376
				free_page((unsigned long)page);
				continue;
			}
1377 1378
		}

1379 1380 1381 1382
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1400 1401 1402
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1403 1404 1405 1406
{
	int level;
	u64 *pte;

1407 1408 1409
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1410 1411 1412
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1413

1414 1415 1416
	while (level > 0) {

		/* Not Present */
1417 1418 1419
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1420
		/* Large PTE */
1421 1422 1423
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1424 1425 1426 1427 1428

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1429 1430
		level -= 1;

1431
		/* Walk to the next level */
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1447 1448 1449 1450 1451
	}

	return pte;
}

1452 1453 1454 1455 1456 1457 1458
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1459 1460 1461
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1462
			  unsigned long page_size,
1463
			  int prot,
1464
			  gfp_t gfp)
1465
{
1466
	u64 __pte, *pte;
1467
	int i, count;
1468

1469 1470 1471
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1472
	if (!(prot & IOMMU_PROT_MASK))
1473 1474
		return -EINVAL;

1475
	count = PAGE_SIZE_PTE_COUNT(page_size);
1476
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1477

1478 1479 1480
	if (!pte)
		return -ENOMEM;

1481 1482 1483
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1484

1485
	if (count > 1) {
1486
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1487
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1488
	} else
1489
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1490 1491 1492 1493 1494 1495

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1496 1497
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1498

1499 1500
	update_domain(dom);

1501 1502 1503
	return 0;
}

1504 1505 1506
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1507
{
1508 1509
	unsigned long long unmapped;
	unsigned long unmap_size;
1510 1511 1512 1513 1514
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1515

1516 1517
	while (unmapped < page_size) {

1518 1519 1520 1521 1522 1523
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1524 1525 1526 1527 1528 1529 1530 1531
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1532
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1533

1534
	return unmapped;
1535 1536
}

1537 1538 1539
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1540
 * interface functions.
1541 1542
 *
 ****************************************************************************/
1543

1544

1545 1546 1547
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1548
{
1549
	unsigned long pfn = 0;
1550

1551
	pages = __roundup_pow_of_two(pages);
1552

1553 1554
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1555
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1556

1557
	if (!pfn)
1558 1559
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1560

1561
	return (pfn << PAGE_SHIFT);
1562 1563
}

1564 1565 1566
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1567
{
1568 1569
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1570

1571
	free_iova_fast(&dma_dom->iovad, address, pages);
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1609 1610 1611 1612
static u16 domain_id_alloc(void)
{
	int id;

1613
	spin_lock(&pd_bitmap_lock);
1614 1615 1616 1617 1618 1619
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1620
	spin_unlock(&pd_bitmap_lock);
1621 1622 1623 1624

	return id;
}

1625 1626
static void domain_id_free(int id)
{
1627
	spin_lock(&pd_bitmap_lock);
1628 1629
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1630
	spin_unlock(&pd_bitmap_lock);
1631 1632
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1643
		/* PTE present? */				\
1644 1645 1646
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1647 1648 1649 1650 1651
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1664
static void free_pagetable(struct protection_domain *domain)
1665
{
1666
	unsigned long root = (unsigned long)domain->pt_root;
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1691 1692 1693
	}
}

1694 1695 1696 1697 1698 1699 1700 1701 1702
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1703
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1718
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1719 1720 1721 1722 1723

		free_gcr3_tbl_level1(ptr);
	}
}

1724 1725
static void free_gcr3_table(struct protection_domain *domain)
{
1726 1727 1728 1729
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1730 1731
	else
		BUG_ON(domain->glx != 0);
1732

1733 1734 1735
	free_page((unsigned long)domain->gcr3_tbl);
}

1736 1737 1738 1739
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1740 1741
}

1742
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1743
{
1744
	struct dma_ops_domain *dom;
1745

1746
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1747 1748 1749 1750

	dma_ops_domain_flush_tlb(dom);
}

1751 1752 1753 1754
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1755 1756 1757 1758 1759
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1760 1761
	del_domain_from_list(&dom->domain);

1762
	put_iova_domain(&dom->iovad);
1763

1764
	free_pagetable(&dom->domain);
1765

1766 1767 1768
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1769 1770 1771
	kfree(dom);
}

1772 1773
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1774
 * It also initializes the page table and the address allocator data
1775 1776
 * structures required for the dma_ops interface
 */
1777
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1778 1779 1780 1781 1782 1783 1784
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1785
	if (protection_domain_init(&dma_dom->domain))
1786
		goto free_dma_dom;
1787

1788
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1789
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1790
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1791 1792 1793
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1794
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1795

1796
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1797 1798
		goto free_dma_dom;

1799 1800
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1801

1802 1803
	add_domain_to_list(&dma_dom->domain);

1804 1805 1806 1807 1808 1809 1810 1811
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1821 1822
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1823
{
1824
	u64 pte_root = 0;
1825
	u64 flags = 0;
1826

1827
	if (domain->mode != PAGE_MODE_NONE)
1828
		pte_root = iommu_virt_to_phys(domain->pt_root);
1829

1830 1831
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1832
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1833

1834 1835
	flags = amd_iommu_dev_table[devid].data[1];

1836 1837 1838
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1839 1840 1841 1842 1843 1844 1845
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1846
	if (domain->flags & PD_IOMMUV2_MASK) {
1847
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1872
	flags &= ~DEV_DOMID_MASK;
1873 1874 1875 1876
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1877 1878 1879 1880 1881
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1882
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1883
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1884 1885

	amd_iommu_apply_erratum_63(devid);
1886 1887
}

1888 1889
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1890 1891
{
	struct amd_iommu *iommu;
1892
	u16 alias;
1893
	bool ats;
1894

1895
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1896
	alias = dev_data->alias;
1897
	ats   = dev_data->ats.enabled;
1898 1899 1900 1901 1902 1903 1904 1905 1906

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1907
	/* Update device table */
1908
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1909
	if (alias != dev_data->devid)
1910
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1911

1912
	device_flush_dte(dev_data);
1913 1914
}

1915
static void do_detach(struct iommu_dev_data *dev_data)
1916 1917
{
	struct amd_iommu *iommu;
1918
	u16 alias;
1919

1920
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1921
	alias = dev_data->alias;
1922 1923

	/* decrease reference counters */
1924 1925 1926 1927 1928 1929
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1930
	clear_dte_entry(dev_data->devid);
1931 1932
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1933

1934
	/* Flush the DTE entry */
1935
	device_flush_dte(dev_data);
1936 1937 1938
}

/*
1939 1940
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
1941
 */
1942
static int __attach_device(struct iommu_dev_data *dev_data,
1943
			   struct protection_domain *domain)
1944
{
1945
	int ret;
1946

1947 1948 1949 1950 1951 1952
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1953 1954 1955
	/* lock domain */
	spin_lock(&domain->lock);

1956
	ret = -EBUSY;
1957
	if (dev_data->domain != NULL)
1958
		goto out_unlock;
1959

1960
	/* Attach alias group root */
1961
	do_attach(dev_data, domain);
1962

1963 1964 1965 1966
	ret = 0;

out_unlock:

1967 1968
	/* ready */
	spin_unlock(&domain->lock);
1969

1970
	return ret;
1971
}
1972

1973 1974 1975 1976 1977 1978 1979 1980

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1981 1982 1983 1984 1985 1986
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1987
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1988 1989 1990
	if (!pos)
		return -EINVAL;

1991 1992 1993
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1994 1995 1996 1997

	return 0;
}

1998 1999
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2000 2001 2002 2003 2004 2005 2006 2007
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2019 2020
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2021 2022 2023
	if (ret)
		goto out_err;

2024 2025 2026 2027 2028 2029
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2043
/* FIXME: Move this to PCI code */
2044
#define PCI_PRI_TLP_OFF		(1 << 15)
2045

J
Joerg Roedel 已提交
2046
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2047
{
2048
	u16 status;
2049 2050
	int pos;

2051
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2052 2053 2054
	if (!pos)
		return false;

2055
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2056

2057
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2058 2059
}

2060
/*
2061 2062
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2063
 */
2064 2065
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2066
{
2067
	struct pci_dev *pdev;
2068
	struct iommu_dev_data *dev_data;
2069
	unsigned long flags;
2070
	int ret;
2071

2072 2073
	dev_data = get_dev_data(dev);

2074 2075 2076 2077
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2078
	if (domain->flags & PD_IOMMUV2_MASK) {
2079
		if (!dev_data->passthrough)
2080 2081
			return -EINVAL;

2082 2083 2084
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2085

2086 2087 2088 2089
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2090 2091
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2092 2093 2094
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2095

2096
skip_ats_check:
2097
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2098
	ret = __attach_device(dev_data, domain);
2099
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2100

2101 2102 2103 2104 2105
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2106
	domain_flush_tlb_pde(domain);
2107 2108

	return ret;
2109 2110
}

2111 2112 2113
/*
 * Removes a device from a protection domain (unlocked)
 */
2114
static void __detach_device(struct iommu_dev_data *dev_data)
2115
{
2116
	struct protection_domain *domain;
2117

2118 2119 2120 2121 2122
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2123 2124

	domain = dev_data->domain;
2125

2126
	spin_lock(&domain->lock);
2127

2128
	do_detach(dev_data);
2129

2130
	spin_unlock(&domain->lock);
2131 2132 2133 2134 2135
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2136
static void detach_device(struct device *dev)
2137
{
2138
	struct protection_domain *domain;
2139
	struct iommu_dev_data *dev_data;
2140 2141
	unsigned long flags;

2142
	dev_data = get_dev_data(dev);
2143
	domain   = dev_data->domain;
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2154
	/* lock device table */
2155
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2156
	__detach_device(dev_data);
2157
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2158

2159 2160 2161
	if (!dev_is_pci(dev))
		return;

2162
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2163 2164
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2165
		pci_disable_ats(to_pci_dev(dev));
2166 2167

	dev_data->ats.enabled = false;
2168
}
2169

2170
static int amd_iommu_add_device(struct device *dev)
2171
{
2172
	struct iommu_dev_data *dev_data;
2173
	struct iommu_domain *domain;
2174
	struct amd_iommu *iommu;
2175
	int ret, devid;
2176

2177
	if (!check_device(dev) || get_dev_data(dev))
2178
		return 0;
2179

2180
	devid = get_device_id(dev);
2181
	if (devid < 0)
2182 2183
		return devid;

2184
	iommu = amd_iommu_rlookup_table[devid];
2185

2186
	ret = iommu_init_device(dev);
2187 2188 2189 2190
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2191

2192
		iommu_ignore_device(dev);
2193
		dev->dma_ops = &dma_direct_ops;
2194 2195 2196
		goto out;
	}
	init_iommu_group(dev);
2197

2198
	dev_data = get_dev_data(dev);
2199

2200
	BUG_ON(!dev_data);
2201

2202
	if (iommu_pass_through || dev_data->iommu_v2)
2203
		iommu_request_dm_for_dev(dev);
2204

2205 2206
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2207
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2208
		dev_data->passthrough = true;
2209
	else
2210
		dev->dma_ops = &amd_iommu_dma_ops;
2211

2212
out:
2213 2214 2215 2216 2217
	iommu_completion_wait(iommu);

	return 0;
}

2218
static void amd_iommu_remove_device(struct device *dev)
2219
{
2220
	struct amd_iommu *iommu;
2221
	int devid;
2222 2223 2224 2225 2226

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2227
	if (devid < 0)
2228 2229
		return;

2230 2231 2232 2233
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2257
static struct protection_domain *get_domain(struct device *dev)
2258
{
2259
	struct protection_domain *domain;
2260
	struct iommu_domain *io_domain;
2261

2262
	if (!check_device(dev))
2263
		return ERR_PTR(-EINVAL);
2264

2265
	domain = get_dev_data(dev)->domain;
2266 2267 2268 2269 2270 2271
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2272 2273 2274
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2275
	if (!dma_ops_domain(domain))
2276
		return ERR_PTR(-EBUSY);
2277

2278
	return domain;
2279 2280
}

2281 2282
static void update_device_table(struct protection_domain *domain)
{
2283
	struct iommu_dev_data *dev_data;
2284

2285
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2286 2287
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2288 2289 2290 2291 2292

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2293 2294
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2295
	}
2296 2297 2298 2299 2300 2301 2302 2303
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2304 2305 2306

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2307 2308 2309 2310

	domain->updated = false;
}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2322

2323 2324
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2325 2326
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2327 2328
 * Must be called with the domain lock held.
 */
2329 2330 2331 2332
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2333
			       enum dma_data_direction direction,
2334
			       u64 dma_mask)
2335 2336
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2337
	dma_addr_t address, start, ret;
2338
	unsigned int pages;
2339
	int prot = 0;
2340 2341
	int i;

2342
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2343 2344
	paddr &= PAGE_MASK;

2345
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2346
	if (address == AMD_IOMMU_MAPPING_ERROR)
2347
		goto out;
2348

2349
	prot = dir2prot(direction);
2350

2351 2352
	start = address;
	for (i = 0; i < pages; ++i) {
2353 2354 2355
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2356 2357
			goto out_unmap;

2358 2359 2360 2361 2362
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2363
	if (unlikely(amd_iommu_np_cache)) {
2364
		domain_flush_pages(&dma_dom->domain, address, size);
2365 2366
		domain_flush_complete(&dma_dom->domain);
	}
2367

2368 2369
out:
	return address;
2370 2371 2372 2373 2374

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2375
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2376 2377
	}

2378 2379 2380 2381
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2382

2383
	return AMD_IOMMU_MAPPING_ERROR;
2384 2385
}

2386 2387 2388 2389
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2390
static void __unmap_single(struct dma_ops_domain *dma_dom,
2391 2392 2393 2394 2395 2396 2397
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2398
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2399 2400 2401 2402
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2403
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2404 2405 2406
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2407 2408 2409 2410 2411
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2412 2413
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2414
	}
2415 2416
}

2417 2418 2419
/*
 * The exported map_single function for dma_ops.
 */
2420 2421 2422
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2423
			   unsigned long attrs)
2424
{
2425
	phys_addr_t paddr = page_to_phys(page) + offset;
2426
	struct protection_domain *domain;
2427
	struct dma_ops_domain *dma_dom;
2428
	u64 dma_mask;
2429

2430 2431
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2432
		return (dma_addr_t)paddr;
2433
	else if (IS_ERR(domain))
2434
		return AMD_IOMMU_MAPPING_ERROR;
2435

2436
	dma_mask = *dev->dma_mask;
2437
	dma_dom = to_dma_ops_domain(domain);
2438

2439
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2440 2441
}

2442 2443 2444
/*
 * The exported unmap_single function for dma_ops.
 */
2445
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2446
		       enum dma_data_direction dir, unsigned long attrs)
2447 2448
{
	struct protection_domain *domain;
2449
	struct dma_ops_domain *dma_dom;
2450

2451 2452
	domain = get_domain(dev);
	if (IS_ERR(domain))
2453 2454
		return;

2455 2456 2457
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2458 2459
}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2486 2487 2488 2489
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2490
static int map_sg(struct device *dev, struct scatterlist *sglist,
2491
		  int nelems, enum dma_data_direction direction,
2492
		  unsigned long attrs)
2493
{
2494
	int mapped_pages = 0, npages = 0, prot = 0, i;
2495
	struct protection_domain *domain;
2496
	struct dma_ops_domain *dma_dom;
2497
	struct scatterlist *s;
2498
	unsigned long address;
2499
	u64 dma_mask;
2500

2501
	domain = get_domain(dev);
2502
	if (IS_ERR(domain))
2503
		return 0;
2504

2505
	dma_dom  = to_dma_ops_domain(domain);
2506
	dma_mask = *dev->dma_mask;
2507

2508 2509 2510
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2511
	if (address == AMD_IOMMU_MAPPING_ERROR)
2512 2513 2514 2515 2516
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2517
	for_each_sg(sglist, s, nelems, i) {
2518 2519 2520 2521 2522
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2523

2524 2525 2526 2527 2528
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2529

2530 2531
			mapped_pages += 1;
		}
2532 2533
	}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2551

2552 2553 2554 2555 2556 2557
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2558 2559
	}

2560 2561 2562 2563
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2564
	return 0;
2565 2566
}

2567 2568 2569 2570
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2571
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2572
		     int nelems, enum dma_data_direction dir,
2573
		     unsigned long attrs)
2574 2575
{
	struct protection_domain *domain;
2576
	struct dma_ops_domain *dma_dom;
2577 2578
	unsigned long startaddr;
	int npages = 2;
2579

2580 2581
	domain = get_domain(dev);
	if (IS_ERR(domain))
2582 2583
		return;

2584
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2585
	dma_dom   = to_dma_ops_domain(domain);
2586 2587
	npages    = sg_num_pages(dev, sglist, nelems);

2588
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2589 2590
}

2591 2592 2593
/*
 * The exported alloc_coherent function for dma_ops.
 */
2594
static void *alloc_coherent(struct device *dev, size_t size,
2595
			    dma_addr_t *dma_addr, gfp_t flag,
2596
			    unsigned long attrs)
2597
{
2598
	u64 dma_mask = dev->coherent_dma_mask;
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2620
			return NULL;
2621

2622 2623 2624 2625 2626
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size), flag);
		if (!page)
			return NULL;
	}
2627

2628 2629 2630
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2631 2632 2633
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2634
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2635
		goto out_free;
2636 2637

	return page_address(page);
2638 2639

out_free:
2640 2641 2642 2643

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2644
	return NULL;
2645 2646
}

2647 2648 2649
/*
 * The exported free_coherent function for dma_ops.
 */
2650
static void free_coherent(struct device *dev, size_t size,
2651
			  void *virt_addr, dma_addr_t dma_addr,
2652
			  unsigned long attrs)
2653
{
2654 2655 2656
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2657

2658
	page = virt_to_page(virt_addr);
2659 2660
	size = PAGE_ALIGN(size);

2661 2662 2663
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2664

2665 2666 2667
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2668

2669 2670 2671
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2672 2673
}

2674 2675 2676 2677 2678 2679
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2680
	if (!dma_direct_supported(dev, mask))
2681
		return 0;
2682
	return check_device(dev);
2683 2684
}

2685 2686 2687 2688 2689
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2690
static const struct dma_map_ops amd_iommu_dma_ops = {
2691 2692 2693 2694 2695 2696 2697
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2698
	.mapping_error	= amd_iommu_mapping_error,
2699 2700
};

2701 2702 2703 2704 2705
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2706
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2753
int __init amd_iommu_init_api(void)
2754
{
2755
	int ret, err = 0;
2756 2757 2758 2759

	ret = iova_cache_get();
	if (ret)
		return ret;
2760

2761 2762 2763 2764
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2765 2766 2767 2768 2769 2770 2771 2772
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2773 2774 2775
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2776

2777
	return 0;
2778 2779
}

2780 2781
int __init amd_iommu_init_dma_ops(void)
{
2782
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2783 2784
	iommu_detected = 1;

2785 2786
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2787 2788 2789 2790 2791
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2792 2793
	 */
	if (!swiotlb)
2794
		dma_ops = &dma_direct_ops;
2795

2796 2797 2798 2799 2800
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2801
	return 0;
2802

2803
}
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2817
	struct iommu_dev_data *entry;
2818 2819
	unsigned long flags;

2820
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2821

2822 2823 2824
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2825
		BUG_ON(!entry->domain);
2826
		__detach_device(entry);
2827
	}
2828

2829
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2830 2831
}

2832 2833 2834 2835 2836
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2837 2838
	del_domain_from_list(domain);

2839 2840 2841 2842 2843 2844
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2857
static struct protection_domain *protection_domain_alloc(void)
2858 2859 2860 2861 2862
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2863
		return NULL;
2864

2865
	if (protection_domain_init(domain))
2866 2867
		goto out_err;

2868 2869
	add_domain_to_list(domain);

2870 2871 2872 2873 2874 2875 2876 2877
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2878
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2879
{
2880
	struct protection_domain *pdomain;
2881
	struct dma_ops_domain *dma_domain;
2882

2883 2884 2885 2886 2887
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2888

2889 2890 2891 2892 2893 2894
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2895

2896 2897 2898
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2899

2900 2901 2902 2903 2904 2905 2906 2907 2908
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2909 2910 2911 2912
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2913

2914 2915
		pdomain->mode = PAGE_MODE_NONE;
		break;
2916 2917 2918
	default:
		return NULL;
	}
2919

2920
	return &pdomain->domain;
2921 2922
}

2923
static void amd_iommu_domain_free(struct iommu_domain *dom)
2924
{
2925
	struct protection_domain *domain;
2926
	struct dma_ops_domain *dma_dom;
2927

2928 2929
	domain = to_pdomain(dom);

2930 2931 2932 2933 2934
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2935 2936
	if (!dom)
		return;
2937

2938 2939
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2940
		/* Now release the domain */
2941
		dma_dom = to_dma_ops_domain(domain);
2942 2943 2944 2945 2946
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2947

2948 2949 2950 2951 2952 2953
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2954 2955
}

2956 2957 2958
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2959
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2960
	struct amd_iommu *iommu;
2961
	int devid;
2962

2963
	if (!check_device(dev))
2964 2965
		return;

2966
	devid = get_device_id(dev);
2967
	if (devid < 0)
2968
		return;
2969

2970
	if (dev_data->domain != NULL)
2971
		detach_device(dev);
2972 2973 2974 2975 2976

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2977 2978 2979 2980 2981 2982
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2983 2984 2985
	iommu_completion_wait(iommu);
}

2986 2987 2988
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2989
	struct protection_domain *domain = to_pdomain(dom);
2990
	struct iommu_dev_data *dev_data;
2991
	struct amd_iommu *iommu;
2992
	int ret;
2993

2994
	if (!check_device(dev))
2995 2996
		return -EINVAL;

2997 2998
	dev_data = dev->archdata.iommu;

2999
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3000 3001 3002
	if (!iommu)
		return -EINVAL;

3003
	if (dev_data->domain)
3004
		detach_device(dev);
3005

3006
	ret = attach_device(dev, domain);
3007

3008 3009 3010 3011 3012 3013 3014 3015 3016
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3017 3018
	iommu_completion_wait(iommu);

3019
	return ret;
3020 3021
}

3022
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3023
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3024
{
3025
	struct protection_domain *domain = to_pdomain(dom);
3026 3027 3028
	int prot = 0;
	int ret;

3029 3030 3031
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3032 3033 3034 3035 3036
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3037
	mutex_lock(&domain->api_lock);
3038
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3039 3040
	mutex_unlock(&domain->api_lock);

3041
	return ret;
3042 3043
}

3044 3045
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3046
{
3047
	struct protection_domain *domain = to_pdomain(dom);
3048
	size_t unmap_size;
3049

3050
	if (domain->mode == PAGE_MODE_NONE)
3051
		return 0;
3052

3053
	mutex_lock(&domain->api_lock);
3054
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3055
	mutex_unlock(&domain->api_lock);
3056

3057
	return unmap_size;
3058 3059
}

3060
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3061
					  dma_addr_t iova)
3062
{
3063
	struct protection_domain *domain = to_pdomain(dom);
3064
	unsigned long offset_mask, pte_pgsize;
3065
	u64 *pte, __pte;
3066

3067 3068 3069
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3070
	pte = fetch_pte(domain, iova, &pte_pgsize);
3071

3072
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3073 3074
		return 0;

3075 3076
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3077

3078
	return (__pte & ~offset_mask) | (iova & offset_mask);
3079 3080
}

3081
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3082
{
3083 3084
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3085
		return true;
3086
	case IOMMU_CAP_INTR_REMAP:
3087
		return (irq_remapping_enabled == 1);
3088 3089
	case IOMMU_CAP_NOEXEC:
		return false;
3090 3091
	}

3092
	return false;
S
Sheng Yang 已提交
3093 3094
}

3095 3096
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3097
{
3098
	struct iommu_resv_region *region;
3099
	struct unity_map_entry *entry;
3100
	int devid;
3101 3102

	devid = get_device_id(dev);
3103
	if (devid < 0)
3104
		return;
3105 3106

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3107 3108
		size_t length;
		int prot = 0;
3109 3110 3111 3112

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3113 3114 3115 3116 3117 3118 3119 3120 3121
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3122 3123 3124 3125 3126 3127 3128
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3129 3130 3131

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3132
					 0, IOMMU_RESV_MSI);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3143 3144
}

3145
static void amd_iommu_put_resv_regions(struct device *dev,
3146 3147
				     struct list_head *head)
{
3148
	struct iommu_resv_region *entry, *next;
3149 3150 3151 3152 3153

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3154
static void amd_iommu_apply_resv_region(struct device *dev,
3155
				      struct iommu_domain *domain,
3156
				      struct iommu_resv_region *region)
3157
{
3158
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3159 3160 3161
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3162
	end   = IOVA_PFN(region->start + region->length - 1);
3163 3164 3165 3166

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3167 3168 3169 3170 3171 3172 3173
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3187
const struct iommu_ops amd_iommu_ops = {
3188
	.capable = amd_iommu_capable,
3189 3190
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3191 3192
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3193 3194
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3195
	.map_sg = default_iommu_map_sg,
3196
	.iova_to_phys = amd_iommu_iova_to_phys,
3197 3198
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3199
	.device_group = amd_iommu_device_group,
3200 3201 3202
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3203
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3204
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3205 3206 3207
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3208 3209
};

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3232 3233 3234

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3235
	struct protection_domain *domain = to_pdomain(dom);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3253 3254 3255

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3256
	struct protection_domain *domain = to_pdomain(dom);
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3317
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3334 3335 3336 3337 3338 3339
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3371
	struct protection_domain *domain = to_pdomain(dom);
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3391
	struct protection_domain *domain = to_pdomain(dom);
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3424
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3425 3426
		}

3427
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3471
	struct protection_domain *domain = to_pdomain(dom);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3485
	struct protection_domain *domain = to_pdomain(dom);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3513 3514 3515

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3516
	struct protection_domain *pdomain;
3517

3518 3519
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3520 3521 3522
		return NULL;

	/* Only return IOMMUv2 domains */
3523
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3524 3525
		return NULL;

3526
	return &pdomain->domain;
3527 3528
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3556 3557 3558 3559 3560
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3586 3587 3588 3589 3590 3591 3592 3593 3594

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3595
static struct irq_chip amd_ir_chip;
3596
static DEFINE_SPINLOCK(iommu_table_lock);
3597

3598 3599 3600 3601 3602 3603
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3604
	dte	|= iommu_virt_to_phys(table->table);
3605 3606 3607 3608 3609 3610 3611
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3651 3652 3653 3654 3655 3656 3657 3658
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3659
static struct irq_remap_table *alloc_irq_table(u16 devid)
3660 3661
{
	struct irq_remap_table *table = NULL;
3662
	struct irq_remap_table *new_table = NULL;
3663 3664 3665 3666
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3667
	spin_lock_irqsave(&iommu_table_lock, flags);
3668 3669 3670 3671 3672 3673 3674

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3675
		goto out_unlock;
3676 3677 3678 3679

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3680
		set_remap_table_entry(iommu, devid, table);
3681
		goto out_wait;
3682
	}
3683
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3684 3685

	/* Nothing there yet, allocate new irq remapping table */
3686 3687 3688
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3689

3690
	spin_lock_irqsave(&iommu_table_lock, flags);
3691

3692 3693
	table = irq_lookup_table[devid];
	if (table)
3694
		goto out_unlock;
3695

3696 3697 3698 3699
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3700 3701
	}

3702 3703
	table = new_table;
	new_table = NULL;
3704

3705 3706 3707
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3708

3709
out_wait:
3710 3711 3712
	iommu_completion_wait(iommu);

out_unlock:
3713
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3714

3715 3716 3717 3718
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3719 3720 3721
	return table;
}

3722
static int alloc_irq_index(u16 devid, int count, bool align)
3723 3724
{
	struct irq_remap_table *table;
3725
	int index, c, alignment = 1;
3726
	unsigned long flags;
3727 3728 3729 3730
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3731

3732
	table = alloc_irq_table(devid);
3733 3734 3735
	if (!table)
		return -ENODEV;

3736 3737 3738
	if (align)
		alignment = roundup_pow_of_two(count);

3739
	raw_spin_lock_irqsave(&table->lock, flags);
3740 3741

	/* Scan table for free entries */
3742
	for (index = ALIGN(table->min_index, alignment), c = 0;
3743
	     index < MAX_IRQS_PER_TABLE;) {
3744
		if (!iommu->irte_ops->is_allocated(table, index)) {
3745
			c += 1;
3746 3747
		} else {
			c     = 0;
3748
			index = ALIGN(index + 1, alignment);
3749 3750
			continue;
		}
3751 3752 3753

		if (c == count)	{
			for (; c != 0; --c)
3754
				iommu->irte_ops->set_allocated(table, index - c + 1);
3755 3756 3757 3758

			index -= count - 1;
			goto out;
		}
3759 3760

		index++;
3761 3762 3763 3764 3765
	}

	index = -ENOSPC;

out:
3766
	raw_spin_unlock_irqrestore(&table->lock, flags);
3767 3768 3769 3770

	return index;
}

3771 3772
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3773 3774 3775 3776
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3777
	struct irte_ga *entry;
3778 3779 3780 3781 3782

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3783
	table = get_irq_table(devid);
3784 3785 3786
	if (!table)
		return -ENOMEM;

3787
	raw_spin_lock_irqsave(&table->lock, flags);
3788 3789 3790 3791 3792 3793 3794

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3795 3796
	if (data)
		data->ref = entry;
3797

3798
	raw_spin_unlock_irqrestore(&table->lock, flags);
3799 3800 3801 3802 3803 3804 3805 3806

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3807 3808 3809 3810 3811 3812 3813 3814 3815
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3816
	table = get_irq_table(devid);
3817 3818 3819
	if (!table)
		return -ENOMEM;

3820
	raw_spin_lock_irqsave(&table->lock, flags);
3821
	table->table[index] = irte->val;
3822
	raw_spin_unlock_irqrestore(&table->lock, flags);
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3840
	table = get_irq_table(devid);
3841 3842 3843
	if (!table)
		return;

3844
	raw_spin_lock_irqsave(&table->lock, flags);
3845
	iommu->irte_ops->clear_allocated(table, index);
3846
	raw_spin_unlock_irqrestore(&table->lock, flags);
3847 3848 3849 3850 3851

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3852 3853
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3854
			 u8 vector, u32 dest_apicid, int devid)
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3868
			    u8 vector, u32 dest_apicid, int devid)
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3894
	modify_irte_ga(devid, index, irte, NULL);
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3910
	modify_irte_ga(devid, index, irte, NULL);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3928
	if (!irte->lo.fields_remap.guest_mode) {
3929 3930 3931 3932
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3933 3934
}

3935
#define IRTE_ALLOCATED (~1U)
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3981
static int get_devid(struct irq_alloc_info *info)
3982
{
3983
	int devid = -1;
3984

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4000

4001 4002
	return devid;
}
4003

4004 4005 4006 4007
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4008

4009 4010
	if (!info)
		return NULL;
4011

4012 4013 4014 4015 4016 4017
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4018

4019
	return NULL;
4020 4021
}

4022
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4023
{
4024 4025
	struct amd_iommu *iommu;
	int devid;
4026

4027 4028
	if (!info)
		return NULL;
4029

4030 4031 4032 4033
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4034
		if (devid < 0)
4035 4036
			return NULL;

4037 4038 4039
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4040 4041 4042 4043
		break;
	default:
		break;
	}
4044

4045 4046
	return NULL;
}
4047

4048 4049 4050 4051 4052 4053
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4054 4055 4056
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4057

4058 4059 4060 4061 4062 4063 4064 4065
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4066 4067 4068 4069
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4070

4071 4072
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4073 4074
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4075
				 irq_cfg->dest_apicid, devid);
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4091

4092 4093 4094 4095 4096 4097 4098
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4099

4100 4101 4102 4103
	default:
		BUG_ON(1);
		break;
	}
4104 4105
}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4126 4127
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4128
{
4129 4130
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4131
	struct amd_ir_data *data = NULL;
4132
	struct irq_cfg *cfg;
4133
	int i, ret, devid;
4134
	int index;
4135

4136 4137 4138 4139
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4140 4141
		return -EINVAL;

4142 4143 4144 4145 4146 4147
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4148

4149 4150 4151
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4152

4153 4154 4155
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4156

4157
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4174
			index = info->ioapic_pin;
4175
		} else {
4176
			index = -ENOMEM;
4177
		}
4178
	} else {
4179 4180 4181
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4182 4183 4184
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4185
		ret = index;
4186 4187
		goto out_free_parent;
	}
4188

4189 4190 4191 4192 4193 4194 4195
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4196

4197 4198 4199 4200 4201
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4212 4213 4214 4215 4216 4217
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4218

4219
	return 0;
4220

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4232 4233
}

4234 4235
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4236
{
4237 4238 4239 4240
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4241

4242 4243 4244 4245 4246 4247
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4248
			kfree(data->entry);
4249 4250 4251 4252 4253
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4254

4255 4256 4257 4258 4259
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4260
static int irq_remapping_activate(struct irq_domain *domain,
4261
				  struct irq_data *irq_data, bool reserve)
4262 4263 4264
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4265
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4266
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4267

4268 4269 4270 4271 4272 4273
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4274
	return 0;
4275 4276
}

4277 4278
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4279
{
4280 4281
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4282
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4283

4284 4285 4286
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4287
}
4288

4289
static const struct irq_domain_ops amd_ir_domain_ops = {
4290 4291 4292 4293
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4294
};
4295

4296 4297 4298 4299 4300 4301 4302 4303
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4304 4305 4306 4307 4308 4309 4310 4311
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4334
		irte->lo.fields_vapic.ga_log_intr = 1;
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4377 4378 4379 4380 4381 4382 4383
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4384
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4385
	int ret;
4386

4387 4388 4389
	if (!iommu)
		return -ENODEV;

4390 4391 4392
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4393

4394
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4395 4396 4397 4398 4399
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4400
	send_cleanup_vector(cfg);
4401 4402

	return IRQ_SET_MASK_OK_DONE;
4403 4404
}

4405
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4406
{
4407
	struct amd_ir_data *ir_data = irq_data->chip_data;
4408

4409 4410
	*msg = ir_data->msi_entry;
}
4411

4412
static struct irq_chip amd_ir_chip = {
4413
	.name			= "AMD-IR",
4414
	.irq_ack		= apic_ack_irq,
4415 4416 4417
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4418
};
4419

4420 4421
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4422 4423 4424 4425 4426 4427 4428
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4429 4430
	if (!iommu->ir_domain)
		return -ENOMEM;
4431

4432
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4433 4434 4435
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4436 4437
	return 0;
}
4438 4439 4440 4441 4442

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4443
	struct irq_remap_table *table;
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4457 4458
	table = get_irq_table(devid);
	if (!table)
4459 4460
		return -ENODEV;

4461
	raw_spin_lock_irqsave(&table->lock, flags);
4462 4463 4464 4465 4466 4467 4468 4469

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4470
	raw_spin_unlock_irqrestore(&table->lock, flags);
4471 4472 4473 4474 4475 4476

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4477
#endif