amd_iommu.c 104.0 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222
	struct llist_node *node;
223

224 225
	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248
	devid = get_device_id(dev);
249 250 251 252 253

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

254
	ivrs_alias = amd_iommu_alias_table[devid];
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312
		dev_data = alloc_dev_data(devid);
313 314
		if (!dev_data)
			return NULL;
315

316 317 318 319
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

320 321 322
	return dev_data;
}

323
struct iommu_dev_data *get_dev_data(struct device *dev)
324 325 326
{
	return dev->archdata.iommu;
}
327
EXPORT_SYMBOL(get_dev_data);
328

329 330 331 332
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
333
{
334
	struct acpihid_map_entry *p, *entry = NULL;
335
	int devid;
336 337 338 339 340 341 342 343 344 345 346 347

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
348 349
	else
		iommu_group_ref_get(entry->group);
350 351

	return entry->group;
352 353
}

354 355 356 357
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
358 359
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
360 361 362
	};
	int i, pos;

G
Gil Kupfer 已提交
363 364 365
	if (pci_ats_disabled())
		return false;

366 367 368 369 370 371 372 373 374
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

375 376 377 378 379 380 381 382 383
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

384 385 386 387 388 389
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
390
	int devid;
391 392 393 394 395

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
396
	if (devid < 0)
397
		return false;
398 399 400 401 402 403 404 405 406 407 408

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

409
static void init_iommu_group(struct device *dev)
410 411 412
{
	struct iommu_group *group;

413
	group = iommu_group_get_for_dev(dev);
414 415 416 417
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
418 419 420 421 422
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
423
	struct amd_iommu *iommu;
424
	int devid;
425 426 427 428

	if (dev->archdata.iommu)
		return 0;

429
	devid = get_device_id(dev);
430
	if (devid < 0)
431 432
		return devid;

433 434
	iommu = amd_iommu_rlookup_table[devid];

435
	dev_data = find_dev_data(devid);
436 437 438
	if (!dev_data)
		return -ENOMEM;

439 440
	dev_data->alias = get_alias(dev);

441
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
442 443
		struct amd_iommu *iommu;

444
		iommu = amd_iommu_rlookup_table[dev_data->devid];
445 446 447
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

448 449
	dev->archdata.iommu = dev_data;

450
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
451

452 453 454
	return 0;
}

455 456
static void iommu_ignore_device(struct device *dev)
{
457 458
	u16 alias;
	int devid;
459 460

	devid = get_device_id(dev);
461
	if (devid < 0)
462 463
		return;

464
	alias = get_alias(dev);
465 466 467 468 469 470 471 472

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

473 474
static void iommu_uninit_device(struct device *dev)
{
475
	struct iommu_dev_data *dev_data;
476 477
	struct amd_iommu *iommu;
	int devid;
478

479
	devid = get_device_id(dev);
480
	if (devid < 0)
481
		return;
482

483 484
	iommu = amd_iommu_rlookup_table[devid];

485
	dev_data = search_dev_data(devid);
486 487 488
	if (!dev_data)
		return;

489 490 491
	if (dev_data->domain)
		detach_device(dev);

492
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
493

494 495
	iommu_group_remove_device(dev);

496
	/* Remove dma-ops */
497
	dev->dma_ops = NULL;
498

499
	/*
500 501
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
502
	 */
503
}
J
Joerg Roedel 已提交
504

505 506 507 508 509 510
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

511 512 513 514
static void dump_dte_entry(u16 devid)
{
	int i;

515 516
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
517 518 519
			amd_iommu_dev_table[devid].data[i]);
}

520 521
static void dump_command(unsigned long phys_addr)
{
522
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
523 524 525 526 527 528
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

529 530 531 532 533 534
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

535 536
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

553
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
554
{
555
	struct device *dev = iommu->iommu.dev;
556
	int type, devid, pasid, flags, tag;
557 558 559 560 561 562 563
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
564
	pasid   = PPR_PASID(*(u64 *)&event[0]);
565 566 567 568 569 570 571 572 573 574 575 576
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
577

578
	if (type == EVENT_TYPE_IO_FAULT) {
579
		amd_iommu_report_page_fault(devid, pasid, address, flags);
580 581
		return;
	} else {
582
		dev_err(dev, "AMD-Vi: Event logged [");
583
	}
584 585 586

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
587
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
588
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589
			pasid, address, flags);
590
		dump_dte_entry(devid);
591 592
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
593 594 595 596
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
597 598
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
599
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601
			pasid, address, flags);
602 603
		break;
	case EVENT_TYPE_ILL_CMD:
604
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
605
		dump_command(address);
606 607
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
608 609
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
610 611
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
612
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
613 614
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
615 616
		break;
	case EVENT_TYPE_INV_DEV_REQ:
617
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
618
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619
			pasid, address, flags);
620
		break;
621 622 623 624 625 626 627
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
628 629
		break;
	default:
630
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
631
			event[0], event[1], event[2], event[3]);
632
	}
633 634

	memset(__evt, 0, 4 * sizeof(u32));
635 636 637 638 639 640 641 642 643 644
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
645
		iommu_print_event(iommu, iommu->evt_buf + head);
646
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 648 649 650 651
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

652
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
697

698 699 700
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
701

702 703 704 705 706 707 708
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
709 710
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 712 713 714 715 716

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
717 718 719 720
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

781
irqreturn_t amd_iommu_int_thread(int irq, void *data)
782
{
783 784
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
785

786 787 788
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
789
			iommu->mmio_base + MMIO_STATUS_OFFSET);
790

791 792 793 794
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
795

796 797 798 799
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
800

801 802 803 804 805 806 807
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
823
	return IRQ_HANDLED;
824 825
}

826 827 828 829 830
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

831 832 833 834 835 836
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
855
			       struct iommu_cmd *cmd)
856 857 858
{
	u8 *target;

859 860 861 862
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
863 864 865 866 867

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
868
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
869
}
870

871
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
872
{
873 874
	u64 paddr = iommu_virt_to_phys((void *)address);

875 876
	WARN_ON(address & 0x7ULL);

877
	memset(cmd, 0, sizeof(*cmd));
878 879
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
880
	cmd->data[2] = 1;
881 882 883
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

884 885 886 887 888 889 890
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

891 892 893 894
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
895
	bool s;
896 897

	pages = iommu_num_pages(address, size, PAGE_SIZE);
898
	s     = false;
899 900 901 902 903 904 905

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
906
		s = true;
907 908 909 910 911 912 913 914 915 916 917
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
918
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
919 920 921
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

922 923 924 925
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
926
	bool s;
927 928

	pages = iommu_num_pages(address, size, PAGE_SIZE);
929
	s     = false;
930 931 932 933 934 935 936

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
937
		s = true;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

953 954 955 956 957 958 959
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

960
	cmd->data[0]  = pasid;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
979
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
980 981
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
982
	cmd->data[1] |= (pasid & 0xff) << 16;
983 984 985 986 987 988 989 990
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

991 992 993 994 995 996 997
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
998
		cmd->data[1]  = pasid;
999 1000 1001 1002 1003 1004 1005 1006
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1007 1008 1009 1010
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1011 1012
}

1013 1014 1015 1016 1017 1018 1019
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1020 1021
/*
 * Writes the command to the IOMMUs command buffer and informs the
1022
 * hardware about the new command.
1023
 */
1024 1025 1026
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1027
{
1028
	unsigned int count = 0;
1029
	u32 left, next_tail;
1030

1031
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1032
again:
1033
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1034

1035
	if (left <= 0x20) {
1036 1037 1038 1039 1040 1041
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1042

1043 1044
			udelay(1);
		}
1045

1046 1047 1048
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1049 1050

		goto again;
1051 1052
	}

1053
	copy_cmd_to_buffer(iommu, cmd);
1054

1055
	/* Do we need to make sure all commands are processed? */
1056
	iommu->need_sync = sync;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1068
	raw_spin_lock_irqsave(&iommu->lock, flags);
1069
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1070
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1071

1072
	return ret;
1073 1074
}

1075 1076 1077 1078 1079
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1080 1081 1082 1083
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1084
static int iommu_completion_wait(struct amd_iommu *iommu)
1085 1086
{
	struct iommu_cmd cmd;
1087
	unsigned long flags;
1088
	int ret;
1089

1090
	if (!iommu->need_sync)
1091
		return 0;
1092

1093

1094 1095
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1096
	raw_spin_lock_irqsave(&iommu->lock, flags);
1097 1098 1099 1100

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1101
	if (ret)
1102 1103 1104 1105 1106
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1107
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1108

1109
	return ret;
1110 1111
}

1112
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1113
{
1114
	struct iommu_cmd cmd;
1115

1116
	build_inv_dte(&cmd, devid);
1117

1118 1119
	return iommu_queue_command(iommu, &cmd);
}
1120

1121
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1122 1123
{
	u32 devid;
1124

1125 1126
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1127

1128 1129
	iommu_completion_wait(iommu);
}
1130

1131 1132 1133 1134
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1135
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1136 1137
{
	u32 dom_id;
1138

1139 1140 1141 1142 1143 1144
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1145

1146
	iommu_completion_wait(iommu);
1147 1148
}

1149
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1150
{
1151
	struct iommu_cmd cmd;
1152

1153
	build_inv_all(&cmd);
1154

1155 1156 1157 1158
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1159 1160 1161 1162 1163 1164 1165 1166 1167
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1168
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1178 1179
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1180
	if (iommu_feature(iommu, FEATURE_IA)) {
1181
		amd_iommu_flush_all(iommu);
1182
	} else {
1183 1184 1185
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1186 1187 1188
	}
}

1189
/*
1190
 * Command send function for flushing on-device TLB
1191
 */
1192 1193
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1194 1195
{
	struct amd_iommu *iommu;
1196
	struct iommu_cmd cmd;
1197
	int qdep;
1198

1199 1200
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1201

1202
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1203 1204

	return iommu_queue_command(iommu, &cmd);
1205 1206
}

1207 1208 1209
/*
 * Command send function for invalidating a device table entry
 */
1210
static int device_flush_dte(struct iommu_dev_data *dev_data)
1211
{
1212
	struct amd_iommu *iommu;
1213
	u16 alias;
1214
	int ret;
1215

1216
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1217
	alias = dev_data->alias;
1218

1219
	ret = iommu_flush_dte(iommu, dev_data->devid);
1220 1221
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1222 1223 1224
	if (ret)
		return ret;

1225
	if (dev_data->ats.enabled)
1226
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1227 1228

	return ret;
1229 1230
}

1231 1232 1233 1234 1235
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1236 1237
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1238
{
1239
	struct iommu_dev_data *dev_data;
1240 1241
	struct iommu_cmd cmd;
	int ret = 0, i;
1242

1243
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1244

1245
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1246 1247 1248 1249 1250 1251 1252
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1253
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1254 1255
	}

1256 1257
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1258
		if (!dev_data->ats.enabled)
1259 1260
			continue;

1261
		ret |= device_flush_iotlb(dev_data, address, size);
1262 1263
	}

1264
	WARN_ON(ret);
1265 1266
}

1267 1268
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1269
{
1270
	__domain_flush_pages(domain, address, size, 0);
1271
}
1272

1273
/* Flush the whole IO/TLB for a given protection domain */
1274
static void domain_flush_tlb(struct protection_domain *domain)
1275
{
1276
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1277 1278
}

1279
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1280
static void domain_flush_tlb_pde(struct protection_domain *domain)
1281
{
1282
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1283 1284
}

1285
static void domain_flush_complete(struct protection_domain *domain)
1286
{
1287
	int i;
1288

1289
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1290
		if (domain && !domain->dev_iommu[i])
1291
			continue;
1292

1293 1294 1295 1296 1297
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1298
	}
1299 1300
}

1301

1302
/*
1303
 * This function flushes the DTEs for all devices in domain
1304
 */
1305
static void domain_flush_devices(struct protection_domain *domain)
1306
{
1307
	struct iommu_dev_data *dev_data;
1308

1309
	list_for_each_entry(dev_data, &domain->dev_list, list)
1310
		device_flush_dte(dev_data);
1311 1312
}

1313 1314 1315 1316 1317 1318 1319
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1339
					iommu_virt_to_phys(domain->pt_root));
1340 1341 1342 1343 1344 1345 1346 1347 1348
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1349
		      unsigned long page_size,
1350 1351 1352
		      u64 **pte_page,
		      gfp_t gfp)
{
1353
	int level, end_lvl;
1354
	u64 *pte, *page;
1355 1356

	BUG_ON(!is_power_of_2(page_size));
1357 1358 1359 1360

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1361 1362 1363 1364
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1365 1366

	while (level > end_lvl) {
1367 1368 1369 1370 1371
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1372 1373 1374
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1375

1376
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1377

1378 1379
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1380 1381 1382
				free_page((unsigned long)page);
				continue;
			}
1383 1384
		}

1385 1386 1387 1388
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1406 1407 1408
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1409 1410 1411 1412
{
	int level;
	u64 *pte;

1413 1414
	*page_size = 0;

1415 1416 1417
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1418 1419 1420
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1421

1422 1423 1424
	while (level > 0) {

		/* Not Present */
1425 1426 1427
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1428
		/* Large PTE */
1429 1430 1431
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1432 1433 1434 1435 1436

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1437 1438
		level -= 1;

1439
		/* Walk to the next level */
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1455 1456 1457 1458 1459
	}

	return pte;
}

1460 1461 1462 1463 1464 1465 1466
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1467 1468 1469
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1470
			  unsigned long page_size,
1471
			  int prot,
1472
			  gfp_t gfp)
1473
{
1474
	u64 __pte, *pte;
1475
	int i, count;
1476

1477 1478 1479
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1480
	if (!(prot & IOMMU_PROT_MASK))
1481 1482
		return -EINVAL;

1483
	count = PAGE_SIZE_PTE_COUNT(page_size);
1484
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1485

1486 1487 1488
	if (!pte)
		return -ENOMEM;

1489 1490 1491
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1492

1493
	if (count > 1) {
1494
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1495
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1496
	} else
1497
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1498 1499 1500 1501 1502 1503

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1504 1505
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1506

1507 1508
	update_domain(dom);

1509 1510 1511
	return 0;
}

1512 1513 1514
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1515
{
1516 1517
	unsigned long long unmapped;
	unsigned long unmap_size;
1518 1519 1520 1521 1522
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1523

1524 1525
	while (unmapped < page_size) {

1526 1527 1528 1529 1530 1531
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1532 1533 1534 1535 1536 1537 1538 1539
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1540
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1541

1542
	return unmapped;
1543 1544
}

1545 1546 1547
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1548
 * interface functions.
1549 1550
 *
 ****************************************************************************/
1551

1552

1553 1554 1555
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1556
{
1557
	unsigned long pfn = 0;
1558

1559
	pages = __roundup_pow_of_two(pages);
1560

1561 1562
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1563
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1564

1565
	if (!pfn)
1566 1567
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1568

1569
	return (pfn << PAGE_SHIFT);
1570 1571
}

1572 1573 1574
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1575
{
1576 1577
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1578

1579
	free_iova_fast(&dma_dom->iovad, address, pages);
1580 1581
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1617 1618 1619 1620
static u16 domain_id_alloc(void)
{
	int id;

1621
	spin_lock(&pd_bitmap_lock);
1622 1623 1624 1625 1626 1627
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1628
	spin_unlock(&pd_bitmap_lock);
1629 1630 1631 1632

	return id;
}

1633 1634
static void domain_id_free(int id)
{
1635
	spin_lock(&pd_bitmap_lock);
1636 1637
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1638
	spin_unlock(&pd_bitmap_lock);
1639 1640
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1651
		/* PTE present? */				\
1652 1653 1654
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1655 1656 1657 1658 1659
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1672
static void free_pagetable(struct protection_domain *domain)
1673
{
1674
	unsigned long root = (unsigned long)domain->pt_root;
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1699 1700 1701
	}
}

1702 1703 1704 1705 1706 1707 1708 1709 1710
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1711
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1726
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1727 1728 1729 1730 1731

		free_gcr3_tbl_level1(ptr);
	}
}

1732 1733
static void free_gcr3_table(struct protection_domain *domain)
{
1734 1735 1736 1737
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1738 1739
	else
		BUG_ON(domain->glx != 0);
1740

1741 1742 1743
	free_page((unsigned long)domain->gcr3_tbl);
}

1744 1745 1746 1747
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1748 1749
}

1750
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1751
{
1752
	struct dma_ops_domain *dom;
1753

1754
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1755 1756 1757 1758

	dma_ops_domain_flush_tlb(dom);
}

1759 1760 1761 1762
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1763 1764 1765 1766 1767
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1768 1769
	del_domain_from_list(&dom->domain);

1770
	put_iova_domain(&dom->iovad);
1771

1772
	free_pagetable(&dom->domain);
1773

1774 1775 1776
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1777 1778 1779
	kfree(dom);
}

1780 1781
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1782
 * It also initializes the page table and the address allocator data
1783 1784
 * structures required for the dma_ops interface
 */
1785
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1786 1787 1788 1789 1790 1791 1792
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1793
	if (protection_domain_init(&dma_dom->domain))
1794
		goto free_dma_dom;
1795

1796
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1797
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1798
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1799 1800 1801
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1802
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1803

1804
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1805 1806
		goto free_dma_dom;

1807 1808
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1809

1810 1811
	add_domain_to_list(&dma_dom->domain);

1812 1813 1814 1815 1816 1817 1818 1819
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1829 1830
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1831
{
1832
	u64 pte_root = 0;
1833
	u64 flags = 0;
1834

1835
	if (domain->mode != PAGE_MODE_NONE)
1836
		pte_root = iommu_virt_to_phys(domain->pt_root);
1837

1838 1839
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1840
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1841

1842 1843
	flags = amd_iommu_dev_table[devid].data[1];

1844 1845 1846
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1847 1848 1849 1850 1851 1852 1853
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1854
	if (domain->flags & PD_IOMMUV2_MASK) {
1855
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1880
	flags &= ~DEV_DOMID_MASK;
1881 1882 1883 1884
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1885 1886 1887 1888 1889
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1890
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1891
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1892 1893

	amd_iommu_apply_erratum_63(devid);
1894 1895
}

1896 1897
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1898 1899
{
	struct amd_iommu *iommu;
1900
	u16 alias;
1901
	bool ats;
1902

1903
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1904
	alias = dev_data->alias;
1905
	ats   = dev_data->ats.enabled;
1906 1907 1908 1909 1910 1911 1912 1913 1914

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1915
	/* Update device table */
1916
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1917
	if (alias != dev_data->devid)
1918
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1919

1920
	device_flush_dte(dev_data);
1921 1922
}

1923
static void do_detach(struct iommu_dev_data *dev_data)
1924 1925
{
	struct amd_iommu *iommu;
1926
	u16 alias;
1927

1928
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1929
	alias = dev_data->alias;
1930 1931

	/* decrease reference counters */
1932 1933 1934 1935 1936 1937
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1938
	clear_dte_entry(dev_data->devid);
1939 1940
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1941

1942
	/* Flush the DTE entry */
1943
	device_flush_dte(dev_data);
1944 1945 1946
}

/*
1947 1948
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
1949
 */
1950
static int __attach_device(struct iommu_dev_data *dev_data,
1951
			   struct protection_domain *domain)
1952
{
1953
	int ret;
1954

1955 1956 1957
	/* lock domain */
	spin_lock(&domain->lock);

1958
	ret = -EBUSY;
1959
	if (dev_data->domain != NULL)
1960
		goto out_unlock;
1961

1962
	/* Attach alias group root */
1963
	do_attach(dev_data, domain);
1964

1965 1966 1967 1968
	ret = 0;

out_unlock:

1969 1970
	/* ready */
	spin_unlock(&domain->lock);
1971

1972
	return ret;
1973
}
1974

1975 1976 1977 1978 1979 1980 1981 1982

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1983 1984 1985 1986 1987 1988
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1989
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1990 1991 1992
	if (!pos)
		return -EINVAL;

1993 1994 1995
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1996 1997 1998 1999

	return 0;
}

2000 2001
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2002 2003 2004 2005 2006 2007 2008 2009
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2021 2022
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2023 2024 2025
	if (ret)
		goto out_err;

2026 2027 2028 2029 2030 2031
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2045
/* FIXME: Move this to PCI code */
2046
#define PCI_PRI_TLP_OFF		(1 << 15)
2047

J
Joerg Roedel 已提交
2048
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2049
{
2050
	u16 status;
2051 2052
	int pos;

2053
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2054 2055 2056
	if (!pos)
		return false;

2057
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2058

2059
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2060 2061
}

2062
/*
2063 2064
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2065
 */
2066 2067
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2068
{
2069
	struct pci_dev *pdev;
2070
	struct iommu_dev_data *dev_data;
2071
	unsigned long flags;
2072
	int ret;
2073

2074 2075
	dev_data = get_dev_data(dev);

2076 2077 2078 2079
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2080
	if (domain->flags & PD_IOMMUV2_MASK) {
2081
		if (!dev_data->passthrough)
2082 2083
			return -EINVAL;

2084 2085 2086
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2087

2088 2089 2090 2091
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2092 2093
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2094 2095 2096
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2097

2098
skip_ats_check:
2099
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2100
	ret = __attach_device(dev_data, domain);
2101
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2102

2103 2104 2105 2106 2107
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2108
	domain_flush_tlb_pde(domain);
2109 2110

	return ret;
2111 2112
}

2113 2114 2115
/*
 * Removes a device from a protection domain (unlocked)
 */
2116
static void __detach_device(struct iommu_dev_data *dev_data)
2117
{
2118
	struct protection_domain *domain;
2119

2120
	domain = dev_data->domain;
2121

2122
	spin_lock(&domain->lock);
2123

2124
	do_detach(dev_data);
2125

2126
	spin_unlock(&domain->lock);
2127 2128 2129 2130 2131
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2132
static void detach_device(struct device *dev)
2133
{
2134
	struct protection_domain *domain;
2135
	struct iommu_dev_data *dev_data;
2136 2137
	unsigned long flags;

2138
	dev_data = get_dev_data(dev);
2139
	domain   = dev_data->domain;
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2150
	/* lock device table */
2151
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2152
	__detach_device(dev_data);
2153
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2154

2155 2156 2157
	if (!dev_is_pci(dev))
		return;

2158
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2159 2160
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2161
		pci_disable_ats(to_pci_dev(dev));
2162 2163

	dev_data->ats.enabled = false;
2164
}
2165

2166
static int amd_iommu_add_device(struct device *dev)
2167
{
2168
	struct iommu_dev_data *dev_data;
2169
	struct iommu_domain *domain;
2170
	struct amd_iommu *iommu;
2171
	int ret, devid;
2172

2173
	if (!check_device(dev) || get_dev_data(dev))
2174
		return 0;
2175

2176
	devid = get_device_id(dev);
2177
	if (devid < 0)
2178 2179
		return devid;

2180
	iommu = amd_iommu_rlookup_table[devid];
2181

2182
	ret = iommu_init_device(dev);
2183 2184 2185 2186
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2187

2188
		iommu_ignore_device(dev);
2189
		dev->dma_ops = &dma_direct_ops;
2190 2191 2192
		goto out;
	}
	init_iommu_group(dev);
2193

2194
	dev_data = get_dev_data(dev);
2195

2196
	BUG_ON(!dev_data);
2197

2198
	if (iommu_pass_through || dev_data->iommu_v2)
2199
		iommu_request_dm_for_dev(dev);
2200

2201 2202
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2203
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2204
		dev_data->passthrough = true;
2205
	else
2206
		dev->dma_ops = &amd_iommu_dma_ops;
2207

2208
out:
2209 2210 2211 2212 2213
	iommu_completion_wait(iommu);

	return 0;
}

2214
static void amd_iommu_remove_device(struct device *dev)
2215
{
2216
	struct amd_iommu *iommu;
2217
	int devid;
2218 2219 2220 2221 2222

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2223
	if (devid < 0)
2224 2225
		return;

2226 2227 2228 2229
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2253
static struct protection_domain *get_domain(struct device *dev)
2254
{
2255
	struct protection_domain *domain;
2256
	struct iommu_domain *io_domain;
2257

2258
	if (!check_device(dev))
2259
		return ERR_PTR(-EINVAL);
2260

2261
	domain = get_dev_data(dev)->domain;
2262 2263 2264 2265 2266 2267
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2268 2269 2270
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2271
	if (!dma_ops_domain(domain))
2272
		return ERR_PTR(-EBUSY);
2273

2274
	return domain;
2275 2276
}

2277 2278
static void update_device_table(struct protection_domain *domain)
{
2279
	struct iommu_dev_data *dev_data;
2280

2281
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2282 2283
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2284 2285 2286 2287 2288

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2289 2290
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2291
	}
2292 2293 2294 2295 2296 2297 2298 2299
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2300 2301 2302

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2303 2304 2305 2306

	domain->updated = false;
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2318

2319 2320
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2321 2322
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2323 2324
 * Must be called with the domain lock held.
 */
2325 2326 2327 2328
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2329
			       enum dma_data_direction direction,
2330
			       u64 dma_mask)
2331 2332
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2333
	dma_addr_t address, start, ret;
2334
	unsigned int pages;
2335
	int prot = 0;
2336 2337
	int i;

2338
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2339 2340
	paddr &= PAGE_MASK;

2341
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2342
	if (address == AMD_IOMMU_MAPPING_ERROR)
2343
		goto out;
2344

2345
	prot = dir2prot(direction);
2346

2347 2348
	start = address;
	for (i = 0; i < pages; ++i) {
2349 2350 2351
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2352 2353
			goto out_unmap;

2354 2355 2356 2357 2358
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2359
	if (unlikely(amd_iommu_np_cache)) {
2360
		domain_flush_pages(&dma_dom->domain, address, size);
2361 2362
		domain_flush_complete(&dma_dom->domain);
	}
2363

2364 2365
out:
	return address;
2366 2367 2368 2369 2370

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2371
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2372 2373
	}

2374 2375 2376 2377
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2378

2379
	return AMD_IOMMU_MAPPING_ERROR;
2380 2381
}

2382 2383 2384 2385
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2386
static void __unmap_single(struct dma_ops_domain *dma_dom,
2387 2388 2389 2390 2391 2392 2393
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2394
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2395 2396 2397 2398
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2399
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2400 2401 2402
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2403 2404 2405
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2406
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2407
	} else {
2408 2409
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2410
	}
2411 2412
}

2413 2414 2415
/*
 * The exported map_single function for dma_ops.
 */
2416 2417 2418
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2419
			   unsigned long attrs)
2420
{
2421
	phys_addr_t paddr = page_to_phys(page) + offset;
2422
	struct protection_domain *domain;
2423
	struct dma_ops_domain *dma_dom;
2424
	u64 dma_mask;
2425

2426 2427
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2428
		return (dma_addr_t)paddr;
2429
	else if (IS_ERR(domain))
2430
		return AMD_IOMMU_MAPPING_ERROR;
2431

2432
	dma_mask = *dev->dma_mask;
2433
	dma_dom = to_dma_ops_domain(domain);
2434

2435
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2436 2437
}

2438 2439 2440
/*
 * The exported unmap_single function for dma_ops.
 */
2441
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2442
		       enum dma_data_direction dir, unsigned long attrs)
2443 2444
{
	struct protection_domain *domain;
2445
	struct dma_ops_domain *dma_dom;
2446

2447 2448
	domain = get_domain(dev);
	if (IS_ERR(domain))
2449 2450
		return;

2451 2452 2453
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2482 2483 2484 2485
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2486
static int map_sg(struct device *dev, struct scatterlist *sglist,
2487
		  int nelems, enum dma_data_direction direction,
2488
		  unsigned long attrs)
2489
{
2490
	int mapped_pages = 0, npages = 0, prot = 0, i;
2491
	struct protection_domain *domain;
2492
	struct dma_ops_domain *dma_dom;
2493
	struct scatterlist *s;
2494
	unsigned long address;
2495
	u64 dma_mask;
2496

2497
	domain = get_domain(dev);
2498
	if (IS_ERR(domain))
2499
		return 0;
2500

2501
	dma_dom  = to_dma_ops_domain(domain);
2502
	dma_mask = *dev->dma_mask;
2503

2504 2505 2506
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2507
	if (address == AMD_IOMMU_MAPPING_ERROR)
2508 2509 2510 2511 2512
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2513
	for_each_sg(sglist, s, nelems, i) {
2514 2515 2516 2517 2518
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2519

2520 2521 2522 2523 2524
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2525

2526 2527
			mapped_pages += 1;
		}
2528 2529
	}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2547

2548 2549 2550 2551 2552 2553
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2554 2555
	}

2556 2557 2558 2559
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2560
	return 0;
2561 2562
}

2563 2564 2565 2566
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2567
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2568
		     int nelems, enum dma_data_direction dir,
2569
		     unsigned long attrs)
2570 2571
{
	struct protection_domain *domain;
2572
	struct dma_ops_domain *dma_dom;
2573 2574
	unsigned long startaddr;
	int npages = 2;
2575

2576 2577
	domain = get_domain(dev);
	if (IS_ERR(domain))
2578 2579
		return;

2580
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2581
	dma_dom   = to_dma_ops_domain(domain);
2582 2583
	npages    = sg_num_pages(dev, sglist, nelems);

2584
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2585 2586
}

2587 2588 2589
/*
 * The exported alloc_coherent function for dma_ops.
 */
2590
static void *alloc_coherent(struct device *dev, size_t size,
2591
			    dma_addr_t *dma_addr, gfp_t flag,
2592
			    unsigned long attrs)
2593
{
2594
	u64 dma_mask = dev->coherent_dma_mask;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2616
			return NULL;
2617

2618
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2619
					get_order(size), flag & __GFP_NOWARN);
2620 2621 2622
		if (!page)
			return NULL;
	}
2623

2624 2625 2626
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2627 2628 2629
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2630
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2631
		goto out_free;
2632 2633

	return page_address(page);
2634 2635

out_free:
2636 2637 2638 2639

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2640
	return NULL;
2641 2642
}

2643 2644 2645
/*
 * The exported free_coherent function for dma_ops.
 */
2646
static void free_coherent(struct device *dev, size_t size,
2647
			  void *virt_addr, dma_addr_t dma_addr,
2648
			  unsigned long attrs)
2649
{
2650 2651 2652
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2653

2654
	page = virt_to_page(virt_addr);
2655 2656
	size = PAGE_ALIGN(size);

2657 2658 2659
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2660

2661 2662 2663
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2664

2665 2666 2667
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2668 2669
}

2670 2671 2672 2673 2674 2675
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2676
	if (!dma_direct_supported(dev, mask))
2677
		return 0;
2678
	return check_device(dev);
2679 2680
}

2681 2682 2683 2684 2685
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2686
static const struct dma_map_ops amd_iommu_dma_ops = {
2687 2688 2689 2690 2691 2692 2693
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2694
	.mapping_error	= amd_iommu_mapping_error,
2695 2696
};

2697 2698 2699 2700 2701
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2702
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2749
int __init amd_iommu_init_api(void)
2750
{
2751
	int ret, err = 0;
2752 2753 2754 2755

	ret = iova_cache_get();
	if (ret)
		return ret;
2756

2757 2758 2759 2760
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2761 2762 2763 2764 2765 2766 2767 2768
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2769 2770 2771
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2772

2773
	return 0;
2774 2775
}

2776 2777
int __init amd_iommu_init_dma_ops(void)
{
2778
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2779 2780
	iommu_detected = 1;

2781 2782
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2783 2784 2785 2786 2787
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2788 2789
	 */
	if (!swiotlb)
2790
		dma_ops = &dma_direct_ops;
2791

2792 2793 2794 2795 2796
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2797
	return 0;
2798

2799
}
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2813
	struct iommu_dev_data *entry;
2814 2815
	unsigned long flags;

2816
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2817

2818 2819 2820
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2821
		BUG_ON(!entry->domain);
2822
		__detach_device(entry);
2823
	}
2824

2825
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2826 2827
}

2828 2829 2830 2831 2832
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2833 2834
	del_domain_from_list(domain);

2835 2836 2837 2838 2839 2840
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2853
static struct protection_domain *protection_domain_alloc(void)
2854 2855 2856 2857 2858
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2859
		return NULL;
2860

2861
	if (protection_domain_init(domain))
2862 2863
		goto out_err;

2864 2865
	add_domain_to_list(domain);

2866 2867 2868 2869 2870 2871 2872 2873
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2874
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2875
{
2876
	struct protection_domain *pdomain;
2877
	struct dma_ops_domain *dma_domain;
2878

2879 2880 2881 2882 2883
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2884

2885 2886 2887 2888 2889 2890
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2891

2892 2893 2894
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2905 2906 2907 2908
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2909

2910 2911
		pdomain->mode = PAGE_MODE_NONE;
		break;
2912 2913 2914
	default:
		return NULL;
	}
2915

2916
	return &pdomain->domain;
2917 2918
}

2919
static void amd_iommu_domain_free(struct iommu_domain *dom)
2920
{
2921
	struct protection_domain *domain;
2922
	struct dma_ops_domain *dma_dom;
2923

2924 2925
	domain = to_pdomain(dom);

2926 2927 2928 2929 2930
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2931 2932
	if (!dom)
		return;
2933

2934 2935
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2936
		/* Now release the domain */
2937
		dma_dom = to_dma_ops_domain(domain);
2938 2939 2940 2941 2942
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2943

2944 2945 2946 2947 2948 2949
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2950 2951
}

2952 2953 2954
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2955
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2956
	struct amd_iommu *iommu;
2957
	int devid;
2958

2959
	if (!check_device(dev))
2960 2961
		return;

2962
	devid = get_device_id(dev);
2963
	if (devid < 0)
2964
		return;
2965

2966
	if (dev_data->domain != NULL)
2967
		detach_device(dev);
2968 2969 2970 2971 2972

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2973 2974 2975 2976 2977 2978
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2979 2980 2981
	iommu_completion_wait(iommu);
}

2982 2983 2984
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2985
	struct protection_domain *domain = to_pdomain(dom);
2986
	struct iommu_dev_data *dev_data;
2987
	struct amd_iommu *iommu;
2988
	int ret;
2989

2990
	if (!check_device(dev))
2991 2992
		return -EINVAL;

2993 2994
	dev_data = dev->archdata.iommu;

2995
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2996 2997 2998
	if (!iommu)
		return -EINVAL;

2999
	if (dev_data->domain)
3000
		detach_device(dev);
3001

3002
	ret = attach_device(dev, domain);
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3013 3014
	iommu_completion_wait(iommu);

3015
	return ret;
3016 3017
}

3018
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3019
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3020
{
3021
	struct protection_domain *domain = to_pdomain(dom);
3022 3023 3024
	int prot = 0;
	int ret;

3025 3026 3027
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3028 3029 3030 3031 3032
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3033
	mutex_lock(&domain->api_lock);
3034
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3035 3036
	mutex_unlock(&domain->api_lock);

3037
	return ret;
3038 3039
}

3040 3041
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3042
{
3043
	struct protection_domain *domain = to_pdomain(dom);
3044
	size_t unmap_size;
3045

3046
	if (domain->mode == PAGE_MODE_NONE)
3047
		return 0;
3048

3049
	mutex_lock(&domain->api_lock);
3050
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3051
	mutex_unlock(&domain->api_lock);
3052

3053
	return unmap_size;
3054 3055
}

3056
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3057
					  dma_addr_t iova)
3058
{
3059
	struct protection_domain *domain = to_pdomain(dom);
3060
	unsigned long offset_mask, pte_pgsize;
3061
	u64 *pte, __pte;
3062

3063 3064 3065
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3066
	pte = fetch_pte(domain, iova, &pte_pgsize);
3067

3068
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3069 3070
		return 0;

3071 3072
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3073

3074
	return (__pte & ~offset_mask) | (iova & offset_mask);
3075 3076
}

3077
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3078
{
3079 3080
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3081
		return true;
3082
	case IOMMU_CAP_INTR_REMAP:
3083
		return (irq_remapping_enabled == 1);
3084 3085
	case IOMMU_CAP_NOEXEC:
		return false;
3086 3087
	}

3088
	return false;
S
Sheng Yang 已提交
3089 3090
}

3091 3092
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3093
{
3094
	struct iommu_resv_region *region;
3095
	struct unity_map_entry *entry;
3096
	int devid;
3097 3098

	devid = get_device_id(dev);
3099
	if (devid < 0)
3100
		return;
3101 3102

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3103 3104
		size_t length;
		int prot = 0;
3105 3106 3107 3108

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3109 3110 3111 3112 3113 3114 3115 3116 3117
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3118 3119 3120 3121 3122 3123 3124
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3125 3126 3127

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3128
					 0, IOMMU_RESV_MSI);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3139 3140
}

3141
static void amd_iommu_put_resv_regions(struct device *dev,
3142 3143
				     struct list_head *head)
{
3144
	struct iommu_resv_region *entry, *next;
3145 3146 3147 3148 3149

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3150
static void amd_iommu_apply_resv_region(struct device *dev,
3151
				      struct iommu_domain *domain,
3152
				      struct iommu_resv_region *region)
3153
{
3154
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3155 3156 3157
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3158
	end   = IOVA_PFN(region->start + region->length - 1);
3159 3160 3161 3162

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3163 3164 3165 3166 3167 3168 3169
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3183
const struct iommu_ops amd_iommu_ops = {
3184
	.capable = amd_iommu_capable,
3185 3186
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3187 3188
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3189 3190
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3191
	.iova_to_phys = amd_iommu_iova_to_phys,
3192 3193
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3194
	.device_group = amd_iommu_device_group,
3195 3196 3197
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3198
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3199
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3200 3201 3202
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3203 3204
};

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3227 3228 3229

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3230
	struct protection_domain *domain = to_pdomain(dom);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3248 3249 3250

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3251
	struct protection_domain *domain = to_pdomain(dom);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3312
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3329 3330 3331 3332 3333 3334
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3366
	struct protection_domain *domain = to_pdomain(dom);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3386
	struct protection_domain *domain = to_pdomain(dom);
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3419
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3420 3421
		}

3422
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3466
	struct protection_domain *domain = to_pdomain(dom);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3480
	struct protection_domain *domain = to_pdomain(dom);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3508 3509 3510

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3511
	struct protection_domain *pdomain;
3512

3513 3514
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3515 3516 3517
		return NULL;

	/* Only return IOMMUv2 domains */
3518
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3519 3520
		return NULL;

3521
	return &pdomain->domain;
3522 3523
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3551 3552 3553 3554 3555
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3581 3582 3583 3584 3585 3586 3587 3588 3589

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3590
static struct irq_chip amd_ir_chip;
3591
static DEFINE_SPINLOCK(iommu_table_lock);
3592

3593 3594 3595 3596 3597 3598
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3599
	dte	|= iommu_virt_to_phys(table->table);
3600 3601 3602 3603 3604 3605 3606
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3646 3647 3648 3649 3650 3651 3652 3653
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3654
static struct irq_remap_table *alloc_irq_table(u16 devid)
3655 3656
{
	struct irq_remap_table *table = NULL;
3657
	struct irq_remap_table *new_table = NULL;
3658 3659 3660 3661
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3662
	spin_lock_irqsave(&iommu_table_lock, flags);
3663 3664 3665 3666 3667 3668 3669

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3670
		goto out_unlock;
3671 3672 3673 3674

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3675
		set_remap_table_entry(iommu, devid, table);
3676
		goto out_wait;
3677
	}
3678
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3679 3680

	/* Nothing there yet, allocate new irq remapping table */
3681 3682 3683
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3684

3685
	spin_lock_irqsave(&iommu_table_lock, flags);
3686

3687 3688
	table = irq_lookup_table[devid];
	if (table)
3689
		goto out_unlock;
3690

3691 3692 3693 3694
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3695 3696
	}

3697 3698
	table = new_table;
	new_table = NULL;
3699

3700 3701 3702
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3703

3704
out_wait:
3705 3706 3707
	iommu_completion_wait(iommu);

out_unlock:
3708
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3709

3710 3711 3712 3713
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3714 3715 3716
	return table;
}

3717
static int alloc_irq_index(u16 devid, int count, bool align)
3718 3719
{
	struct irq_remap_table *table;
3720
	int index, c, alignment = 1;
3721
	unsigned long flags;
3722 3723 3724 3725
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3726

3727
	table = alloc_irq_table(devid);
3728 3729 3730
	if (!table)
		return -ENODEV;

3731 3732 3733
	if (align)
		alignment = roundup_pow_of_two(count);

3734
	raw_spin_lock_irqsave(&table->lock, flags);
3735 3736

	/* Scan table for free entries */
3737
	for (index = ALIGN(table->min_index, alignment), c = 0;
3738
	     index < MAX_IRQS_PER_TABLE;) {
3739
		if (!iommu->irte_ops->is_allocated(table, index)) {
3740
			c += 1;
3741 3742
		} else {
			c     = 0;
3743
			index = ALIGN(index + 1, alignment);
3744 3745
			continue;
		}
3746 3747 3748

		if (c == count)	{
			for (; c != 0; --c)
3749
				iommu->irte_ops->set_allocated(table, index - c + 1);
3750 3751 3752 3753

			index -= count - 1;
			goto out;
		}
3754 3755

		index++;
3756 3757 3758 3759 3760
	}

	index = -ENOSPC;

out:
3761
	raw_spin_unlock_irqrestore(&table->lock, flags);
3762 3763 3764 3765

	return index;
}

3766 3767
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3768 3769 3770 3771
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3772
	struct irte_ga *entry;
3773 3774 3775 3776 3777

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3778
	table = get_irq_table(devid);
3779 3780 3781
	if (!table)
		return -ENOMEM;

3782
	raw_spin_lock_irqsave(&table->lock, flags);
3783 3784 3785 3786 3787 3788 3789

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3790 3791
	if (data)
		data->ref = entry;
3792

3793
	raw_spin_unlock_irqrestore(&table->lock, flags);
3794 3795 3796 3797 3798 3799 3800 3801

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3802 3803 3804 3805 3806 3807 3808 3809 3810
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3811
	table = get_irq_table(devid);
3812 3813 3814
	if (!table)
		return -ENOMEM;

3815
	raw_spin_lock_irqsave(&table->lock, flags);
3816
	table->table[index] = irte->val;
3817
	raw_spin_unlock_irqrestore(&table->lock, flags);
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3835
	table = get_irq_table(devid);
3836 3837 3838
	if (!table)
		return;

3839
	raw_spin_lock_irqsave(&table->lock, flags);
3840
	iommu->irte_ops->clear_allocated(table, index);
3841
	raw_spin_unlock_irqrestore(&table->lock, flags);
3842 3843 3844 3845 3846

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3847 3848
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3849
			 u8 vector, u32 dest_apicid, int devid)
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3863
			    u8 vector, u32 dest_apicid, int devid)
3864 3865 3866 3867 3868 3869 3870 3871
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3872 3873
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3890
	modify_irte_ga(devid, index, irte, NULL);
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3906
	modify_irte_ga(devid, index, irte, NULL);
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3924
	if (!irte->lo.fields_remap.guest_mode) {
3925
		irte->hi.fields.vector = vector;
3926 3927 3928 3929
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3930 3931
		modify_irte_ga(devid, index, irte, NULL);
	}
3932 3933
}

3934
#define IRTE_ALLOCATED (~1U)
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3980
static int get_devid(struct irq_alloc_info *info)
3981
{
3982
	int devid = -1;
3983

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3999

4000 4001
	return devid;
}
4002

4003 4004 4005 4006
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4007

4008 4009
	if (!info)
		return NULL;
4010

4011 4012 4013 4014 4015 4016
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4017

4018
	return NULL;
4019 4020
}

4021
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4022
{
4023 4024
	struct amd_iommu *iommu;
	int devid;
4025

4026 4027
	if (!info)
		return NULL;
4028

4029 4030 4031 4032
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4033
		if (devid < 0)
4034 4035
			return NULL;

4036 4037 4038
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4039 4040 4041 4042
		break;
	default:
		break;
	}
4043

4044 4045
	return NULL;
}
4046

4047 4048 4049 4050 4051 4052
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4053 4054 4055
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4056

4057 4058 4059 4060 4061 4062 4063 4064
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4065 4066 4067 4068
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4069

4070 4071
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4072 4073
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4074
				 irq_cfg->dest_apicid, devid);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4090

4091 4092 4093 4094 4095 4096 4097
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4098

4099 4100 4101 4102
	default:
		BUG_ON(1);
		break;
	}
4103 4104
}

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4125 4126
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4127
{
4128 4129
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4130
	struct amd_ir_data *data = NULL;
4131
	struct irq_cfg *cfg;
4132
	int i, ret, devid;
4133
	int index;
4134

4135 4136 4137 4138
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4139 4140
		return -EINVAL;

4141 4142 4143 4144 4145 4146
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4147

4148 4149 4150
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4151

4152 4153 4154
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4155

4156
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4173
			index = info->ioapic_pin;
4174
		} else {
4175
			index = -ENOMEM;
4176
		}
4177
	} else {
4178 4179 4180
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4181 4182 4183
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4184
		ret = index;
4185 4186
		goto out_free_parent;
	}
4187

4188 4189 4190 4191 4192 4193 4194
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4195

4196 4197 4198 4199 4200
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4211 4212 4213 4214 4215 4216
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4217

4218
	return 0;
4219

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4231 4232
}

4233 4234
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4235
{
4236 4237 4238 4239
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4240

4241 4242 4243 4244 4245 4246
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4247
			kfree(data->entry);
4248 4249 4250 4251 4252
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4253

4254 4255 4256 4257 4258
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4259
static int irq_remapping_activate(struct irq_domain *domain,
4260
				  struct irq_data *irq_data, bool reserve)
4261 4262 4263
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4264
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4265
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4266

4267 4268 4269 4270 4271 4272
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4273
	return 0;
4274 4275
}

4276 4277
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4278
{
4279 4280
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4281
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4282

4283 4284 4285
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4286
}
4287

4288
static const struct irq_domain_ops amd_ir_domain_ops = {
4289 4290 4291 4292
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4293
};
4294

4295 4296 4297 4298 4299 4300 4301 4302
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4303 4304 4305 4306 4307 4308 4309 4310
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4333
		irte->lo.fields_vapic.ga_log_intr = 1;
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4346 4347 4348 4349
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4379 4380 4381 4382 4383 4384 4385
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4386
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4387
	int ret;
4388

4389 4390 4391
	if (!iommu)
		return -ENODEV;

4392 4393 4394
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4395

4396
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4397 4398 4399 4400 4401
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4402
	send_cleanup_vector(cfg);
4403 4404

	return IRQ_SET_MASK_OK_DONE;
4405 4406
}

4407
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4408
{
4409
	struct amd_ir_data *ir_data = irq_data->chip_data;
4410

4411 4412
	*msg = ir_data->msi_entry;
}
4413

4414
static struct irq_chip amd_ir_chip = {
4415
	.name			= "AMD-IR",
4416
	.irq_ack		= apic_ack_irq,
4417 4418 4419
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4420
};
4421

4422 4423
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4424 4425 4426 4427 4428 4429 4430
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4431 4432
	if (!iommu->ir_domain)
		return -ENOMEM;
4433

4434
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4435 4436 4437
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4438 4439
	return 0;
}
4440 4441 4442 4443 4444

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4445
	struct irq_remap_table *table;
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4459 4460
	table = get_irq_table(devid);
	if (!table)
4461 4462
		return -ENODEV;

4463
	raw_spin_lock_irqsave(&table->lock, flags);
4464 4465

	if (ref->lo.fields_vapic.guest_mode) {
4466 4467 4468 4469 4470 4471
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4472 4473 4474 4475
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4476
	raw_spin_unlock_irqrestore(&table->lock, flags);
4477 4478 4479 4480 4481 4482

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4483
#endif